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Abstract. In this paper, we study the relative homological dimension based on the class of projectively
coresolved Gorenstein flat modules (PGF-modules), that were introduced by Saroch and Stovicek in [26].
The resulting PGF-dimension of modules has several properties in common with the Gorenstein projective
dimension, the relative homological theory based on the class of Gorenstein projective modules. In particular,
there is a hereditary Hovey triple in the category of modules of finite PGF-dimension, whose associated
homotopy category is triangulated equivalent to the stable category of PGF-modules. Studying the finiteness
of the PGF global dimension reveals a connection between classical homological invariants of left and
right modules over the ring, that leads to generalizations of certain results by Jensen [24], Gedrich and
Gruenberg [17] that were originally proved in the realm of commutative Noetherian rings.
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Introduction

The concept of G-dimension for commutative Noetherian rings that was introduced by Auslander
and Bridger in [1] has been extended to modules over any ring R through the notion of a
Gorenstein projective module. Such a module is, by definition, a syzygy of an acyclic complex
of projective modules which remains acyclic when applying the functor HomR (__,P ) for any
projective module P . The modules of finite Gorenstein projective dimension are defined in the
standard way, using resolutions by Gorenstein projective modules. A Gorenstein flat module is a
syzygy of an acyclic complex of flat modules which remains acyclic when applying the functor
I ⊗R __ for any injective right module I . The modules of finite Gorenstein flat dimension are then
defined using resolutions by Gorenstein flat modules. The standard reference for these notions
is Holm’s paper [22]. The relation between Gorenstein projective and Gorenstein flat modules
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remains somehow mysterious in general. As shown in [22], all Gorenstein projective modules are
Gorenstein flat if the ground ring is right coherent and has finite left finitistic dimension (i.e. if
there is an upper bound on the projective dimension of all modules that have finite projective
dimension).

The projectively coresolved Gorenstein flat modules (PGF-modules, for short) were defined by
Saroch and Stovicek in [26]; these are the syzygies of the acyclic complexes of projective modules
that remain acyclic when applying the functor I ⊗R __ for any injective right module I . It is clear
that PGF-modules are Gorenstein flat. As shown in [26, Theorem 4.4], PGF-modules are also
Gorenstein projective. A schematic presentation of the classes GProj(R), GFlat(R) and PGF(R)
of Gorenstein projective, Gorenstein flat and PGF-modules respectively is given below

GProj(R) GFlat(R)
↖ ↗ ↖

PGF(R) Flat(R)
↖ ↗

Proj(R)

Here, Proj(R) and Flat(R) denote the classes of projective and flat modules respectively and
all arrows are inclusions. Moreover, the class Proj(R) of projective modules is the intersection
PGF(R)∩ Flat(R) and all classes pictured above are projectively resolving; in fact, GFlat(R) is
the smallest projectively resolving class of modules that contains both PGF(R) and Flat(R); these
assertions are proved in [26].

In this paper, we study the relative homological dimension which is based on the class PGF(R)
and define the PGF-dimension PGF-dimR M (independently introduced in [3]) of a module M as
the minimal length of a resolution of M by PGF-modules (provided that such a resolution exists).
The resulting class PGF(R) of modules of finite PGF-dimension has many of the standard prop-
erties that one would expect. In particular, it is closed under direct sums, direct summands and
has the 2-out-of-3 property for short exact sequences of modules. The PGF-dimension is a re-
finement of the ordinary projective dimension, whereas the Gorenstein projective dimension is a
refinement of the PGF-dimension. In other words, if M is a module of finite projective dimension
(resp. of finite PGF-dimension), then M has finite PGF-dimension (resp. finite Gorenstein pro-
jective dimension) and PGF-dimR M = pdR M (resp. GpdR M = PGF-dimR M). When restricted to
the class Flat(R) of flat modules, the PGF-dimension coincides with the projective dimension.
The modules of finite PGF-dimension can be approximated by modules of finite projective di-
mension and PGF-modules, in analogy with the case of modules of finite Gorenstein projective
dimension. In particular, this leads to a description, up to triangulated equivalence, of the sta-
ble category of PGF-modules modulo projective modules, as the homotopy category of the exact
model structure which is associated with a Hovey triple in the category PGF(R). Using the analo-
gous approximations of Gorenstein flat modules by PGF-modules and flat modules, that were ob-
tained by Saroch and Stovicek in [26], we describe a similar Hovey triple in the category GFlat(R).
Therefore, in order to realize the stable category of PGF-modules as the homotopy category of a
Quillen model structure, it is sufficient to work on either subcategory PGF(R) or GFlat(R) of the
module category.

In order to present an application of the notion of PGF-dimension studied in this paper, we
consider the invariants silpR and spliR, which are defined as the suprema of the injective lengths
of projective modules and the projective lengths of injective modules, respectively. It is easily seen
that these invariants are equal, if they are both finite. Nevertheless, as Gedrich and Gruenberg
point out in [17], it is not clear whether the finiteness of one of these implies the finiteness of the
other, i.e. whether we always have an equality silpR = spliR. In the special case where R is an
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Artin algebra, the equality silpR = spliR is equivalent to the Gorenstein Symmetry Conjecture in
representation theory; cf. [2, Conjecture 13], [4, §11] and [5, Chapter VII].

The study of the finiteness of the PGF global dimension reveals a connection between the silp
and spli invariants for left and right modules over any ring, which may be itself used in order to
show that:

If both spliR and spliRop are finite, then silpR = spliR and silpRop = spliRop .

Using the Hopf algebra structure of the group algebra kG of a group G with coefficients in a
commutative ring k, Gedrich and Gruenberg proved in [17] that silpkG ≤ splikG , in the special
case where the commutative ring k is Noetherian of finite self-injective dimension. It follows from
the result displayed above that we actually have an inequality silpR ≤ spliR for any ring R which
is isomorphic with its opposite ring Rop . In particular, the inequality holds for group algebras of
groups over any commutative coefficient ring. On the other hand, Jensen has proved in [24, 5.9]
that the equality silpR = spliR holds for any commutative Noetherian ring R. The result displayed
above, combined with earlier work in [14], shows that the equality silpR = spliR actually holds
for any commutative ℵ0-Noetherian ring R, i.e. for any commutative ring R all of whose ideals
are countably generated.

Notations and terminology

We work over a fixed unital associative ring R and, unless otherwise specified, all modules are
left R-modules. We denote by Rop the opposite ring of R and do not distinguish between right
R-modules and left Rop -modules. If λ(R) is an invariant, which is defined in terms of a certain
class of left R-modules, then we denote by λ(Rop ) the corresponding invariant, which is defined
for R in terms of the appropriate class of right R-modules. Finally, we say that a class C of
modules is projectively resolving if Proj(R) ⊆ C and C is closed under extensions and kernels
of epimorphisms.

1. Preliminary notions

In this section, we collect certain basic notions and preliminary results that will be used in
the sequel. These involve basic concepts related to Gorenstein homological algebra in module
categories and the theory of Hovey triples in exact additive categories.

1.1. Gorenstein projective and Gorenstein flat modules

An acyclic complex P∗ of projective modules is said to be a complete projective resolution if
the complex of abelian groups HomR (P∗,Q) is acyclic for any projective module Q. Then, a
module is called Gorenstein projective if it is a syzygy of a complete projective resolution. Holm’s
paper [22] is the standard reference in Gorenstein homological algebra. The class GProj(R) of
Gorenstein projective modules is projectively resolving; it is also closed under direct sums and
direct summands. The Gorenstein projective dimension GpdR M of a module M is the length of a
shortest resolution of M by Gorenstein projective modules. If no such resolution of finite length
exists, then we write GpdR M =∞. If M is a module of finite projective dimension, then M has
finite Gorenstein projective dimension as well and GpdR M = pdR M .

