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Abstract. For any ring we propose the construction of a cover which increases the finitistic dimension on one
side and decreases the finitistic dimension to zero on the opposite side. This complements recent work of
Cummings.
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The finitistic dimension is a homological invariant of a ring which is conjectured to be finite
when the ring is a finite dimensional algebra over a field [2]. In recent work [3] Cummings
introduces for any finite dimensional algebra a related algebra; its purpose is to increase the
finitistic dimension on one side and to decrease the finitistic dimension to zero on the opposite
side. In this note we propose the construction of such an asymmetric cover for any ring and we
establish the same properties. This specialises to Cummings’ construction for finite dimensional
algebras over an algebraically closed field and yields examples of rings such that the finitistic
dimension is infinite while the finitistic dimension of the opposite ring is zero. We need to
distinguish between the small and the big finitistic dimension but our results cover both cases.

Let A be an associative ring. We consider the category of (right) A-modules and identify (left)
A-modules with modules over the opposite ring Aop. For a module M we write rad M for its
radical and soc M for its socle. We set top M = M/rad M . The functor

(−)∗ := HomA(−, A)

yields a duality between right and left A-modules. We consider the trivial extension

T (A) := A⋉ A♮

which is given by the bimodule A♮ := A A A . This ring is by definition the abelian group T (A) =
A⊕ A♮ with multiplication given by the formula

(x, y) · (x ′, y ′)= (
xx ′, x y ′+ y x ′) .

Note that A♮ is a two-sided ideal with T (A)/A♮ ∼−→ A.

Lemma 1. Let A be a semisimple ring. Then

radT (A) = A♮ = socT (A) and topT (A) ∼= socT (A).

Proof. The first assertion is clear. Left multiplication with (0,1) gives a map T (A) → T (A) which
induces an isomorphism topT (A) ∼−→ socT (A) □
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For a ring A we denote by Σ(A) the set of isomorphism classes of simple A-modules. Set

S̄ := ∐
S∈Σ(A)

S and Ā := ∏
S∈Σ(A)

T (EndA(S)).

We view S̄ as an Ā-A-bimodule, with left action via T (EndA(S))↠ EndA(S) for each S inΣ(A), and
consider the triangular matrix ring

Ã :=
[

A 0
S̄ Ā

]
.

The idempotents e = [
1 0
0 0

]
and f = [

0 0
0 1

]
provide an Ã-module decomposition Ã = P ⊕Q, where

P := e Ã ∼= A and Q := f Ã ∼= S̄ ⊕ Ā.

We call Ã a cover of A because the idempotent e ∈ Ã yields an isomorphism

EndÃ(P ) ∼= e Ãe ∼= A.

The following lemma expresses the distinct property of the cover Ã, namely that every simple
Ã-module embeds into Ã.

Lemma 2. We have S∗ ̸= 0 for every simple Ã-module S.

Proof. We claim that each simple Ã-module arises as the image of a morphism Ã = P ⊕Q → Q,
using that

HomÃ(P,Q) ∼= e Ã f = S̄ and HomÃ(Q,Q) ∼= f Ã f = Ā.

With Lemma 1 we compute socQ and obtain a decomposition into simples:

socQ = S̄ ⊕ soc Ā ∼=
∐

S∈Σ(A)

(
S ⊕EndA(S)♮

)
.

A simple Ã-module T comes either with a nonzero map P → T or a nonzero map Q → T . In the
first case T identifies with a simple A-module via the inclusion A → Ã given by x 7→ [

x 0
0 1

]
, and

therefore with a summand of S̄ ⊆ socQ. In the second case T identifies with a simple Ā-module
via the inclusion Ā → Ã given by x 7→ [

1 0
0 x

]
, and therefore with a summand of soc Ā ⊆ socQ. In

any case one obtains a monomomorphism T →Q ,→ Ã. □

Let P(A) denote the class of A-modules M that admit a finite resolution

0 −→ Pn −→ ·· · −→ P1 −→ P0 −→ M −→ 0

with all Pi finitely generated projective. We denote by

fin.dim A := sup
{
proj.dim M

∣∣M ∈P(A)
}

the small finitistic dimension of A; this is a slight variation of the usual definition which seems
natural as the modules in P(A) are precisley the ones which become compact (or perfect) when
viewed as an object in the derived category of A.

The following lemma is [5, Lemma 7.2.8] and its proof is sketched for the convenience of the
reader; cf. the discussion in [2, § 5].

Lemma 3. For a ring A we have fin.dim A = 0 if and only if M∗ ̸= 0 for every finitely presented
Aop-module M.

Proof. Let proj A denote the category of finitely generated projective A-modules. The condition
fin.dim A = 0 means that every monomorphism in proj A splits. The duality

(−)∗ :
(
proj A

)op ∼−−→ proj
(

Aop)
translates this into the condition on finitely presented Aop-modules. □
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Theorem 4. For a ring A we have

fin.dim Ã ≥ fin.dim A and fin.dim Ãop = 0.

Proof. The idempotent e ∈ Ã with e Ãe ∼= A gives rise to a fully faithful functor

−⊗A e Ã : Mod A −→ Mod Ã

which is exact and maps projectives to projectives; also it preserves finite generation. This yields
the first assertion. The second assertion follows from Lemma 3 because we have M∗ ̸= 0 for every
finitely presented Ã-module M by Lemma 2. □

There is a somewhat more natural construction of a cover when the ring A is semilocal.
Recall that A is semilocal if the ring A/rad A is semisimple. In this case we have an idempotent
ε ∈ A/rad A and a Morita equivalence

A/rad A ∼ ε(A/rad A)ε ∼=
∏

S∈Σ(A)
EndA(S).

