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Abstract. Let R be a commutative noetherian local ring which is singular and has an isolated singularity.
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numbers t such that the complexity δt (G , X ) in the sense of Dimitrov, Haiden, Katzarkov and Kontsevich
vanishes for any split generator G of Dsg(R) and any object X of Dsg(R). In particular, the entropy ht (F ) of an
exact endofunctor F of Dsg(R) is not defined for such numbers t .

2020 Mathematics Subject Classification. 13D09, 13H10, 18G80.

Funding. The author was partly supported by JSPS Grant-in-Aid for Scientific Research 19K03443.

Manuscript received 28 July 2022, revised 2 February 2023, accepted 22 February 2023.

1. Introduction

In 2014, Dimitrov, Haiden, Katzarkov and Kontsevich [6] have introduced the notions of complex-
ities δt (G , X ) and entropies ht (F ) for a triangulated category. In less than a decade since then, a
lot of works on these notions have been done; see [9–13, 15–19, 21, 24, 25, 30] for instance.

Let us quickly recall the definition of entropies; see Definition 8 for that of complexities. Let
F be an exact endofunctor of a triangulated category T . For each t ∈ R the entropy ht (F ) of F is
defined by

ht (F ) = lim
n→∞

1

n
logδt

(
G ,F n(G)

)
,

where G is a split generator of T . Therefore, as long as the domain of the natural logarithm
function is R>0, the entropy ht (F ) is defined only when the complexity δt (G ,F n(G)) is positive
for n ≫ 0.

Let R be a commutative noetherian singular (i.e., nonregular) local ring. Let Dsg(R) be the
singularity category of R, which is a triangulated category introduced by Buchweitz [4] and
Orlov [23]. In this paper, we explore complexities δt (G , X ) for Dsg(R). We shall establish and study
the following conjecture.

Conjecture 1. Let G be a split generator of Dsg(R). Then δt (G , X ) = 0 for all X ∈Dsg(R) and t ̸= 0.
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Denote by e(R), codepthR and KR the multiplicity, codepth and Koszul complex of R, respec-
tively. The main results of this paper include the following theorem about the above conjecture.
Note that the third assertion says that the conjecture holds if R is a complete intersection with an
isolated singularity.

Theorem 2 (Theorems 20, 21 and 22). Let G be a split generator of Dsg(R). Let X be an object of
Dsg(R). Assume that X is locally zero on the punctured spectrum of R (this assumption is satisfied
whenever R has an isolated singularity). Then the following assertions hold true.

(1) Put c = codepthR and m = max1⩽ i ⩽c {dimk Hi (KR )}. One has δt (G , X ) = 0 for all |t | >
logc+logm

2 .
(2) If R is Gorenstein and has infinite residue field, then δt (G , X ) = 0 for all |t | > log(e(R)−1).
(3) If R is a complete intersection, then δt (G , X ) = 0 for all nonzero real numbers t .

As an immediate consequence of the above theorem, we obtain the following corollary on
entropies.

Corollary 3 (Corollary 24). Suppose that the local ring R has an isolated singularity. Let F :
Dsg(R) →Dsg(R) be an exact functor. Then the three statements below hold.

(1) Set c = codepthR and m = max1⩽ i ⩽c {dimk Hi (KR )}. Then ht (F ) is not defined for |t | >
logc+logm

2 .
(2) Assume R is Gorenstein with infinite residue field. Then ht (F ) is not defined for |t | >

log(e(R)−1).
(3) Suppose that R is a complete intersection. Then the entropy ht (F ) is defined only for t = 0.

The structure of this paper is as follows. In Section 2, we introduce the operation ⋆ for
subcategories of a triangulated category, investigate its properties, and recall the definitions of
complexities and entropies. In Section 3, after stating some basics from commutative algebra,
we explore complexities for the singularity category of a singular local ring, and prove our main
results including the ones stated above.

2. Basic properties of complexities

In this section, we work on a general triangulated category, and prove several preliminary results.

Setup 4. Throughout this section, let T be a triangulated category. All subcategories of T are
assumed to be strictly full. We may omit a subscript if it is clear from the context.

We introduce the operation ⋆ for subcategories of T , which plays a central role throughout
the paper.

Definition 5. Let X and Y be subcategories of T .

(1) We denote by X ⋆Y the subcategory of T consisting of objects T ∈T such that there exists
an exact triangle X → T → Y ⇝ in T such that X ∈X and Y ∈Y .

(2) When X ,Y consist of single objects X ,Y respectively, we simply write X ⋆ Y to denote
X ⋆Y .

In the following lemma, we make a list of several fundamental properties of the operation ⋆,
which are frequently used later. The first assertion says that the operation⋆ satisfies associativity.
The second and third assertions state that the operation ⋆ is compatible with taking finite direct
sums and shifts.
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Lemma 6.

(1) For subcategories X ,Y ,Z of T one has (X ⋆Y )⋆Z = X ⋆ (Y ⋆Z ). Hence, there is
no ambiguity in writing ⋆n

i=1Xi = X1 ⋆ · · ·⋆Xn for subcategories X1, . . . , Xn of T or
X ⋆n =X ⋆ · · ·⋆X︸ ︷︷ ︸

n

.

(2) Let {Xi j }1⩽ i ⩽m,1⩽ j ⩽n and {Mi }1⩽ i ⩽m be families of objects of T . Suppose that Mi ∈
⋆n

j=1Xi j for each 1⩽ i ⩽m. Then it holds that
⊕m

i=1 Mi ∈⋆n
j=1(

⊕m
i=1 Xi j ).

(3) Let X1, . . . , Xn ∈T . Then the following statements hold true.
(a) If M ∈ ⋆n

i=1Xi , then M [s] ∈ ⋆n
i=1Xi [s] for all integers s, M⊕m ∈ ⋆n

i=1X ⊕m
i for all

positive integers m, and M ⊕ (
⊕n

i=1 Yi ) ∈⋆n
i=1(Xi ⊕Yi ) for all objects Y1, . . . , Yn ∈T .