An acyclic complex F∗ of flat modules is said to be a complete flat resolution if the complex
of abelian groups I ⊗R F∗ is acyclic for any injective right module I . We say that a module is
Gorenstein flat if it is a syzygy of a complete flat resolution. We let GFlat(R) be the class of
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Gorenstein flat modules. The Gorenstein flat dimension GfdR M of a module M is the length of a
shortest resolution of M by Gorenstein flat modules. If no such resolution of finite length exists,
then we write GfdR M =∞. If M is a module of finite flat dimension, then M has finite Gorenstein
flat dimension as well and GfdR M = fdR M .

Even though the relation between Gorenstein projective and Gorenstein flat modules is not
fully understood, the notion of a projectively coresolved Gorenstein flat module (for short, PGF-
module) defined in [26] sheds some light in and helps clarifying that relation. A PGF-module
is a syzygy of an acyclic complex of projective modules P∗, which is such that the complex of
abelian groups I ⊗R P∗ is acyclic for any injective right module I . It is clear that the class PGF(R)
of PGF-modules is contained in GFlat(R). The inclusion PGF(R) ⊆ GProj(R) is proved in [26,
Theorem 4.4]; in fact, it is shown that Ext1

R (M ,F ) = 0 for any PGF-module M and any flat module
F . It is also proved in [26] that the classes PGF(R) and GFlat(R) are both projectively resolving,
closed under direct sums and direct summands.

1.2. Gorenstein global dimensions

The existence of complete projective resolutions of modules (i.e. of complete projective resolu-
tions that coincide in sufficiently large degrees with an ordinary projective resolution of the mod-
ule) has been studied by Gedrich and Gruenberg [17], Cornick and Kropholler [12], in connection
with the existence of complete cohomological functors in the category of modules. Even though
they were mainly interested in the case where R is the integral group ring of a group, they were
able to characterize those rings over which all modules admit complete projective resolutions,
in terms of the finiteness of the invariants spliR and silpR. Here, spliR is the supremum of the
projective lengths (dimensions) of injective modules and silpR is the supremum of the injective
lengths (dimensions) of projective modules. As shown by Holm [22], the existence of a complete
projective resolution for a module M is equivalent to the finiteness of the Gorenstein projective
dimension GpdR M of M . From this point of view, the above result by Cornick and Kropholler
was alternatively proved by Bennis and Mahbou in [7], where the notion of the Gorenstein global
dimension of the ring was introduced, in analogy with the classical notion of global dimension
defined in [9, Chapter VI, §2]; see also [15, §4]. More precisely, the (left) Gorenstein global dimen-
sion Ggl.dimR of the ring R is defined by letting

Ggl.dimR = sup{GpdR M : M a left R-module}.

Then, the following conditions are equivalent:

(i) Ggl.dimR <∞,
(ii) GpdR M <∞ for any module M ,

(iii) any module M admits a complete projective resolution,
(iv) the invariants spliR and silpR are finite.

If these conditions are satisfied, then Ggl.dimR = spliR = silpR.
The corresponding characterization of the finiteness of the Gorenstein weak global dimension

Gwgl.dimR of the ring R, which is defined by letting

Gwgl.dimR = sup{GfdR M : M a left R-module},

turned out to be more difficult to achieve. The relevant homological invariants here are sfliR, the
supremum of the flat lengths (dimensions) of injective modules, and its analogue sfliRop for the
opposite ring Rop . Using in an essential way results in [26], it was proved by Christensen, Estrada
and Thompson in [10] that the following conditions are equivalent:

(i) Gwgl.dimR <∞,
(ii) GfdR M <∞ for any module M ,
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(iii) the invariants sfliR and sfliRop are finite.

If these conditions are satisfied, then Gwgl.dimR = sfliR = sfliRop .

1.3. Cotorsion pairs and Hovey triples

Let A be an exact additive category, in the sense of Quillen [8], and consider a full subcategory
B ⊆A . A morphism f : B −→ A in A is called a B-precover of the object A ∈A if:

(i) B ∈B and
(ii) the induced map f∗ : HomA (B ′,B) −→ HomA (B ′, A) is surjective for any B ′ ∈B.

The reader is referred to [20] for a thorough and systematic study of precovers.
The Ext1-pairing induces an orthogonality relation between subclasses of A . If B ⊆ A , then

we define the left orthogonal ⊥B of B as the class consisting of those objects X ∈ A , which are
such that Ext1

A
(X ,B) = 0 for all B ∈ B. Analogously, the right orthogonal B⊥ of B is the class

consisting of those objects Y ∈ A , which are such that Ext1
A

(B ,Y ) = 0 for all B ∈ B. If C ,D are
two subclasses of A , then the pair (C ,D) is a cotorsion pair in A (cf. [16]) if C = ⊥D and C ⊥ =D.
The cotorsion pair is called hereditary if Exti

A
(C ,D) = 0 for all i > 0 and all objects C ∈ C and

D ∈ D. The cotorsion pair is complete if for any object A ∈ A there exist short exact sequences
(conflations), usually called approximation sequences

0 −→ D −→C −→ A −→ 0 and 0 −→ A −→ D ′ −→C ′ −→ 0,

where C ,C ′ ∈C and D,D ′ ∈D. In that case, the morphism C −→ A is a C -precover of A.
A Hovey triple on A is a triple (C ,W ,F ) of subclasses of A , which are such that the pairs

(C ,W ∩F ) and (C ∩W ,F ) are complete cotorsion pairs and the class W is closed under direct
summands and satisfies the 2-out-of-3 property for short exact sequences (conflations) in A .
The fundamental work of Gillespie [18], which is based on work of Hovey [23], gives a bijection
between Hovey triples on a (weakly) idempotent complete exact category A and certain, so-
called exact, Quillen model structures on A ; cf. [18, Theorem 3.3]. In the context of Gillespie’s
bijection, it is proved in [18, Proposition 5.2] that for an exact model structure on A that has
its associated complete cotorsion pairs hereditary, the class C ∩F is a Frobenius exact category
with projective-injective objects equal to C ∩W ∩F . Then, a result of Happel [21] implies that the
associated stable category, which is C ∩F modulo its projective-injective objects, is triangulated.
The upshot of this connection is that the (Quillen) homotopy category of an exact model structure
is triangulated equivalent to the stable category of the Frobenius exact category C ∩F ; cf. [18,
Proposition 4.4 and Corollary 4.8].

2. Modules of finite PGF-dimension

In this section, we define the notion of PGF-dimension for a module and show that the resulting
class PGF(R) of modules of finite PGF-dimension has many standard closure properties.

We recall that the class PGF(R) is projectively resolving and closed under direct sums and
direct summands. The following result is a formal consequence of these properties of PGF(R);
cf. [1, Lemma 3.12] and [3, Lemma 3.2].

Lemma 1. Let M be an R-module, n a non-negative integer and

0 −→ K −→Gn−1 −→ ·· · −→G0 −→ M −→ 0,

0 −→ K ′ −→G ′
n−1 −→ ·· · −→G ′

0 −→ M −→ 0

two exact sequences of modules with G0, . . . ,Gn−1,G ′
0, . . . ,G ′

n−1 ∈ PGF(R). Then, K ∈ PGF(R) if and
only if K ′ ∈ PGF(R).
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Proposition 2. The following conditions are equivalent for an R-module M and a non-negative
integer n:

(i) There exists an exact sequence of modules

0 −→Gn −→Gn−1 −→ ·· · −→G0 −→ M −→ 0,

with G0, . . . ,Gn−1,Gn ∈ PGF(R).
(ii) For any exact sequence of modules

0 −→ K −→Gn−1 −→ ·· · −→G0 −→ M −→ 0

with G0, . . . ,Gn−1 ∈ PGF(R), we also have K ∈ PGF(R).

