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Abstract. Let A and H be nonempty finite sets of integers and positive integers, respectively. The generalized
H-fold sumset, denoted by H (r ) A, is the union of the sumsets h(r ) A for h ∈ H where, the sumset h(r ) A is
the set of all integers that can be represented as a sum of h elements from A with no summand in the
representation appearing more than r times. In this paper, we find the optimal lower bound for the cardinality
of H (r ) A, i.e., for |H (r ) A| and the structure of the underlying sets A and H when |H (r ) A| is equal to the
optimal lower bound in the cases A contains only positive integers and A contains only nonnegative integers.
This generalizes recent results of Bhanja. Furthermore, with a particular set H , since H (r ) A generalizes
subsequence sum and hence subset sum, we get several results of subsequence sums and subset sums as
special cases.
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1. Introduction

LetN be the set of positive integers. Let A = {a1, . . . , ak } be a nonempty finite set of integers and h
be a positive integer. The h-fold sumset, denoted by h A, and the restricted h-fold sumset, denoted
by h∧A of A, are defined, respectively, by

h A :=
{

k∑
i=1

λi ai :λi ∈N∪ {0} for i = 1, . . . ,k with
k∑

i=1
λi = h

}
,

h∧A :=
{

k∑
i=1

λi ai :λi ∈ {0,1} for i = 1, . . . ,k with
k∑

i=1
λi = h

}
.

Mistri and Pandey [6] generalized h A and h∧A, into the generalized h-fold sumset, denoted
by h(r ) A, as follows:
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Let r be a positive integer such that 1 ≤ r ≤ h. The generalized h-fold sumset h(r ) A, is
defined by

h(r ) A :=
{

k∑
i=1

λi ai : 0 ≤λi ≤ r for i = 1, . . . ,k with
k∑

i=1
λi = h

}
.

So, the generalized h-fold sumset h(r ) A is the set of all sums of h elements of A, in which every
summand can repeat at most r times. Therefore, h A and h∧A are particular cases of h(r ) A for
r = h and r = 1, respectively.

For a finite set H of positive integers, Bajnok [1] introduced the sumset

H A := ⋃
h∈H

h A,

and the restricted sumset
H∧A := ⋃

h∈H
h∧A.

In a recent article, Bhanja and Pandey [5] considered a generalization of H A and H∧A, the
generalized H-fold sumset, denoted by H (r ) A, defined by

H (r ) A := ⋃
h∈H

h(r ) A.

Observed that, if r ≥ max(H), then H (r ) A = H A and if r = 1, then H (r ) A = H∧A. The sumset H (r ) A
becomes more important as it also generalizes subset sums and subsequence sums.

1.1. Subset sum and Subsequence sum

Let A be a finite set of integers. The sum of all the elements of a given subset B of A is called subset
sum and it is denoted by s(B). That is,

s(B) = ∑
b∈B

b.

The set of all nonempty subset sum of A, denoted by
∑

(A), that is∑
(A) =

{
s(B) : ; ̸= B ⊆ A

}
.

Also we define, for 1 ≤α≤ k ∑
α

(A) =
{

s(B) : ; ̸= B ⊆ A and |B | ≥α
}

.

Similarly, we define subsequence sum of a given sequence of integers. Let A = {a1, a2, . . . , ak } be
a set of k integers and r be a positive integer, with a1 < a2 < ·· · < ak . Then we define a sequence
associated with A as

A= (a1, . . . , a1︸ ︷︷ ︸
r−times

, a2, . . . , a2︸ ︷︷ ︸
r−times

, . . . , ak , . . . , ak︸ ︷︷ ︸
r−times

) = (a1, a2, . . . , ak )r (say).

Let B be a subsequence of A. Then

B= (a1, . . . , a1︸ ︷︷ ︸
r1−times

, a2, . . . , a2︸ ︷︷ ︸
r2−times

, . . . , ak , . . . , ak︸ ︷︷ ︸
rk−times

) with 0 ≤ ri ≤ r.

Given any subsequence B of A, the sum of all terms of the subsequence B is called the subse-
quence sum, is denoted by s(B) and we write

s(B) = ∑
b∈B

b.

The set of all subsequence sums of a given sequence A is the set∑
(A) = {

s(B) :B is subsequence of A of length ≥ 1
}

.
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For 1 ≤α≤ kr , define ∑
α

(A) = {
s(B) :B is subsequence of A of length ≥ α

}
.

Note that, we can write

h(r ) A = {
s(B) :B is subsequence A of length h

}
.

With suitable sets H , we can express
∑

(A),
∑
α(A),

∑
(A) and

∑
α(A) in terms of H∧A and H (r ) A,

as follows:

• If H = {1,2, . . . ,k}, then H∧A =⋃k
h=1 h∧A =∑

(A).
• If H = {α,α+1, . . . ,k}, then H∧A =⋃k

h=αh∧A =∑
α(A).