(b) One has the containment
⊕n

i=1 Xi ∈⋆n
i=1Xi .

Proof.
(1) Take any object T ∈ (X ⋆Y )⋆Z . Then there exist exact triangles W → T → Z ⇝ and
X →W → Y ⇝ with X ∈X , Y ∈Y and Z ∈Z . The octahedral axiom gives rise to exact triangles
X → T → V ⇝ and Y → V → Z ⇝. Hence T is in X ⋆ (Y ⋆Z ), and we get (X ⋆Y )⋆Z ⊆
X ⋆ (Y ⋆Z ).

Conversely, let T ∈ X ⋆ (Y ⋆Z ). There are exact triangles X → T → V ⇝ and Y → V → Z ⇝
with X ∈ X , Y ∈ Y and Z ∈ Z . The octahedral axiom yields exact triangles T → Z → W ⇝ and
X [1] → W → Y [1]⇝. We get exact triangles X → W [−1] → Y ⇝ and W [−1] → T → Z ⇝, which
show that T belongs to (X ⋆Y )⋆Z . It follows that (X ⋆Y )⋆Z ⊇X ⋆ (Y ⋆Z ).

(2) We use induction on n. Let n = 1. The assumption means that Mi = Xi 1 for each 1⩽ i ⩽m.
Hence

⊕m
i=1 Mi = ⊕m

i=1 Xi 1. Let n ⩾ 2. Since Mi belongs to (Xi 1 ⋆ · · ·⋆ Xi ,n−1)⋆ Xi n for each
1 ⩽ i ⩽ m, there exists an exact triangle Ni → Mi → Xi n ⇝ with Ni ∈ Xi 1 ⋆ · · ·⋆ Xi ,n−1. Hence
there is an exact triangle

⊕m
i=1 Ni → ⊕m

i=1 Mi → ⊕m
i=1 Xi n ⇝ (see [22, Remark 1.2.2]), and the

induction hypothesis implies that
⊕m

i=1 Ni is in (
⊕m

i=1 Xi 1)⋆ · · ·⋆ (
⊕m

i=1 Xi ,n−1). It follows that⊕m
i=1 Mi ∈ (

⊕m
i=1 Xi 1)⋆ · · ·⋆ (

⊕m
i=1 Xi n).

(3a) The second assertion follows by letting Mi = M and Xi j = X j for 1⩽ i ⩽m and 1⩽ j ⩽ n
in (2). The third assertion is shown by applying (2) to the containments M ∈ X1⋆X2⋆· · ·⋆Xn , Y1 ∈
Y1⋆0⋆ · · ·⋆0, Y2 ∈ 0⋆Y2⋆ · · ·⋆0, . . . , Yn ∈ 0⋆ · · ·⋆0⋆Yn . It remains to prove the first assertion,
for which we use induction on n. When n = 1, we have M = X1 and M [s] = X1[s]. Let n ⩾ 2.
As M belongs to (X1 ⋆ · · ·⋆ Xn−1)⋆ Xn , there exists an exact triangle N → M → Xn ⇝ with
N ∈ X1 ⋆ · · ·⋆ Xn−1. Then there is an exact triangle N [s] → M [s] → Xn[s]⇝, and the induction
hypothesis implies N [s] ∈ X1[s]⋆ · · ·⋆ Xn−1[s]. We now obtain M [s] ∈ X1[s]⋆ · · ·⋆ Xn[s], and the
first assertion follows.

(3b) Letting M = X1 = ·· · = Xn = 0 in the third assertion of (3a), we get Y1⊕·· ·⊕Yn ∈ Y1⋆· · ·⋆Yn

for all objects Y1, . . . ,Yn ∈T . This shows the assertion. □

Here we recall the definition of split generators, which are used to define complexities and
entropies.

Definition 7.

(1) A thick subcategory of T is by definition a triangulated subcategory of T closed under
direct summands, i.e., a subcategory closed under shifts, mapping cones and direct sum-
mands.

(2) For an object X ∈T we denote by thickT X the thick closure of T , that is to say, the smallest
thick subcategory of T to which X belongs.

(3) A split generator of T , which is also called a thick generator of T , is defined to be an object
of T whose thick closure coincides with T .

Now we can state the definitions of complexities and entropies introduced in [6].
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Definition 8 (Dimitrov–Haiden–Katzarkov–Kontsevich).

(1) Let X ,Y ∈ T and t ∈ R. We denote by δt (X ,Y ) the infimum of the sums
∑r

i=1 eni t , where
r runs through the nonnegative integers and ni run through the integers such that there
exist a sequence

0 Y0
// Y1

//
tt

· · · // Yr−1
// Yr

tt
Y ⊕Y ′

X [n1]

jj

· · · X [nr ]

jj

of exact triangles {Yi−1 → Yi → X [ni ] ⇝}r
i=1 in T . The function R ∋ t 7→ δt (X ,Y ) ∈

R⩾0 ∪ {∞} is called the complexity1 of Y relative to X . When Y = 0, one can take r = 0,
and hence δt (X ,Y ) = 0.

(2) Let F : T →T be an exact functor and t ∈R. The entropy ht (F ) of F is defined by

ht (F ) = lim
n→∞

1

n
logδt

(
G ,F n(G)

)
,

where G is a split generator of T . This is independent of the choice of G; see [6, Lemma 2.6].

The following proposition gives an equivalent definition of a complexity. In what follows,
whenever we are concerned with a complexity, we regard this equality as its definition, as it is
more convenient for us.

Proposition 9. Let X ,Y ∈T and t ∈R. One then has the equality

δt (X ,Y ) = inf

{
r∑

i=1
eni t

∣∣∣∣∣Y ⊕Y ′ ∈⋆r
i=1X [ni ] for some Y ′ ∈T

}
.