Proof. The implication (i) ⇒ (ii) is a consequence of Lemma 1 (see also [3, Lemma 2.2] for a
special case), whereas the implication (ii) ⇒ (i) follows by considering a truncated projective
resolution of M . □

If the equivalent conditions in Proposition 2 are satisfied, then we say that the module M has
a PGF-resolution of length n and write PGF-dimR M ≤ n. In the case where PGF-dimR M ≤ n and
M has no PGF-resolution of length < n, we say that M has PGF-dimension equal to n and write
PGF-dimR M = n. Finally, we say that M has infinite PGF-dimension and write PGF-dimR M =∞,
if M has no PGF-resolution of finite length.

We now consider the class PGF(R) of all modules of finite PGF-dimension and describe certain
closure properties of that class.

Proposition 3. Let (Mi )i be a family of modules and M = ⊕
i Mi the corresponding direct sum.

Then, PGF-dimR M = supi PGF-dimR Mi . In particular, the class PGF(R) is closed under finite direct
sums and direct summands.

Proof. In order to show that PGF-dimR M ≤ supi PGF-dimR Mi , it suffices to consider the case
where supi PGF-dimR Mi = n <∞. Then, PGF-dimR Mi ≤ n and hence Mi has a PGF-resolution
of length n for all i . Since PGF(R) is closed under direct sums, the direct sum of these resolutions
is a PGF-resolution of M of length n, so that PGF-dimR M ≤ n.

It remains to show that we also have supi PGF-dimR Mi ≤ PGF-dimR M . To that end, assume
that PGF-dimR M = n <∞ and consider for any i an exact sequence

0 −→ Ki −→Gi ,n−1 −→ ·· · −→Gi ,0 −→ Mi −→ 0,

with Gi ,0, . . . ,Gi ,n−1 ∈ PGF(R). Since PGF(R) is closed under direct sums, the exactness of the direct
sum of these exact sequences

0 −→⊕
i Ki −→⊕

i Gi ,n−1 −→ ·· · −→⊕
i Gi ,0 −→ M −→ 0

and our assumption on the PGF-dimension of M imply that
⊕

i Ki is a PGF-module. Since PGF(R)
is closed under direct summands, it follows that Ki is a PGF-module for all i . Then, Mi has a
PGF-resolution of length n and hence PGF-dimR Mi ≤ n for all i , as needed. □

Proposition 4. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence of modules. Then:

(i) PGF-dimR M ≤ max{PGF-dimR M ′,PGF-dimR M ′′},
(ii) PGF-dimR M ′ ≤ max{PGF-dimR M ,PGF-dimR M ′′},

(iii) PGF-dimR M ′′ ≤ 1+max{PGF-dimR M ′,PGF-dimR M }.

In particular, the class PGF(R) has the 2-out-of-3 property: if two out of the three modules that
appear in a short exact sequence have finite PGF-dimension, then so does the third.
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Proof. (i). Assume that max{PGF-dimR M ′,PGF-dimR M ′′} = n and consider two projective res-
olutions P ′∗ −→ M ′ −→ 0 and P ′′∗ −→ M ′′ −→ 0 of M ′ and M ′′ respectively. Then, we may con-
struct by the standard step-by-step process a projective resolution P∗ −→ M −→ 0 of M , such that
Pi = P ′

i ⊕P ′′
i and the corresponding syzygy module Ωi M is an extension of Ωi M ′′ by Ωi M ′ for

all i . Since both M ′ and M ′′ have PGF-dimension ≤ n, the modules Ωn M ′ and Ωn M ′′ are both
PGF-modules. Then, the short exact sequence

0 −→Ωn M ′ −→Ωn M −→Ωn M ′′ −→ 0

and the closure of PGF(R) under extensions show that Ωn M is a PGF-module as well. Then, the
exact sequence

0 −→Ωn M −→ Pn−1 −→ ·· · −→ Po −→ M −→ 0

is a PGF-resolution of M of length n and hence PGF-dimR M ≤ n, as needed.

(ii). We can prove this assertion by using the same argument as the one used in order to prove
assertion (i) above, by invoking the closure of PGF(R) under kernels of epimorphisms.

(iii). We fix a short exact sequence

0 −→ K −→ P
p−→ M ′′ −→ 0, (1)

where P is a projective module, and consider the pullback of the short exact sequence given in
the statement of the Proposition along p

0 0
↓ ↓
K = K
↓ ↓

0 −→ M ′ −→ X −→ P −→ 0
∥ ↓ p↓

0 −→ M ′ −→ M −→ M ′′ −→ 0
↓ ↓
0 0

Since P is projective, the horizontal short exact sequence in the middle of the diagram splits and
hence X ≃ P ⊕M ′. We now invoke Proposition 3 and conclude that PGF-dimR X = PGF-dimR M ′.
Then, the vertical short exact sequence in the middle of the diagram and assertion (ii) above show
that

PGF-dimR K ≤ max{PGF-dimR X ,PGF-dimR M } = max{PGF-dimR M ′,PGF-dimR M }.

Since we may splice any PGF-resolution of K of length PGF-dimR K with the short exact se-
quence (1) and obtain a PGF-resolution of M ′′ of length 1+PGF-dimR K , it follows that

PGF-dimR M ′′ ≤ 1+PGF-dimR K ≤ 1+max{PGF-dimR M ′,PGF-dimR M },

as needed. □

As a consequence of the equality PGF(R)∩Flat(R) = Proj(R), we obtain the following result
on the relation between the projective dimension and the PGF-dimension of flat modules and,
analogously, the relation between the projective dimension and the flat dimension of PGF-
modules.

Proposition 5.

(i) If M is a flat module, then pdR M = PGF-dimR M.
(ii) If M is a PGF-module, then pdR M = f dR M.
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Proof. (i). Since Proj(R) ⊆ PGF(R), we always have PGF-dimR M ≤ pdR M . In order to prove the
reverse inequality, it suffices to assume that PGF-dimR M = n < ∞. Then, the truncation of a
projective resolution of M provides us with an exact sequence

0 −→ K −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0,

where P0, . . . ,Pn−1 are projective modules and K ∈ PGF(R). Since M is flat, it follows that K is
also flat and hence K ∈ PGF(R)∩ Flat(R) = Proj(R). We conclude that M admits a projective
resolution of length n and hence pdR M ≤ n = PGF-dimR M , as needed.

(ii). Since projective modules are flat, we always have fdR M ≤ pdR M . In order to prove the
reverse inequality, it suffices to assume that fdR M = n <∞. Then, the truncation of a projective
resolution of M provides us with an exact sequence

0 −→ K −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0,

where P0, . . . ,Pn−1 are projective modules and K is flat. Since M is a PGF-module and the class
PGF(R) is projectively resolving, it follows that K is also a PGF-module. Then, K ∈ PGF(R) ∩
Flat(R) = Proj(R) and hence M admits a projective resolution of length n, i.e. pdR M ≤ n =
fdR M . □

Remark 6. If we denote by Proj(R) and Flat(R) the classes of modules of finite projective
dimension and finite flat dimension respectively, then PGF(R)∩Flat(R) = Proj(R). Indeed, the
inclusion Proj(R) ⊆ PGF(R)∩Flat(R) is clear, since any projective resolution of finite length is
both a PGF-resolution and a flat resolution of finite length. Conversely, if M is a module contained
in PGF(R)∩Flat(R), then the n-th syzygy module Ωn M in a projective resolution of M is a flat
and PGF-module for n ≫ 0. Since PGF(R)∩Flat(R) = Proj(R), it follows that Ωn M is projective
for n ≫ 0 and hence M ∈ Proj(R).

3. Approximation sequences

In this section, we show that the finiteness of PGF-dimension can be detected by the existence
of suitable approximation sequences, in analogy with the case of the finiteness of Gorenstein
projective dimension.