We set

Ã :=
[

A 0
A/rad A T (A/rad A)

]
and this is closely related to the cover Ã via the idempotent ε̃= [1 0

0 (ε,0)

]
.

Lemma 5. For a semilocal ring A we have a Morita equivalence

Ã ∼ ε̃Ãε̃ ∼= Ã.

Proof. We use some general facts. Let Λ = [
A 0
M B

]
be a triangular matrix ring and e ∈ B an

idempotent such that B and eBe are Morita equivalent. Set ē = [
1 0
0 e

]
. Then Λ and ēΛē = [

A 0
eM eBe

]
are Morita equivalent. Also, the trivial extensions T (B) and T (eBe) = (e,0)T (B)(e,0) are Morita
equivalent. □

We may identify Ã with Ã, as we are mostly interested in homological properties. In fact, Ã ∼= Ã
when A is semiperfect and basic. Note that the definition of Ã does not depend on any choices.
In particular, we have an identity Ãop = Ãop.

Next we discuss some ring theoretic properties which are preserved under the passage from A
to its cover Ã. Recall that a ring is semiprimary if it is semilocal and its radical is a nilpotent ideal.

Remark 6. If A is semilocal then Ã is semilocal. This follows from the isomorphism

top Ã = topP ⊕ topQ ∼−→ A/rad A⊕ (A/rad A)♮ = socQ

which is induced by the morphism Ã = P ⊕Q →Q ,→ Ã given by left multiplication with
[0 0

1 (0,1)

]
.

Moreover, in this case the inclusion A ,→ Ã yields the identity (rad A)n = (rad Ã)n for all n > 1.

Remark 7. If the ring A is left or right perfect then the same holds for Ã. This follows from
Remark 6, since A is right perfect if and only if A is semilocal and rad A is right T-nilpotent.

There is an analogue of Theorem 4 for the big finitistic dimension

Fin.dim A := sup
{
proj.dim M

∣∣M ∈ Mod A, proj.dim M <∞}
.

We use the following fact which is a slight variation of [2, Theorem 6.3].

Proposition 8. For a ring A we have Fin.dim A = 0 if and only if A is right perfect and
fin.dim A = 0.
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Proof. Suppose that A is right perfect and fin.dim A = 0. We need to show that every monomor-
phism φ : M → N between projective A-modules splits. This holds when M and N are finitely
generated since fin.dim A = 0. Because A is right perfect, any projective A-module decomposes
into a direct sum of finitely generated modules and can therefore be written as a filtered colimit
of finitely generated direct summands. Choose such a presentation M = colimi Mi . Then φ is a
filtered colimit of split monomorphisms φi : Mi → N , and therefore colimi Cokerφi

∼= Cokerφ is
a filtered colimit of projectives. Thus Cokerφ is projective and φ splits. For the other implication
we refer to [2]. □

Theorem 9. For a ring A we have

Fin.dim Ã ≥ Fin.dim A.

Moreover, Fin.dim Ãop = 0 if and only if A is left perfect.

Proof. The first assertion is easily checked as in the proof of Theorem 4. If Fin.dim Ãop = 0, then
Ã is left perfect by Proposition 8, and this implies that A is left perfect. For the converse suppose
that A is left perfect. Then Ã is left perfect by Remark 7. Thus Fin.dim Ãop = 0 by Theorem 4 and
Proposition 8. □

The preceding results demonstrate a failure of symmetry for the notion of ‘finite finitistic
dimension’, as pointed out in the recent work of Cummings [3]. In particular we have the following
examples.

Recall that a noetherian ring is regular if all its finitely generated modules have finite projective
dimension.

Corollary 10. Let A be a commutative noetherian ring that is regular of infinite Krull dimension.
Then

fin.dim Ã =∞ and fin.dim Ãop = 0.

Proof. The finitistic dimension fin.dim A is infinite by [1, Theorem 1.6 and Corollary 1.7]. Thus
the assertion follows from Theorem 4. □

Specific examples of regular rings of infinite Krull dimension have been constructed by Na-
gata; cf. [5, Example 7.2.20].

We continue with an example due to Kirkman and Kuzmanovich [4]. Let k be a field and
consider the quotient Λ= kQ/I of the path algebra kQ given by the quiver

Q : ◦ ◦ (i ∈N)
ai

bi

(with k-basis given by the paths in Q and multiplication induced by the composition of paths,
where for any pair of paths α,β we write βα for the composite when the terminal vertex of α
equals the initial vertex of β) modulo the ideal I that is generated by the elements

bt as br (r, s, t ∈N) bt as −at bt (t > s) ar br (r ∈N).

Note that Λ is a semiprimary ring with (radΛ)4 = 0.

Corollary 11. The ring Λ̃ is semiprimary satisfying

Fin.dimΛ̃= fin.dimΛ̃=∞ and Fin.dimΛ̃op = fin.dimΛ̃op = 0.

Proof. From Remark 6 it follows that the ring Λ̃ is semilocal with (radΛ̃)4 = 0. Thus Λ̃ is
semiprimary. In [4] it is shown that fin.dimΛ =∞. Then the assertion follows from Theorem 9,
using that Λ is left perfect. □
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