Proof. Fix an object Z ∈ T . It suffices to show that Z ∈ ⋆r
i=1X [ni ] if and only if there is a

sequence

0 Y0
// Y1

//
tt

· · · // Yr−1
// Yr

tt
Z

X [n1]

jj

· · · X [nr ]

kk

of exact triangles. We use induction on r . When r = 0, both containments mean that Z = 0. Let
r > 0.

The “only if” part: Since Z is in (⋆r−1
i=1 X [ni ])⋆ X [nr ], there exists an exact triangle σ : W →

Z → X [nr ]⇝ in T such that W ∈⋆r−1
i=1 X [ni ]. Applying the induction hypothesis to W yields a

sequence of exact triangles, and splicing it with the exact triangle σ gives rise to a sequence of
exact triangles

0 Y0
// Y1

//
uu

· · · // Yr−2
// Yr−1tt

W // Z .
uu

X [n1]

ii

· · · X [nr−1]

jj
X [nr ]

jj

The “if” part: By assumption, there exists a sequence of exact triangles

0 Y0
// Y1

//
uu

· · · // Yr−2
// Yr−1

//
tt

Yruu
Z .

X [n1]

ii

· · · X [nr−1]

jj
X [nr ]

jj

The induction hypothesis implies that Yr−1 belongs to⋆r−1
i=1 X [ni ]. The exact triangle Yr−1 → Z →

X [nr ]⇝ appearing in the above diagram shows that Z is in (⋆r−1
i=1 X [ni ])⋆X [nr ] =⋆r

i=1X [ni ]. □

We give a couple of statements concerning complexities. Recall that T is said to be periodic
if there exists an integer n > 0 such that the nth shift functor [n] is isomorphic to the identity
functor idT of T .

1It may be better for us to call this the Dimitrov–Haiden–Katzarkov–Kontsevich complexity because in commutative
algebra there is a different notion called complexity, which describes the growth of a minimal free resolution of a finitely
generated module over a commutative noetherian local ring. In fact, it does appear implicitly in the proof of Theorem 20.
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Proposition 10. Let X and Y be objects of T . Then the following statements hold.

(1) Let t ∈R. Then δt (X ,Y ) <∞ if and only if Y ∈ thickT X .
(2) There is an equality δ0(X ,Y ) = inf{r ∈Z⩾0 | Y ⊕Y ′ ∈⋆r

i=1X [ni ] for some Y ′ ∈T }.
(3) Let t ∈R. Suppose that T is periodic and δt (X ,Y ) <∞. Then δt (X ,Y ) = 0 unless t = 0.

Proof. (1) The “only if” part: By definition, there exist an object Y ′ ∈ T and integers n1, . . . , nr

such that Y ⊕Y ′ belongs to⋆r
i=1X [ni ]. Note that⋆r

i=1X [ni ] is contained in thick X . Hence Y is
in thick X .

The “if” part: By [2, 2.2.1 and 2.2.4] there are an object Y ′ ∈ T and an integer s ⩾ 0 with
Y ⊕Y ′ ∈ X ⋆s , where X is the smallest subcategory of T which contains X and is closed under
finite direct sums and shifts. We can write Y ⊕Y ′ ∈⋆s

i=1(
⊕ui

j=1 X [mi j ]) for some ui ∈ Z⩾0 and

mi j ∈ Z. Lemma 6(3b) implies Y ⊕Y ′ ∈⋆s
i=1(⋆ui

j=1X [mi j ]). We get δt (X ,Y ) ⩽
∑s

i=1

∑ui
j=1 emi j t ,

which shows δt (X ,Y ) <∞.
(2) The assertion immediately follows from the definition of δ0(X ,Y ).
(3) As δt (X ,Y ) < ∞, we have Y ⊕Y ′ ∈⋆r

i=1X [ni ] for some Y ′ ∈ T , r ∈ Z⩾0 and n1, . . . , nr ∈
Z. Since T is periodic, we have [m] ∼= idT for some m ∈ Z>0. We have X [ni ] ∼= X [ni + j m]
for all j ∈ Z, and get the containment Y ⊕ Y ′ ∈ ⋆r

i=1X [ni + j m]. We obtain inequalities 0 ⩽
δt (X ,Y ) ⩽

∑r
i=1 e(ni+ j m)t . It remains to note that lim j →−∞

∑r
i=1 e(ni+ j m)t = 0 if t > 0 and

lim j →∞
∑r

i=1 e(ni+ j m)t = 0 if t < 0. □

Remark 11. The equality in Proposition 10(2) may remind the reader of the notion of a level
introduced by Avramov, Buchweitz, Iyengar and Miller [2]. Namely, δ0(X ,Y ) looks closely related
to the X -level levelX

T (Y ) of Y . The difference is that an X -level ignores finite direct sums of copies
of X . This is similar to the difference between the lengths of a composition series and a Loewy
series of a module over a ring. The complexity δt (X ,Y ) can also be regarded as a weighted version
of δ0(X ,Y ) with respect to shifts.

The following lemma comes from [6, Proposition 2.2]. In this proposition, neither δt (X ,Y ) nor
δt (Y , Z ) is assumed to be finite, but in its proof both δt (X ,Y ) and δt (Y , Z ) seem to be assumed
to be finite. In fact, without this assumption, we would need to clarify what 0 ·∞ and ∞·0 mean.

Lemma 12. Let t be a real number. Let X , Y and Z be objects of T . Suppose that both δt (X ,Y )
and δt (Y , Z ) are finite. Then there is an inequality δt (X , Z )⩽ δt (X ,Y ) ·δt (Y , Z ).

3. Main results

In this section, we shall investigate complexities and entropies for the singularity category of a
commutative noetherian local ring, which is a triangulated category.