The next result is akin to [22, Theorem 2.10]; see also [3, Lemma 3.3].

Proposition 7. Let M be a module with PGF-dimR M = n. Then, there exists a short exact sequence

0 −→ K −→G
π−→ M −→ 0,

where G is a PGF-module and pdR K = n − 1. (If n = 0, this is understood to mean K = 0.) In
particular, π is a PGF(R)-precover of M.

Proof. The result is clear if n = 0 and hence we may assume that n ≥ 1. Since PGF-dimR M = n,
there exists an exact sequence

0 −→ N −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0

where P0, . . . ,Pn−1 are projective modules and N ∈ PGF(R). Then, there exists another exact
sequence

0 −→ N −→Q0 −→Q−1 −→ ·· · −→Q−n+1 −→G −→ 0,

where Q0, . . . ,Q−n+1 are projective modules and G ∈ PGF(R). Since all kernels of the latter exact
sequence are PGF-modules as well, it follows from [26, Corollary 4.5] that the exact sequence
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remains exact after applying the functor HomR (__,P ) for any projective module P . We conclude
that there exists a morphism of complexes

0 −→ N −→ Q0 −→ ·· · −→ Q−n+1 −→ G −→ 0
∥ ↓ ↓ ↓

0 −→ N −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0

The unlabelled vertical arrows induce a quasi-isomorphism between the corresponding com-
plexes and hence we may consider the associated mapping cone, which is an acyclic complex

0 −→Q0 −→Q−1 ⊕Pn−1 −→ ·· · −→G ⊕P0
π−→ M −→ 0. (2)

Note that G ⊕P0 is a PGF-module and the module K = kerπ has projective dimension ≤ n −1. In
fact, our assumption that PGF-dimR M = n implies that the inequality pdR K ≤ n −1 cannot be
strict, i.e. pdR K = n−1. Since K ∈ Proj(R) ⊆ GProj(R)⊥ ⊆ PGF(R)⊥, where the latter inclusion is a
consequence of the inclusion PGF(R) ⊆ GProj(R), we conclude thatπ is indeed a PGF(R)-precover
of M . □

Corollary 8. If M is a module with PGF-dimR M ≤ 1, then the following conditions are equivalent:

(i) M ∈ PGF(R),
(ii) Ext1

R (M ,F ) = 0 for any flat module F ,
(iii) Ext1

R (M ,P ) = 0 for any projective module P.

Proof. The implication (i) ⇒ (ii) follows from [26, Theorem 4.4], whereas the implication (ii) ⇒
(iii) is obvious. In order to prove that (iii) ⇒ (i), we use Proposition 7 and note that the hypothesis
PGF-dimR M ≤ 1 implies the existence of a short exact sequence

0 −→ P −→G −→ M −→ 0,

where P is projective and G ∈ PGF(R). By our assumption, the group Ext1
R (M ,P ) is trivial and

hence the exact sequence splits. It follows that M is a direct summand of G . Since the class PGF(R)
is closed under direct summands, we conclude that M ∈ PGF(R) as well. □

Corollary 9. If M ∈ PGF(R), then the following conditions are equivalent:

(i) M ∈ PGF(R),
(ii) Exti

R (M ,F ) = 0 for any i > 0 and any flat module F ,
(iii) Exti

R (M ,P ) = 0 for any i > 0 and any projective module P.

Proof. The implication (i) ⇒ (ii) follows from [26, Corollary 4.5], whereas the implication (ii) ⇒
(iii) is obvious. In order to prove that (iii) ⇒ (i), we consider a PGF-resolution of M of finite length

0 −→Gn −→ ·· · −→G0 −→ M −→ 0

and argue by induction on n. The case where n = 0 is trivial. Assume that n > 0 and let K be the
kernel of the map G0 −→ M , so that there is a short exact sequence

0 −→ K −→G0 −→ M −→ 0.

Since G0 ∈ PGF(R), the group Exti
R (G0,P ) is trivial and hence Exti

R (K ,P ) = Exti+1
R (M ,P ) is also

trivial for all i > 0 and all projective modules P . The module K admits a PGF-resolution of
length n − 1 and our induction hypothesis implies that K ∈ PGF(R). Therefore, it follows that
PGF-dimR M ≤ 1. Since Ext1

R (M ,P ) = 0 for any projective module P , we finish the proof by
invoking Corollary 8. □

In view of Proposition 4(iii), the existence of a short exact sequence as in the statement
of Proposition 7 is equivalent to the finiteness of the PGF-dimension of M . In fact, we may
complement this assertion and prove the following result. Here, condition (iii) is analogous to [11,
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Lemma 2.17] (see also [25, Lemma 1.9]) and conditions (iv) and (v) are inspired by the Remark
following [26, Theorem 4.11].

Theorem 10. The following conditions are equivalent for a module M and a non-negative
integer n:

(i) PGF-dimR M = n.
(ii) There exists a short exact sequence

0 −→ K −→G −→ M −→ 0,

where G is a PGF-module and pdR K = n −1. If n = 0, this is understood to mean K = 0. If
n = 1, we also require that the exact sequence be non-split.

(iii) There exists a short exact sequence

0 −→ M −→ K −→G −→ 0,

where G is a PGF-module and pdR K = n.
(iv) There exists a projective module P, such that the module M ′ = M ⊕P fits into an exact

sequence
0 −→G −→ M ′ −→ K −→ 0,

which remains exact after applying the functor HomR (__,Q) for any module Q ∈ PGF(R)⊥,
where G is a PGF-module and pdR K = n.

(v) There exists a PGF-module P, such that the module M ′ = M ⊕P fits into an exact sequence

0 −→G −→ M ′ −→ K −→ 0,

where G is a PGF-module and pdR K = n. If n = 1, we also require that the exact sequence
remain exact after applying the functor HomR (__,Q) for any projective module Q.

Proof. (i)⇒(ii). The existence of the short exact sequence follows from Proposition 7. If n = 1,
then the exact sequence cannot split. (Indeed, if the short exact sequence were split, then M
would be a direct summand of the PGF-module G and hence M would be itself a PGF-module;
this is absurd, since PGF-dimR M = 1.)

(ii)⇒(iii). Consider a short exact sequence as in (ii). Since G ∈ PGF(R), there exists a short exact
sequence

0 −→G −→ P −→G ′ −→ 0,

where P is a projective module and G ′ ∈ PGF(R). By considering the pushout of that short exact
sequence along the given epimorphism G −→ M , we obtain a commutative diagram with exact
rows and columns

0 0
↓ ↓

0 −→ K −→ G −→ M −→ 0
∥ ↓ ↓

0 −→ K −→ P −→ K ′ −→ 0
↓ ↓

G ′ = G ′

↓ ↓
0 0

We claim that the rightmost vertical exact sequence is of the required type. Indeed, if n =
0, then K = 0 and hence K ′ = P is a projective module. If n = 1, then K is projective and
the monomorphism K −→ P is not split. (Indeed, if that monomorphism were split, then the
monomorphism K −→ G would be split as well, contradicting our assumption.) It follows that
the module K ′ = coker(K −→ P ) is not projective and hence pdR K ′ = 1. If n ≥ 2, then pdR K =
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n−1 > 0, so that Extn
R (K ′,__) = Extn−1

R (K ,__) ̸= 0 and Extn+1
R (K ′,__) = Extn

R (K ,__) = 0; it follows that
pdR K ′ = n.

(iii)⇒(iv). Consider a short exact sequence as in (iii) and let

0 −→ K ′ −→ P −→ K −→ 0

be a short exact sequence, where P is a projective module and pdR K ′ = n − 1. (If n = 0, then
K is projective and we choose P = K and K ′ = 0.) By considering the pullback of that short exact
sequence along the given monomorphism M −→ K , we obtain a commutative diagram with exact
rows and columns

0 0
↓ ↓

K ′ = K ′

↓ ↓
0 −→ G ′ −→ P −→ G −→ 0

↓ ↓ ∥
0 −→ M −→ K −→ G −→ 0

↓ ↓
0 0

Since the class PGF(R) is projectively resolving, the horizontal short exact sequence in the middle
shows that G ′ is a PGF-module. Then, the definition of the pullback and the surjectivity of the
map P −→ K imply that there is a short exact sequence

0 −→G ′ −→ M ⊕P −→ K −→ 0.

In order to show that this short exact sequence has the required additional property, we note
that for any module Q ∈ PGF(R)⊥ the two horizontal short exact sequences in the diagram above
induce a commutative diagram of abelian groups with exact rows

0 −→ HomR (G ,Q) −→ HomR (P,Q) −→ HomR (G ′,Q) −→ 0
∥ ↑ ↑

0 −→ HomR (G ,Q) −→ HomR (K ,Q) −→ HomR (M ,Q) −→ 0

It follows readily that there is an induced sequence of abelian groups

0 −→ HomR (K ,Q) −→ HomR (M ,Q)⊕HomR (P,Q) −→ HomR (G ′,Q) −→ 0,

as needed.

(iv)⇒(v). This is immediate, since projective modules are contained in both classes PGF(R) and
PGF(R)⊥.

(v)⇒(i). Consider an exact sequence as in (v) and note that Proposition 3 implies that
PGF-dimR M ′ = PGF-dimR M . Therefore, it suffices to prove that PGF-dimR M ′ = n. Since G is
a PGF-module and PGF-dimR K ≤ pdR K = n, we may invoke Proposition 4(i) and conclude that
PGF-dimR M ′ ≤ n. It remains to show that the latter inequality cannot be strict. Indeed, let us
assume that n ≥ 1 and PGF-dimR M ′ ≤ n −1.

If n = 1, then M ′ is a PGF-module and hence PGF-dimR K ≤ 1. Since the short exact sequence
is assumed to remain exact after applying the functor HomR (__,Q) for any projective module
Q and M ′ ∈ PGF(R) ⊆ ⊥Proj(R), it follows that the abelian group Ext1

R (K ,Q) is trivial for any
projective module Q. Then, Corollary 8 implies that K ∈ PGF(R); in particular, K ∈ GProj(R). As
shown in [22, Proposition 2.27], any Gorenstein projective module of finite projective dimension
is necessarily projective. We therefore conclude that the module K is projective.1 This is absurd,
since pdR K = 1.

1Alternatively, the projectivity of K follows since Proj(R) ⊆ PGF(R)⊥ and PGF(R)∩PGF(R)⊥ = Proj(R); cf. [26].
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We now consider the case where n > 1. Since the PGF-module G is Gorenstein projective, the
functor Extn−1

R (G ,__) vanishes on projective modules. Since PGF-dimR M ′ ≤ n −1 and PGF(R) ⊆
GProj(R), we also have GpdR M ′ ≤ n −1. Therefore, [22, Theorem 2.20] implies that the functor
Extn

R (M ′,__) vanishes on projective modules as well. It follows that the functor Extn
R (K ,__) van-

ishes on projective modules. This contradicts our assumption that pdR K = n; indeed, if we con-
sider a projective resolution P∗ −→ K −→ 0 of length n, then the monomorphism Pn −→ Pn−1 is
not split and hence Extn

R (K ,Pn) ̸= 0. □

Remarks 11.

(i) In the case where n = 1, it is necessary to impose some restrictions on the short exact se-
quences appearing in Theorem 10(ii),(v). Indeed, if P is any non-zero projective module
and M ∈ PGF(R), then the (split) short exact sequence

0 −→ P −→ P ⊕M −→ M −→ 0

is of the type appearing in Theorem 10(ii), but PGF-dimR M = 0 ̸= 1. On the other hand,
if K is a module with pdR K = 1, then a projective resolution of K provides an exact
sequence

0 −→ P1 −→ P0 −→ K −→ 0

of the type appearing in Theorem 10(v), but PGF-dimR P0 = 0 ̸= 1.
(ii) It is clear from the proof of Theorem (10) that the analogues of conditions (iv) and (v)

therein for Gorenstein projective modules are equivalent to the analogues of conditions
(i), (ii) and (iii) for such modules, thereby complementing the characterizations of the
finiteness of the Gorenstein projective dimension given in [22, Theorem 2.10] and [11,
Lemma 2.17].

The next result is a characterization of modules of finite PGF-dimension, that parallels the
characterization of modules of finite Gorenstein projective dimension in [22, Theorem 2.20].

Proposition 12. The following conditions are equivalent for a module M of finite PGF-dimension
and a non-negative integer n:

(i) PGF-dimR M ≤ n.
(ii) Exti

R (M ,F ) = 0 for all i > n and any flat module F .
(ii′) Exti

R (M ,P ) = 0 for all i > n and any projective module P.
(iii) Exti

R (M ,F ) = 0 for all i > n and any module F of finite flat dimension.
(iii′) Exti

R (M ,P ) = 0 for all i > n and any module P of finite projective dimension.

Proof. (i)⇒(ii). We consider a PGF-resolution of length n

0 −→Gn −→Gn−1 −→ ·· · −→G0 −→ M −→ 0

and fix a flat module F . Since the functors Ext j
R (__,F ) vanish on the class of PGF-modules for all

j > 0 (cf. [26, Corollary 4.5]), we may deduce the desired vanishing by dimension shifting.

(ii)⇒(i). Let

0 −→ K −→Gn−1 −→ ·· · −→G0 −→ M −→ 0

be an exact sequence, where G0, . . . ,Gn−1 ∈ PGF(R). Since the modules M ,G0, . . . ,Gn−1 are of finite
PGF-dimension, an iterated application of Proposition 4(ii) shows that the module K has finite
PGF-dimension as well. On the other hand, our hypothesis and the dimension shifting argument
employed in the proof of the implication (i) ⇒ (ii) above show that the functors Exti

R (K ,__) vanish
on flat modules for all i > 0. Invoking Corollary 9, we conclude that K ∈ PGF(R), as needed.
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The implication (ii) ⇒ (iii) follows by induction on the flat dimension of the module F , whereas
the implication (iii) ⇒ (ii) is immediate.

Finally, the implications (i) ⇐⇒ (ii′) ⇐⇒ (iii′) that involve projective modules can be proved
by using exactly the same arguments as those used above for the implications that involve flat
modules. □

An immediate consequence of the characterization above is that the PGF-dimension is a
refinement of the ordinary projective dimension, whereas the Gorenstein projective dimension
is a refinement of the PGF-dimension; cf. [3, Lemma 3.1].

Corollary 13. Let M be a module.

(i) If pdR M <∞, then PGF-dimR M = pdR M.
(ii) If PGF-dimR M <∞, then GpdR M = PGF-dimR M.

Proof. (i). If pdR M = n, then the functors Exti
R (M ,__) vanish for all i > n and Exti

R (M ,P ) ̸= 0 for a
suitable projective module P . Since PGF-dimR M ≤ n, the equality PGF-dimR M = n follows from
Proposition 12.

(ii). Since GpdR M ≤ PGF-dimR M <∞, the equality GpdR M = PGF-dimR M follows from Propo-
sition 12 and [22, Theorem 2.20]. □

Since PGF(R) ⊆ GProj(R), it follows from [22, Theorem 2.20] that Ext1
R (M ,P ) = 0 whenever

M ∈ PGF(R) and P ∈ Proj(R); this is precisely the assertion of Proposition 12(iii′) in the case where
n = 0 therein. In fact, this vanishing provides a characterization of PGF-modules and modules of
finite projective dimension, if we restrict to modules of finite PGF-dimension.