Setup 13. Throughout this section, let R be a commutative noetherian local ring with maximal
ideal m and residue field k. The triangulated category considered in this section is the singularity
category Dsg(R) of R, which is by definition the Verdier quotient of the bounded derived category
of finitely generated R-modules by perfect complexes (i.e., bounded complexes of finitely generated
projective R-modules).

For the reader whose expertise is outside of commutative algebra, we collect here several
fundamental notions from commutative algebra and their basic properties which are used in
the proofs of our results. The details can be found in [1, 3, 20].

Definition 14.

(1) A sequence x = x1, . . . , xn of elements in m is called an R-regular sequence if the ele-
ment xi is regular on R/(x1, . . . , xi−1) (i.e., the multiplication map R/(x1, . . . , xi−1)

xi−→
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R/(x1, . . . , xi−1) is injective) for each 1 ⩽ i ⩽ n. Note then that the R-module R/(x) has
finite projective dimension; see [3, Corollary 1.6.14(b)] or [20, Theorem 16.5(i)].

(2) For a finitely generated R-module M, we denote by µ(M) the minimal number of genera-
tors of M, that is, µ(M) = dimk (M⊗R k); see [20, Theorem 2.3] and [3, the paragraph before
Proposition 1.3.1].

(3) Let edimR and depthR stand for the embedding dimension of R and the depth of
R, respectively. These are defined by the equalities edimR = µ(m) = dimk m/m2 and
depthR = inf{i ∈ N | Exti

R (k,R) ̸= 0}. The ineqality depthR ⩽ dimR always holds by [3,
Proposition 1.2.12] or [20, Theorem 17.2], and we say that R is Cohen–Macaulay if the
equality depthR = dimR holds.

(4) We always have the inequality dimR ⩽ edimR by [20, the bottom of page 104], and we say
that R is regular if the equality dimR = edimR holds. We say that R is a singular local ring
if it is not a regular local ring. Note from [20, Theorem 19.2] or [3, Theorem 2.2.7] that R is
singular if and only if the category Dsg(R) is nonzero.

(5) The codimension and the codepth of R are defined by codimR = edimR − dimR and
codepthR = edimR −depthR. Note that codimR = codepthR if (and only if) R is Cohen–
Macaulay.

(6) The local ring R is said to be a hypersurface provided the inequality codepthR ⩽ 1 holds.
According to Cohen’s structure theorem (see [3, Theorem A.21]), this condition is equivalent
to saying that the m-adic completion R̂ of R is isomorphic to the residue ring S/( f ) of some
regular local ring S by some principal ideal ( f ); see [1, § 5.1].

(7) The local ring R is called a complete intersection if the m-adic completion R̂ of R is
isomorphic to the residue ring S/( f ) of a regular local ring (S,n) by the ideal ( f ) generated
by a regular sequence f = f1, . . . , fc . One can choose f = f1, . . . , fc so that c = codimR, and
in this case, fi ∈ n2 for all i ; see [3, Corollary 1.6.19 and Theorems 2.3.2(b), 2.3.3(b)].

(8) We say that the local ring R is Gorenstein if the R-module R has finite injective dimension.
(9) The Koszul complex KR of R is defined to be the Koszul complex K(x ,R) on R of a

minimal system of generators x = x1, . . . , xn of m. This complex is uniquely determined
up to isomorphism; see [3, the part following Remark 1.6.20]. Each homology Hi (KR )
is a finite-dimensional k-vector space by [20, the paragraph before Theorem 16.5] or [3,
Proposition 1.6.5(b)].

(10) We say that R has an isolated singularity if Rp is a regular local ring for all p ∈ SpecR \{m}.
(11) For an R-module M, we denote by ℓ(M) the length of (a composition series of) M. If the

R-module M is finitely generated and mM = 0, then one has ℓ(M) = dimk M <∞.
(12) Let e(R) and r(R) be the (Hilbert–Samuel) multiplicity and type of R, respectively. Namely,

one has e(R) = limn→∞ d !
nd ℓ(R/mn+1) ∈ Z>0 and r(R) = dimk Extt

R (k,R) ∈ Z⩾0, where
d = dimR and t = depthR. When R is Cohen–Macaulay, R is singular if and only if e(R) > 1
by [3, Examples 4.6.3(a) and Exercises 4.6.14(b)]. The ring R is Gorenstein if and only if R
is Cohen–Macaulay and r(R) = 1 by [20, Theorem 18.1] or [3, Theorem 3.2.10].

(13) Let M be a finitely generated R-module. Let n be a nonnegative integer. Then we denote
by Ωn

R M the nth syzygy of M over R, that is, the image of the nth differential map in
a minimal free resolution of the R-module M. Note by Schanuel’s lemma [20, Lemma 4
in § 19] that the module Ωn

R M is uniquely determined up to isomorphism. We denote by
βR

n (M) the nth Betti number of M, namely, βR
n (M) =µ(Ωn

R M).
(14) A system of parameters of the local ring R is by definition a sequence x = x1, . . . , xd

of elements of R such that d = dimR and R/(x) is artinian. A system of parameters
of R exists; see [20, Theorem 13.4] or [3, Theorem A.3]. If R is Cohen–Macaulay, then
a system of parameters of R is an R-regular sequence; see [20, Theorem 17.4(iii)] or [3,
Theorem 2.1.2(d)].
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(15) The following implications hold true.

R is regular ⇒ R is a hypersurface ⇒ R is a complete intersection

⇒ R is Gorenstein ⇒ R is Cohen–Macaulay.

This follows from [20, the paragraph after Theorem 21.3] or [3, Proposition 3.1.20], and
what we have stated above.

(16) The socle of the local ring R is defined as the set of elements x ∈ R such that mx = 0,
and denoted by SocR. Since there is an isomorphism SocR ∼= HomR (k,R), one has r(R) =
dimk SocR when depthR = 0. In general, it holds that r(R) = dimk SocR/(x) for any R-
regular sequence x = x1, . . . , xt with t = depthR; see [3, Lemma 1.2.19].

What we want to consider in this section is the following conjecture.

Conjecture 15. Let G be a split generator of Dsg(R). Then one has the equality δt (G , X ) = 0 for all
objects X of Dsg(R) and for all nonzero real numbers t .

In the case where R is a hypersurface, it is easy to see that Conjecture 15 holds true.

Example 16. If R is a hypersurface, then δt (G , X ) = 0 for all split generators G of Dsg(R), for
all X ∈ Dsg(R) and for all 0 ̸= t ∈ R. Indeed, in this case, there exists an isomorphism R̂ ∼= S/( f ),
where S is a regular local ring and f ∈ S. The singularity category Dsg(R̂) of the completion R̂ is
equivalent as a triangulated category to the homotopy category of matrix factorizations of f over
S, which is periodic of periodicity two; we refer the reader to [4,7,8,23,29] for the details. It is easy
to see that Dsg(R) is also periodic of periodicity two, and the assertion follows from (1) and (3) of
Proposition 10.

We introduce a condition on an object of the singularity category, which is essential in our
theorems.

Definition 17. We say that an object X of Dsg(R) is locally zero on the punctured spectrum of
R if for each nonmaximal prime ideal p of R the localized complex Xp is isomorphic to 0 in the
singularity category Dsg(Rp) of the local ring Rp. This condition is equivalent to saying that Xp

is isomorphic to a perfect complex over Rp in the bounded derived category of finitely generated
Rp-modules.

Remark 18. Suppose that R has an isolated singularity. Then every object of Dsg(R) is locally
zero on the punctured spectrum of R, since Dsg(Rp) = 0 for all nonmaximal prime ideals p of R.

We establish a lemma, which is frequently used in the proofs of our results stated later.

Lemma 19. Let t ∈ R. Let X be an object of Dsg(R) such that k belongs to thickDsg(R) X . Let Y
be an object of Dsg(R) which is locally zero on the punctured spectrum of R. If δt (k,k) = 0, then
δt (X ,Y ) = 0.

Proof. We have that k ∈ thickDsg(R) X by assumption, and that Y ∈ thickDsg(R) k by [28, Corol-
lary 4.3(3)]. It follows from Proposition 10(1) that δt (X ,k), δt (k,Y ) ∈ R. If δt (k,k) = 0, then
Lemma 12 yields

0⩽ δt (X ,Y )⩽ δt (X ,k) ·δt (k,Y )⩽
(
δt (X ,k) ·δt (k,k)

) ·δt (k,Y ) = δt (X ,k) ·0 ·δt (k,Y ) = 0.

These inequalities imply that δt (X ,Y ) = 0, and the proof of the lemma is completed. □

Now we shall state and prove three theorems, all of which support Conjecture 15.

Theorem 20. Let R be a complete intersection. Let X ∈ Dsg(R) be such that k belongs to
thickDsg(R) X . Let Y ∈ Dsg(R) be locally zero on the punctured spectrum of R. Then δt (X ,Y ) = 0
for all t ̸= 0.
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Proof. In view of Lemma 19, it suffices to show δt (k,k) = 0 for all t ̸= 0. Let x = x1, . . . , xd be
a system of parameters of R. Then x is an R-regular sequence since R is Cohen–Macaulay, and
R/(x) is an artinian complete intersection by [3, Theorem 2.3.4(a)]. Fix a nonnegative integer n.
It holds in Dsg(R/(x)) that k[−n] ∼=Ωn

R/(x)k ∈ k⋆hn , where hn = ℓ(Ωn
R/(x)k). Lemma 6(3a) implies

that

k ∈ k[n]⋆hn in Dsg(R/(x)). (1)

Since R/(x) is an artinian Gorenstein ring (or equivalently, selfinjective), Dsg(R/(x)) is equivalent
(as a triangulated category) to the stable category of finitely generated R/(x)-modules; see [4, 14,
26]. It is observed that the assignment X 7→ X ∗ := HomR/(x)(X ,R/(x)) gives a duality of Dsg(R/(x)).
Note that k∗ is isomorphic to k (as an R/(x)-module). Applying the above duality functor to (1),
we obtain the containment

k ∈ k[−n]⋆hn in Dsg(R/(x)). (2)

As the R-module R/(x) has finite projective dimension, the natural surjection R → R/(x) induces
an exact functor Dsg(R/(x)) →Dsg(R). Applying this functor to (1) and (2), we get k ∈ k[±n]⋆hn in

Dsg(R). The inequality δt (k,k)⩽ hn ·e±nt follows. The surjection (R/(x))⊕β
R/(x)
n (k) →Ωn

R/(x)k shows

thatℓ(R/(x))·βR/(x)
n (k)⩾ ℓ(Ωn

R/(x)k) = hn . Since R/(x) is a complete intersection, there existsα ∈R
such that βR/(x)

i (k)⩽ αi c−1 for all integers i ⩾ 0, where c = codimR/(x); see [1, Theorem 8.1.2].
Thus,

0⩽ δt (k,k)⩽ hn ·e±nt ⩽ ℓ(R/(x)) ·βR/(x)
n (k) ·e±nt ⩽ ℓ(R/(x)) ·α · nc−1(

e∓t
)n for all n⩾ 0.

If t > 0 (resp. t < 0), then et > 1 (resp. e−t > 1), and nc−1

(et )n → 0 (resp. nc−1

(e−t )n → 0) as n → ∞.
We conclude that δt (k,k) = 0 for all nonzero real numbers t , and the assertion of the theorem
follows. □

Theorem 21. Let R be singular and Cohen–Macaulay. Assume that the residue field k is infinite.
Let X be an object of Dsg(R) such that k ∈ thickDsg(R) X . Let Y be an object of Dsg(R) which is
locally zero on the punctured spectrum of R. Put u = e(R) and r = r(R). Then δt (X ,Y ) = 0 for all
t <− log(u−1) and for all t > log(u−r ). Therefore, δt (X ,Y ) = 0 for all |t | > log(u−1) provided that
R is Gorenstein.