Proposition 14. Let N be a module of finite PGF-dimension. Then:

(i) N ∈ PGF(R) if and only if Ext1
R (N ,P ) = 0 for any P ∈ Proj(R).

(ii) N ∈ Proj(R) if and only if Ext1
R (M , N ) = 0 for any M ∈ PGF(R).

Proof. (i). As we noted above, the Ext-group is trivial if N ∈ PGF(R). Conversely, assume that N
is a module of finite PGF-dimension contained in ⊥Proj(R). Proposition 7 implies the existence
of a short exact sequence

0 −→ K −→G −→ N −→ 0,

where G ∈ PGF(R) and K ∈ Proj(R). In view of our assumption on N , this sequence splits and
hence N is a direct summand of the PGF-module G . Since the class PGF(R) is closed under direct
summands, we conclude that N is a PGF-module.

(ii). As we noted above, the Ext-group is trivial if N ∈ Proj(R). Conversely, assume that N
is module of finite PGF-dimension contained in PGF(R)⊥. Then, Theorem 10(iii) implies the
existence of a short exact sequence

0 −→ N −→ K −→G −→ 0,

where G ∈ PGF(R) and K ∈ Proj(R). In view of our assumption on N , this sequence splits and
hence N is a direct summand of K . Then, pdR N ≤ pdR K < ∞ and hence N ∈ Proj(R), as
needed. □

We now examine the special case of Gorenstein flat modules and show that the values of their
PGF-dimension are controlled by the values of the projective dimension of flat modules. We let
splfR be the supremum of the projective lengths (dimensions) of flat modules.

Proposition 15. We have an equality sup{PGF-dimR M : M ∈ GFlat(R)} = splfR. In particular,
Flat(R) ⊆ Proj(R) if and only if GFlat(R) ⊆ PGF(R).
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Proof. Let s = sup{PGF-dimR M : M ∈ GFlat(R)}. If M is any flat module, then Proposition 5(i)
implies that pdR M = PGF-dimR M ≤ s. It follows that splfR ≤ s. In order to prove the reverse
inequality, it suffices to assume that splfR < ∞, so that any flat module has finite projective
dimension. If M is any Gorenstein flat module, then [26, Theorem 4.11] implies that there exists
a short exact sequence

0 −→ M −→ F −→G −→ 0,

where F is flat and G ∈ PGF(R). Since F has finite projective dimension, Theorem 10(iii) implies
that PGF-dimR M = pdR F ≤ splfR. We conclude that s ≤ splfR, as needed.

Considering the projective dimension of direct sums of flat modules, it is easily seen that
Flat(R) ⊆ Proj(R) if and only if splfR <∞. In the same way, we may consider the PGF-dimension
of direct sums of Gorenstein flat modules (cf. Proposition 3) and conclude that GFlat(R) ⊆ PGF(R)
if and only if s < ∞. Therefore, the final statement in the Proposition follows from the equality
s = splfR. □

We may complement the characterization of the finiteness of PGF-dimension given in Theo-
rem 10, in the case of a Gorenstein flat module M , by requiring that the module K that appears in
assertions (ii), (iii), (iv) and (v) therein be also flat. To that end, we note that any Gorenstein flat
module of finite projective dimension is necessarily flat. Indeed, such a module must also have
finite flat dimension and its flatness follows then from [6, §2]; see also [15, Remark 1.5].

Proposition 16. The following conditions are equivalent for a Gorenstein flat module M and a
non-negative integer n:

(i) PGF-dimR M = n.
(ii) There exists a short exact sequence

0 −→ K −→G −→ M −→ 0,

where G is a PGF-module and K is a flat module with pdR K = n − 1. If n = 0, this is
understood to mean K = 0. If n = 1, we also require that the exact sequence be non-split.

(iii) There exists a short exact sequence

0 −→ M −→ K −→G −→ 0,

where G is a PGF-module and K is a flat module with pdR K = n.
(iv) There exists a projective module P, such that the module M ′ = M ⊕P fits into an exact

sequence

0 −→G −→ M ′ −→ K −→ 0,

which remains exact after applying the functor HomR (__,Q) for any module Q ∈ PGF(R)⊥,
where G is a PGF-module and K is a flat module with pdR K = n.

(v) There exists a PGF-module P, such that the module M ′ = M ⊕P fits into an exact sequence

0 −→G −→ M ′ −→ K −→ 0,

where G is a PGF-module and K is a flat module with pdR K = n. If n = 1, we also
require that the exact sequence remain exact after applying the functor HomR (__,Q) for
any projective module Q.

Proof. We proceed as in the proof of Theorem 10, showing that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒
(v) ⇒ (i). Since M is Gorenstein flat, PGF(R) ⊆ GFlat(R) and the class of Gorenstein flat modules
is projectively resolving (cf. [26, Corollary 4.12]), the module K appearing in (ii) and (iii) is a
Gorenstein flat module of finite projective dimension; as noted above, this forces K to be flat.
We also note that the argument in the proof of the implication (iii) ⇒ (iv) in Theorem 10 provides
a short exact sequence as in (iv) with K being the same module K that appears in (iii). □
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4. Hovey triples on PGF(R) and GFlat(R)

We shall now relate the results obtained in the previous section to the theory of exact model
structures and describe a hereditary Hovey triple in the exact category PGF(R) of modules of
finite PGF-dimension, which is such that the homotopy category of the associated exact model
structure is equivalent as a triangulated category to the stable category of PGF-modules. We
shall also describe the stable category of PGF-modules, up to triangulated equivalence, as the
homotopy category of the exact model structure associated with a similar Hovey triple in the
exact category GFlat(R) of Gorenstein flat modules.

It is easily seen that PGF(R) is an exact Frobenius category with projective-injective objects
given by the projective modules. The proof of the latter claim is essentially identical to the proof
of the corresponding claim for the class of Gorenstein projective modules, which can be found
for instance in [13, Proposition 2.2].

The category PGF(R) of modules of finite PGF-dimension is an extension closed subcategory
of the abelian category of all modules (cf. Proposition 4(i)), which is also closed under direct
summands (cf. Proposition 3). Therefore, PGF(R) is an idempotent complete exact additive
category [8]. The following result is an analogue of [13, Theorem 3.7]. The idea is that in order
to realize the stable category of PGF-modules as the homotopy category of a Quillen model
structure, it suffices to work on the subcategory PGF(R) of modules of finite PGF-dimension.
We note that the class Proj(R) of modules of finite projective dimension is closed under direct
summands and has the 2-out-of-3 property for short exact sequences.

Theorem 17. The triple
(
PGF(R),Proj(R),PGF(R)

)
is a hereditary Hovey triple in the idempotent

complete exact category PGF(R). The homotopy category of the associated exact model structure is
equivalent, as a triangulated category, to the stable category of PGF-modules.

Proof. We need to prove that the pairs(
PGF(R),Proj(R)∩PGF(R)

)
and

(
PGF(R)∩Proj(R),PGF(R)

)
are complete and hereditary cotorsion pairs in the exact category PGF(R). Since any PGF-module
is Gorenstein projective, we conclude that

PGF(R)∩Proj(R) ⊆ GProj(R)∩Proj(R) = Proj(R),

where the latter equality follows from [22, Proposition 2.27]. On the other hand, projective
modules are contained in both classes PGF(R) and Proj(R) and hence PGF(R) ∩ Proj(R) =
Proj(R).2 Thus, the two pairs displayed above become(

PGF(R),Proj(R)
)

and
(
Proj(R),PGF(R)

)
.