Proof. By Lemma 19, it suffices to prove δt (k,k) = 0 for all t < − log(u − 1) and t > log(u − r ).
Since k is infinite and R is Cohen–Macaulay, there exists an R-regular sequence x = x1, . . . , xd

such that d = dimR and u = e(R) = ℓ(R/(x)); see [3, Corollary 4.6.10 and Theorem 4.7.10]. Since
the local ring R is singular, the artinian local ring R/(x) is not a field, and there are inclusions
R/(x) ⊋m/(x) ⊇ SocR/(x) ⊋ 0, which give rise to the inequalities u = ℓ(R/(x)) > ℓ(SocR/(x)) =
r ⩾ 1. Hence log(u − r ) and log(u −1) are well-defined.

There is an exact sequence 0 → m/(x) → R/(x) → k → 0 of R-modules. This shows that
ℓ(m/(x)) = u − 1, and that k ∼= (m/(x))[1] in Dsg(R) as the R-module R/(x) has finite projective
dimension. Taking a composition series of the R-module m/(x), we see that m/(x) belongs to
k⋆(u−1). Lemma 6(3) implies

k ∈ k⋆(u−1)[1] ⊆ k[1]⋆(u−1) ⊆ (
k⋆(u−1)[1]

)
[1]⋆(u−1) ⊆ k[2]⋆(u−1)2 ⊆ ·· · ⊆ k[n]⋆(u−1)n

for each integer n > 0, which yields that 0⩽ δt (k,k)⩽ (u−1)nent = ((u−1)et )n . If t <− log(u−1),
then (u −1)et < 1 and ((u −1)et )n → 0 as n →∞, whence δt (k,k) = 0.
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It holds that k⊕r ∼= SocR/(x) ⊆ R/(x), which induces an exact sequence 0 → k⊕r → R/(x) →
C → 0 of R-modules. Similarly as above, we have ℓ(C ) = u − r , k⊕r ∼=C [−1] in Dsg(R), C ∈ k⋆(u−r ),
and

k⊕r ∈ k⋆(u−r )[−1] ⊆ k[−1]⋆(u−r ),

k⊕r 2 ∈ k⊕r [−1]⋆(u−r ) ⊆ (
k[−1]⋆(u−r )) [−1]⋆(u−r ) ⊆ k[−2]⋆(u−r )2

, . . . ,

k⊕r n ∈ k[−n]⋆(u−r )n
for all integers n > 0.

Hence, there are inequalities 0⩽ δt (k,k)⩽ (u−r )ne−nt = ((u−r )e−t )n for all n > 0. If t > log(u−r ),
then (u − r )e−t < 1 and ((u − r )e−t )n → 0 as n →∞, whence δt (k,k) = 0. Thus we are done. □

Theorem 22. Suppose that R is singular. Set c = codepthR and m = max1⩽ i ⩽c {dimk Hi (KR )}. Let
X be an object of Dsg(R) such that k belongs to thickDsg(R) X , and let Y be an object of Dsg(R) which

is locally zero on the punctured spectrum of R. Then δt (X ,Y ) = 0 for all |t | > logc+logm
2 .

Proof. First of all, we remark that the number logc+logm
2 is well-defined. Indeed, the assumption

that R is singular implies c > 0. Since the module Hc (KR ) is nonzero by [3, Theorem 1.6.17], we
have m > 0.

According to Lemma 19, it is enough to verify that δt (k,k) = 0 for all |t | > logc+logm
2 . Put

n = edimR and K = KR . We have K = (0 → Kn → Kn−1 → ··· → Kc+1 → Kc → Kc−1 → ··· → K1 →
K0 → 0). For each i ∈Z, let Zi , Bi and Hi be the i th cycle of K , the i th boundary of K and the i th
homology of K , respectively. We have Hi = 0 for all i > c and Hc ̸= 0 by [3, Theorem 1.6.17(b)].
For every i ∈ Z there exist exact sequences 0 → Bi → Zi → Hi → 0 and 0 → Zi → Ki → Bi−1 → 0
of R-modules, which induce exact triangles Bi → Zi → Hi ⇝ and Zi → Ki → Bi−1⇝ in Dsg(R).
Since Ki is a free R-module, we have Ki

∼= 0 in Dsg(R). Hence Bi−1
∼= Zi [1] in Dsg(R), and we get

exact triangles

Bi [1] → Bi−1 → Hi [1]⇝ and Hi [−1] → Bi → Bi−1[−1]⇝ for each i ∈Z.

It follows that Bi−1 ∈ Bi [1]⋆Hi [1] and Bi ∈ Hi [−1]⋆Bi−1[−1]. As B−1 = 0, we have H0
∼= B0[1]. Since

the R-module Bc has finite projective dimension, we have Bc
∼= 0 in Dsg(R), so that Hc

∼= Bc−1[−1].
Applying Lemma 6(3), we inductively get the containments and inclusions

k = H0 ∈⋆c
i=1Hc−i+1[c − i +2] ⊆⋆c

i=1k[c − i +2]⋆hc−i+1 ,

k⊕s = Hc ∈⋆c
i=1Hc−i [−i −1] ⊆⋆c

i=1k[−i −1]⋆hc−i ,

where we set h j = dimk H j for each j and s = hc > 0. Using Lemma 6(3) again, for any r > 0 we
get:

k ∈⋆c
i=1k[c − i +2]⋆hc−i+1 ⊆⋆c

i=1

(
⋆c

j=1k
[
c − j +2

]⋆hc− j+1
)

[c − i +2]⋆hc−i+1

⊆⋆c
i=1

(
⋆c

j=1k
[
2(c +2)− (i + j )

]⋆hc− j+1
)⋆hc−i+1 ⊆ ·· ·

⊆⋆c
i1=1

(
⋆c

i2=1

(
· · ·

(
⋆c

ir =1k [r (c +2)− (i1 +·· ·+ ir )]⋆hc−ir +1
)
· · ·

)⋆hc−i2+1
)⋆hc−i1+1

,

k⊕s ∈⋆c
i=1k[−i −1]⋆hc−i ,

k⊕s2 = (
k⊕s)⊕s ∈⋆c

i=1k⊕s [−i −1]⋆hc−i

⊆⋆c
i=1

(
⋆c

j=1k[− j −1]⋆hc− j
)

[−i −1]⋆hc−i ⊆⋆c
i=1

(
⋆c

j=1k
[−(i + j )−2

]⋆hc− j
)⋆hc−i

, . . . ,

k⊕sr ∈⋆c
i1=1

(
⋆c

i2=1

(
· · ·

(
⋆c

ir =1k [− (i1 +·· ·+ ir )− r ]⋆hc−ir

)
· · ·

)⋆hc−i2

)⋆hc−i1
.
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We thus obtain the following two inequalities for every positive integer r .

δt (k,k)⩽
c∑

i1=1
hc−i1+1

(
c∑

i2=1
hc−i2+1

(
· · ·

(
c∑

ir =1
hc−ir +1e(r (c+2)−(i1+···+ir ))t

)
· · ·

))
= ∑

1⩽ i1, ..., ir ⩽c
hc−i1+1 · · ·hc−ir +1e((c−i1+1)+···+(c−ir +1)+r )t

= ∑
1⩽ i1, ..., ir ⩽c

hi1 · · ·hir e(i1+···+ir +r )t ,

δt (k,k)⩽
c∑

i1=1
hc−i1

(
c∑

i2=1
hc−i2

(
· · ·

(
c∑

ir =1
hc−ir e(−(i1+···+ir )−r )t

)
· · ·

))
= ∑

1⩽ i1, ..., ir ⩽c
hc−i1 · · ·hc−ir e((c−i1)+···+(c−ir )−r (c+1))t

= ∑
0⩽ i1, ..., ir ⩽c−1

hi1 · · ·hir e(i1+···+ir −r (c+1))t .

As h0 = 1 and hc ⩾ 1, we have m = max{h1, . . . , hc } = max{h0,h1, . . . , hc }.
Now, consider the case where t < − logc+logm

2 . Note then that t < 0 and cme2t < 1. We get
inequalities

0⩽ δt (k,k)⩽
∑

1⩽ i1, ..., ir ⩽c hi1 · · ·hir e(i1+···+ir +r )t ⩽
∑

1⩽ i1, ..., ir ⩽c mr e2r t = (
cme2t

)r
.

Since (cme2t )r → 0 as r →∞, we obtain the equality δt (k,k) = 0. Next, let us deal with the case
where t > logc+logm

2 . Then we have t > 0 and cme−2t < 1. Hence the following inequalities hold
true.

0⩽ δt (k,k)⩽
∑

0⩽ i1, ..., ir ⩽c−1 hi1 · · ·hir e(i1+···+ir −r (c+1))t ⩽
∑

0⩽ i1, ..., ir ⩽c−1 mr e−2r t = (
cme−2t

)r
.

Since (cme−2t )r → 0 as r →∞, we get δt (k,k) = 0. Now the proof of the theorem is completed. □

Remark 23.

(1) Put n = edimR. Cohen’s structure theorem shows that there exist an n-dimensional
regular local ring (S,n,k) and an ideal I of S such that the m-adic completion R̂ of R is
isomorphic to the residue ring S/I . Choose a minimal system of generators x = x1, . . . , xn

of n. It holds that

Hi
(
KR)= Hi (x ,R) ∼= Hi (x ,R)⊗R R̂ ∼= Hi

(
x , R̂

)∼= Hi
(
K(x ,S)⊗S R̂

)∼= TorS
i

(
k, R̂

)
for each integer i , where the first isomorphism holds since the R-module Hi (x ,R) has
finite length, while the last isomorphism follows from the fact that the Koszul complex
K(x ,S) is a free resolution of k over S. Hence, the number dimk Hi (KR ) is equal to the i th
Betti number βS

i (R̂) of R̂ over S.
(2) Let R be a singular hypersurface. Let G be a split generator of Dsg(R), and let X be an

object of Dsg(R) which is locally zero on the punctured spectrum of R. The following two
statements hold.
(a) As R is a complete intersection, Theorem 20 implies that δt (G , X ) = 0 for all 0 ̸= t ∈R.
(b) Put c = codepthR and m = max1⩽ i ⩽c {dimk Hi (KR )}. Then c = 1. We have R̂ ∼=

S/( f ) for some regular local ring (S,n) and some element f ∈ n2. The sequence

0 → S
f−→ S → R̂ → 0 gives a minimal free resolution of the S-module R̂, and the

equalities dimk H1(KR ) = βS
1 (R̂) = 1 hold by (1). Hence m = 1. We get logc+logm

2 = 0,
and δt (G , X ) = 0 for all t ̸= 0 by Theorem 22.

Thus, each of Theorems 20 and 22 recovers Example 16 in the case where X is locally zero
on the punctured spectrum of R (e.g., in the case where R has an isolated singularity by
Remark 18).
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Combining the above three theorems with Remark 18, we obtain the corollary below on
entropies.

Corollary 24. Let R be singular with an isolated singularity. Let F be an exact endofunctor of
Dsg(R).

(1) Put c = codepthR and m = max1⩽i⩽c {dimk Hi (KR )}. Then δt (G , X ) = 0 for all split

generators G ∈ Dsg(R), all X ∈ Dsg(R) and all |t | > logc+logm
2 . Thus ht (F ) is not defined

if |t | > logc+logm
2 .

(2) Assume that R is Gorenstein and k is infinite. Then δt (G , X ) = 0 for all split generators
G ∈ Dsg(R), all X ∈ Dsg(R) and all |t | > log(e(R) − 1). Thus ht (F ) is not defined for
|t | > log(e(R)−1).