We begin by considering the pair
(
PGF(R),Proj(R)

)
and note that Proposition 14 states pre-

cisely that this is indeed a cotorsion pair in PGF(R). Theorem 10 provides the approximations re-
ferring to completeness, whereas Proposition 12(iii′), applied to the case where n = 0, shows that
the cotorsion pair is hereditary.

We now consider the pair
(
Proj(R),PGF(R)

)
and note that PGF(R) is obviously the right

orthogonal of Proj(R) within PGF(R). In order to prove that Proj(R) is the left orthogonal of
PGF(R) within PGF(R), we let M be a module of finite PGF-dimension which is also contained
in ⊥PGF(R) and consider a short exact sequence

0 −→ M ′ −→ P −→ M −→ 0,

where P is projective. Then, Proposition 4(ii) implies that M ′ has also finite PGF-dimension
and hence Ext1

R (M , M ′) = 0. In particular, the exact sequence above splits. It follows that M is

2Alternatively, the equality PGF(R)∩ Proj(R) = Proj(R) follows since Proj(R) ⊆ Proj(R) ⊆ PGF(R)⊥ and PGF(R)∩
PGF(R)⊥ = Proj(R); cf. [26].
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a direct summand of P and hence M is projective. The cotorsion pair
(
Proj(R),PGF(R)

)
in PGF(R)

is hereditary (since all higher Ext’s with a projective first argument vanish) and complete (since
the class PGF(R) is projectively resolving).

The rest of the statement follows from [18, Proposition 4.4 and Corollary 4.8]. □

The category GFlat(R) of Gorenstein flat modules is also closed under extensions and direct
summands; this follows from [26, Corollary 4.12]. Hence, GFlat(R) is an idempotent complete
exact category as well. As shown in [26, Theorem 4.4], the group Ext1

R (M ,F ) is trivial whenever M
is a PGF-module and F is flat. This vanishing actually provides a characterization of PGF-modules
and flat modules, if we restrict to Gorenstein flat modules.

Proposition 18. Let N be a Gorenstein flat module. Then:

(i) N ∈ PGF(R) if and only if Ext1
R (N ,F ) = 0 for any flat module F .

(ii) N is flat if and only if Ext1
R (M , N ) = 0 for any M ∈ PGF(R).

Proof. (i). As we noted above, the Ext-group is trivial if N is a PGF-module. Conversely, assume
that N is a Gorenstein flat module contained in ⊥Flat(R). Then, there exists a short exact
sequence

0 −→ F −→G −→ N −→ 0,

where G is a PGF-module and F is flat; cf. [26, Theorem 4.11(2)]. In view of our assumption on N ,
this short sequence splits and hence N is a direct summand of the PGF-module G . Since the class
PGF(R) is closed under direct summands, we conclude that N ∈ PGF(R).

(ii). As we noted above, the Ext-group is trivial if N is flat. Conversely, assume that N is a
Gorenstein flat module contained in PGF(R)⊥. Then, there exists a short exact sequence

0 −→ N −→ F −→G −→ 0,

where G is a PGF-module and F is flat; cf. [26, Theorem 4.11(4)]. In view of our assumption on N ,
this short sequence splits and hence N is a direct summand of the flat module F . Therefore, N is
flat. □

We note that the class Flat(R) of flat modules is closed under direct summands and has the 2-
out-of-3 property within the class of Gorenstein flat modules. Of course, Flat(R) is closed under
extensions and kernels of epimorphisms. Moreover, if the cokernel of a monomorphism between
flat modules is Gorenstein flat, then that cokernel is necessarily flat.3 The proof of the following
result is very similar to the proof of Theorem 17.

Theorem 19. The triple (PGF(R),Flat(R),GFlat(R)) is a hereditary Hovey triple in the idempotent
complete exact category GFlat(R). The homotopy category of the associated exact model structure
is equivalent, as a triangulated category, to the stable category of PGF-modules.

Proof. We need to prove that the pairs

(PGF(R),Flat(R)∩GFlat(R)) and (PGF(R)∩Flat(R),GFlat(R))

are complete and hereditary cotorsion pairs in the exact category GFlat(R). Since PGF(R) ∩
Flat(R) = Proj(R), the two pairs displayed above become

(PGF(R),Flat(R)) and
(
Proj(R),GFlat(R)

)
.

We begin by considering the pair (PGF(R),Flat(R)) and note that Proposition 18 states pre-
cisely that this is indeed a cotorsion pair in the exact category GFlat(R). Completeness of the

3We have pointed out in the discussion preceding Proposition 16 that any Gorenstein flat module of finite flat
dimension is necessarily flat.
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cotorsion pair follows from the exact sequences in [26, Theorem 4.11(2),(4)], whereas Proposi-
tion 12(ii), applied to the case where n = 0, shows that the cotorsion pair is hereditary.

We now consider the pair
(
Proj(R),GFlat(R)

)
and note that GFlat(R) is obviously the right

orthogonal of Proj(R) within GFlat(R). In order to prove that Proj(R) is the left orthogonal
of GFlat(R) within GFlat(R), we let M be a Gorenstein flat module which is also contained in
⊥GFlat(R) and consider a short exact sequence

0 −→ M ′ −→ P −→ M −→ 0,

where P is projective. Since the class GFlat(R) is projectively resolving (cf. [26, Corollary 4.12]),
we deduce that M ′ is also Gorenstein flat. Therefore, Ext1

R (M , M ′) = 0 and the exact sequence
above splits. It follows that M is a direct summand of P and hence M is projective. The cotor-
sion pair

(
Proj(R),GFlat(R)

)
in GFlat(R) is hereditary (since all higher Ext’s with a projective

first argument vanish) and complete (since the class of Gorenstein flat modules is projectively
resolving).

The final statement follows from [18, Proposition 4.4 and Corollary 4.8]. □

Remark 20. Another model for the stable category of PGF-modules can be obtained from the
Hovey triple (PGF(R),PGF(R)⊥,R-Mod) on the category R-Mod of all modules; cf. [26, Theo-
rem 4.9] and [19, Proposition 37]. A possible advantage of the Hovey triples presented in this
section is that the classes of modules that are involved herein admit a more manageable descrip-
tion.

5. The finiteness of the PGF global dimension

In this section, we characterize those rings over which all modules have finite PGF-dimension,
in terms of classical homological invariants. As a consequence of this description, we generalize
a result by Jensen [24] (on commutative Noetherian rings) and another result by Gedrich and
Gruenberg [17] (on group rings of groups over a commutative Noetherian coefficient ring).

We define the (left) PGF global dimension PGF-gl.dimR of the ring R, by letting

PGF-gl.dimR = sup{PGF-dimR M : M a left R-module}.

Using the characterization of the finiteness of the Gorenstein global dimension and the Gores-
ntein weak global dimension, we may characterize the finiteness of PGF-gl.dimR, as follows:

Theorem 21. The following conditions are equivalent for a ring R:

(i) PGF-gl.dimR <∞,
(ii) PGF-dimR M <∞ for any module M,

(iii) spliR = silpR <∞ and sfliR = sfliRop <∞,
(iv) spliR <∞ and sfliRop <∞.

If these conditions are satisfied, then PGF-gl.dimR = spliR = silpR(= Ggl.dimR).

Proof. It is clear that (i) ⇒ (ii), whereas the implication (ii) ⇒ (i) is an immediate consequence of
Proposition 3.

(ii)⇒(iii). Since PGF(R) is contained in both classes GProj(R) and GFlat(R), our hypothesis im-
plies that any module M has both finite Gorenstein projective dimension and finite Gorenstein
flat dimension. (In fact, both GpdR M and GfdR M are bounded by PGF-dimR M <∞.) Then, as-
sertion (iii) follows from the characterization of the finiteness of the Gorenstein global dimension
and the Gorenstein weak global dimension of R; cf. Section 1.2.

(iii)⇒(iv). This is straightforward.