(3) Suppose that R is a complete intersection. Then δt (G , X ) = 0 for all split generators G ∈
Dsg(R), all X ∈ Dsg(R) and all nonzero real numbers t . Therefore, the entropy ht (F ) is
defined only for t = 0.

We present three examples below, which say that the bounds logc+logm
2 and log(e(R)−1) for the

real numbers t given in Theorems 21, 22 and Corollary 24(1), (2) are not necessarily best possible.

Example 25. Let R be a singular Burch ring in the sense of [5, Definition 2.8]. Then it follows
from [5, Proposition 5.10] that Ωuk is a direct summand of Ωu+2k, where u = depthR. Hence,
in Dsg(R), the object k[−u] is a direct summand of k[−u − 2], so that k is a direct summand of
k[−2n] for all n ∈Z>0. We get 0⩽ δt (k,k)⩽ e−2nt = (e−2t )n for all t ∈R and n ∈Z>0, which implies
δt (k,k) = 0 for all t ∈R>0. Lemma 19 shows δt (X ,Y ) = 0 for all t ∈R>0 and all X ,Y ∈Dsg(R) such
that k is in thick X and Y is locally zero on the punctured spectrum of R. By Remark 18, if R has an
isolated singularity, then δt (G , X ) = 0 for all t ∈R>0, all split generators G of Dsg(R) and all objects
X of Dsg(R).

Example 26. Let S = k[[x, y]] be a formal power series ring over a field k. Consider the residue ring
R = S/(x2, x y). Then R is not Cohen–Macaulay, but has an isolated singularity and depthR = 0.
Fix a split generator G ∈ Dsg(R) and an object X ∈ Dsg(R). We have c := codepthR = 2, and the
minimal free resolution of R over S is

0 → S

( y
−x

)
−−→ S⊕2 (x2,x y)−−−−−→ S → R → 0.

We get m := max1⩽ i ⩽c {dimk Hi (KR )} = max{βS
1 (R),βS

2 (R)} = 2; see Remark 23(1). Hence
logc+logm

2 = log2, and Corollary 24(1) says

δt (G , X ) = 0 for all t ∈ (−∞,− log2
)∪ (

log2,∞)
. (3)

We shall give sharper bounds for t ∈ R to satisfy δt (G , X ) = 0. Since the ideal (x) is isomorphic
to the residue field k and the element y is regular on R/(x), there exist exact sequences 0 → k →
R → R/(x) → 0 and 0 → R/(x)

y−→ R/(x) → k → 0. Hence there is an isomorphism R/(x) ∼= k[1] in
Dsg(R), and we get an exact triangle k[1] → k → k[2]⇝ in Dsg(R). Applying Lemma 6(3a), we
obtain

k ∈ k[1]⋆k[2] ⊆ (k[1]⋆k[2])[1]⋆ (k[1]⋆k[2])[2] ⊆ k[2]⋆k[3]⋆2⋆k[4] · · · .

We see that k belongs to

X1 = 1 ·2,

X2 = 2 ·32 ·4,

X3 = 3 ·42 ·5 ·4 ·52 ·6,

X4 = 4 ·52 ·6 ·5 ·62 ·7 ·5 ·62 ·7 ·6 ·72 ·8,

· · ·
Xn = n · (n +1)2 · (n +2) · (n +1) · · · (2n −1) · (2n −2) · (2n −1)2 · (2n)
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where a1 · · ·ar denotes k[a1]⋆· · ·⋆k[ar ] and b2 := b ·b for a1, . . . , ar ,b ∈Z. Note that Xn coincides
with⋆n

i=0k[n + i ]⋆
(n

i

)
if we ignore the commutativity of the operation −⋆−. . Using the binomial

theorem, we get the following inequalities and equalities for all n > 0.

0⩽ δt (k,k)⩽
n∑

i=0

(
n

i

)
e(n+i )t = ent

n∑
i=0

(
n

i

)
(et )i = ent (

e t +1
)n = (

et (
e t +1

))n
.

If t < log
p

5−1
2 , then et (e t + 1) < 1, and we see that δt (k,k) = 0. In view of [5, Corollary 6.5], the

local ring R is a singular Burch ring. It follows from Example 25 that

δt (G , X ) = 0 for all t ∈
(
−∞, log

p
5−1

2

)
∪ (0,∞). (4)

Note that − log2 < log
p

5−1
2 < 0 < log2. Consequently, (4) yields better upper and lower bounds

for t ∈R to satisfy δt (G , X ) = 0 than (3).

Example 27. Let k be an infinite field, and consider the ring R = k[x, y, z]/(x2 − y2, x2 −
z2, x y, xz, y z). Then R is an artinian Gorenstein local ring with edimR = 3 and e(R) = ℓ(R) = 5,
which is not a complete intersection. Let G be a split generator of Dsg(R) and X an object of
Dsg(R). Theorem 21 implies

δt (G , X ) = 0 for all |t | > log4. (5)

By [27, Corollary 3] the Poincaré series of the R-module k is 1
1−3t+t 2 , so that

βR
n (k) = 1p

5

(
an+1 −bn+1)

for each n ⩾ 0, where a := 3+p5
2 > 3−p5

2 =: b. The same argument as in the proof of Theorem 20
shows

0⩽ δt (k,k)⩽ ℓ(R) ·βR
n (k) ·e±nt =p

5 ·
(
a

( a
e∓t

)n −b
(

b
e∓t

)n)
for all n⩾ 0, which implies δt (k,k) = 0 for all |t | > log a = log 3+p5

2 , and

δt (G , X ) = 0 for all |t | > log 3+p5
2 . (6)

As log 3+p5
2 < log4, (6) gives better upper/lower bounds for t ∈Rwith δt (G , X ) = 0 than (5).
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