1446 Georgios Dalezios and Ioannis Emmanouil

(iv)⇒(ii). Assume that spliR = n < ∞ and fix a module M . Then, the construction by Gedrich
and Gruenberg in [17, §4] provides us with an acyclic complex of projective modules

· · · −→ Pn+1 −→ Pn −→Qn−1 −→Qn−2 −→ ·· · , (3)

which coincides in degrees ≥ n with a projective resolution

· · · −→ Pn+1 −→ Pn −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0

of M . Since the acyclic complex (3) consists of projective (and hence flat) modules, it remains
acyclic by applying the functor L⊗R __ for any right module L of finite flat dimension; this follows
easily by induction on the flat dimension of L. In particular, our assumption about the finiteness
of sfliRop implies that the complex (3) remains acyclic by applying the functor I ⊗R __ for any
injective right module I . Therefore, the module K = coker(Pn+1 −→ Pn) is a PGF-module. Then,
the exact sequence

0 −→ K −→ Pn−1 −→ ·· · −→ P0 −→ M −→ 0

shows that PGF-dimR M ≤ n <∞, as needed.
The final claim in the statement of the Theorem is an immediate consequence of Corol-

lary 13(ii), which implies that PGF-gl.dimR = Ggl.dimR, if PGF-gl.dimR is finite. □

As an immediate consequence of the equivalence between assertions (iii) and (iv) in Theo-
rem 21 above, we obtain the following result.

Corollary 22. Let R be a ring, such that both invariants spliR and sfliRop are finite. Then,
silpR = spliR.

We may obtain a left-right symmetric assertion, as follows.

Proposition 23. Let R be a ring, such that both invariants spliR and spliRop are finite. Then, we
have silpR = spliR and silpRop = spliRop .

Proof. Since projective (left or right) modules are flat, we have

sfliR ≤ spliR <∞ and sfliRop ≤ spliRop <∞.

Then, the result follows by applying Corollary 22 for the ring R and its opposite Rop . □

Corollary 24. If R is a ring which is isomorphic with its opposite Rop , then silpR ≤ spliR with
equality if spliR <∞.

Proof. The inequality is obvious if spliR = ∞ and hence it suffices to consider the case where
spliR <∞. Then, spliRop = spliR is also finite and we may invoke Proposition 23. □

We recall that a ring R is called left (resp. right) ℵ0-Noetherian if any left (resp. right) ideal of
R is countably generated. For example, countable rings and countably generated algebras over
fields are both left and right ℵ0-Noetherian.

Remarks 25.

(i) Let k be a commutative ring, G a group and R = kG the associated group algebra. Then,
R is isomorphic with its opposite Rop and hence Corollary 24 implies that silpR ≤ spliR.
In the special case where the coefficient ring k is Noetherian of finite self-injective
dimension, this inequality was proved by Gedrich and Gruenberg in [17, Theorem 2.4],
using the Hopficity of the group algebra R.

(ii) Let k be a commutative ℵ0-Noetherian ring, G a group and R = kG the associated group
algebra. Then, we may invoke [14, Proposition 4.3] and conclude that the inequality in
(i) above is actually an equality, i.e. silpR = spliR. In this way, we extend the main result
of [14] from the case of commutative Noetherian rings of finite self-injective dimension
to any commutative ℵ0-Noetherian ring of coefficients.
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Proposition 26. If R is a ring which is both left and right ℵ0-Noetherian, then the following
conditions are equivalent:

(i) The invariants spliR and spliRop are finite.
(ii) The invariants silpR and silpRop are finite.

If these conditions are satisfied, then silpR = spliR <∞ and silpRop = spliRop <∞.

Proof. The implication (i) ⇒ (ii) follows from Proposition 23, whereas the implication (ii) ⇒ (i) is
proved in [14, Theorem 3.6] using the ℵ0-Noetherian hypothesis. □

Corollary 27. Let R be a ring which is isomorphic with its opposite Rop . If R is left (and hence
right) ℵ0-Noetherian, then silpR = spliR.

Corollary 28. If R is a commutative ℵ0-Noetherian ring, then silpR = spliR.

Remark 29. In the special case where R is a commutative Noetherian ring, the equality in
Corollary 28 was proved by Jensen in [24, 5.9].

Acknowledgments

We thank the anonymous referee who read carefully the manuscript and offered helpful com-
ments.

References

[1] M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, vol. 94, American
Mathematical Society, 1969.

[2] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced
Mathematics, vol. 36, Cambridge University Press, 1995.

[3] J.-H. Bai, L. Liang, “PGF-modules and strongly semi-Gorenstein-projective modules”, J. Shandong Univ., Nat. Sci. 56
(2021), no. 8, p. 105-110.

[4] A. Beligiannis, “Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras”, J. Algebra 288 (2005),
no. 1, p. 137-211.

[5] A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories, Memoirs of the American Mathe-
matical Society, vol. 883, American Mathematical Society, 2007.

[6] D. Bennis, “A note on Gorenstein flat dimension”, Algebra Colloq. 18 (2011), no. 1, p. 155-161.
[7] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Am. Math. Soc. 138 (2010), no. 2, p. 461-465.
[8] T. Bühler, “Exact categories”, Expo. Math. 28 (2010), no. 1, p. 1-69.
[9] H. Cartan, S. Eilenberg, Homological Algebra, Princeton Mathematical Series, vol. 19, Princeton University Press,

1956.
[10] L. W. Christensen, S. Estrada, P. Thompson, “Gorenstein weak global dimension is symmetric”, Math. Nachr. 294

(2021), no. 11, p. 2121-2128.
[11] L. W. Christensen, A. Frankild, H. Holm, “On Gorenstein projective, injective and flat dimensions—a functorial

description with applications”, J. Algebra 302 (2006), no. 1, p. 231-279.
[12] J. Cornick, P. H. Kropholler, “On complete resolutions”, Topology Appl. 78 (1997), no. 3, p. 235-250.
[13] G. Dalezios, S. Estrada, H. Holm, “Quillen equivalences for stable categories”, J. Algebra 501 (2018), p. 130-149.
[14] I. Emmanouil, “On certain cohomological invariants of groups”, Adv. Math. 225 (2010), no. 6, p. 3446-3462.
[15] ——— , “On the finiteness of Gorenstein homological dimensions”, J. Algebra 372 (2012), p. 376-396.
[16] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra. Vol. 1, De Gruyter Expositions in Mathematics, vol. 30,

Walter de Gruyter, 2011.
[17] T. V. Gedrich, K. W. Gruenberg, “Complete cohomological functors on groups”, Topology Appl. 25 (1987), p. 203-223.
[18] J. Gillespie, “Model structures on exact categories”, J. Pure Appl. Algebra 215 (2011), no. 12, p. 2892-2902.
[19] J. Gillespie, A. Iacob, “Duality pairs, generalized Gorenstein modules, and Ding injective envelopes”, C. R. Math.

Acad. Sci. Paris 360 (2022), p. 381-398.
[20] R. Göbel, J. Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics,

vol. 41, Walter de Gruyter, 2006.



1448 Georgios Dalezios and Ioannis Emmanouil

[21] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical
Society Lecture Note Series, vol. 119, London Mathematical Society, 1989.

[22] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra 189 (2004), no. 1-3, p. 167-193.
[23] M. Hovey, “Cotorsion pairs, model category structures, and representation theory”, Math. Z. 241 (2002), no. 3, p. 553-

592.
[24] C. U. Jensen, Les foncteurs dérivés de lim et leurs applications en théorie des modules, Lecture Notes in Mathematics,

vol. 254, Springer, 1972.
[25] P. Moradifar, J. Šaroch, “Finitistic dimension conjectures via Gorenstein projective dimension”, J. Algebra 591 (2022),

p. 15-35.
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