• If H = {1,2, . . . ,kr }, then H (r ) A =⋃kr
h=1 h(r ) A =∑

(A).
• If H = {α,α+1, . . . ,kr }, then H (r ) A =⋃kr

h=αh(r ) A =∑
α(A).

Let A = {a1, a2, . . . , ak } be a nonempty set of integers with a1 < a2 < ·· · < ak . For an integer c,
we write c ∗ A = {ca : a ∈ A} and for integers a and b with a < b, we write [a,b] = {a, a +1, . . . ,b}.
For a nonempty set S = {s1, s2, . . . , sn−1, sn}, we let max(S),min(S),max−(S),min+(S) be the largest,
smallest, second largest and second smallest elements of S, respectively. For a given real
number x, ⌊x⌋ and ⌈x⌉ denote, floor function and ceiling function of x, respectively. We assume∑t

i=1 f (i ) = 0 if t < 1.
Two standard problems associated with a sumset in additive number theory are to find best

possible lower bound for the cardinality of sumset when the set A is known (called the direct
problem) and to find the structure of the underlying set A when the size of the sumset attains its
lower bound (called the inverse problem). These two types of problems have been solved for the
sumsets in various types of groups. We have several classical results on sumsets for the case when
A is a subset of group of integers, (see [1, 3, 6, 8–11]), and for subsequence sums and subset one
may refer to [2, 4, 5, 7]. We mention now, some of these results that are applied in this paper.

Theorem 1 ([10, Theorem 1.3, Theorem 1.6]). Let h ≥ 1, and let A be a nonempty finite set of
integers. Then

|h A| ≥ h |A|−h +1.

This lower bound is best possible. Furthermore, if |h A| attains this lower bound with h ≥ 2, then A
is an arithmetic progression.

Theorem 2 ([9, 10, Theorem 1, Theorem 2]). Let A be a nonempty finite set of integers, and let
1 ≤ h ≤ |A|. Then ∣∣h∧A

∣∣≥ h |A|−h2 +1.

This lower bound is best possible. Furthermore, if |h∧A| attains this lower bound with |A| ≥ 5 and
2 ≤ h ≤ |A|−2, then A is an arithmetic progression.

Mistri and Pandey [6] generalized above results as follows:

Theorem 3 ([6, Theorem 2.1]). Let A be a nonempty finite set of k integers. Let r and h be integers
such that 1 ≤ r ≤ h ≤ kr . Set m = ⌊h/r ⌋. Then

|h(r ) A| ≥ mr (k −m)+ (h −mr ) (k −2m −1)+1.

This lower bound is best possible.

Theorem 4 ([6, Theorem 3.1, Theorem 3.2]). Let k ≥ 3. Let r and h ≥ 2 be integers such that
1 ≤ r ≤ h ≤ kr −2 and (k,h,r ) ̸= (4,2,1). Set m = ⌊h/r ⌋. If A is a finite set of k integers such that

|h(r ) A| = mr (k −m)+ (h −mr ) (k −2m −1)+1,

then A is an arithmetic progression.
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Further generalization of h(r ) A was considered in [6] for which the direct and inverse results
were proved by Yang and Chen [11]. Direct results for h(r ) A when A is a subset of the group of
residual classes modulo a prime and A is a subset of a finite cyclic group were given, respectively,
by Monopoli [8] and Bhanja [3].

The direct and inverse theorems for the sumsets H A and H∧A proved by Bhanja [2] are the
following:

Theorem 5 ([2, Theorem 3]). Let A be a set of k positive integers. Let H be a set of t positive integers
with max(H) = ht . Then

|H A| ≥ ht (k −1)+ t .

This lower bound is optimal.

Theorem 6 ([2, Theorem 5]). Let A be a set of k ≥ 2 positive integers and H be a set of t ≥ 2 positive
integers with max(H) = ht . If

|H A| = ht (k −1)+ t ,

then H is an arithmetic progression with common difference d and A is an arithmetic progression
with common difference d ∗min(A).

Theorem 7 ([2, Theorem 6, Corollary 7]). Let A be a set of k nonnegative integers and H =
{h1,h2, . . . ,ht } be a set ofpositive integers with h1 < h2 < ·· · < ht . Set h0 = 0. If 0 ∉ A and ht ≤ k,
then ∣∣H∧A

∣∣≥ t∑
i=1

(hi −hi−1)(k −hi )+ t .

If 0 ∈ A and ht ≤ k −1, then ∣∣H∧A
∣∣≥ h1 +

t∑
i=1

(hi −hi−1)(k −hi −1)+ t .

The lower bounds are optimal.

Theorem 8 ([2, Theorem 9, Corollary 10]). Let A be a set of k nonnegative integers. Let H =
{h1,h2, . . . ,ht } be a set ofpositive integers with h1 < h2 < ·· · < ht . Set h0 = 0. If 0 ∉ A, k ≥ 6,
ht ≤ k −1, and ∣∣H∧A

∣∣= t∑
i=1

(hi −hi−1)(k −hi )+ t ,

then H = h1 + [0, t −1] and A = min(A)∗ [1,k].
If 0 ∈ A, k ≥ 7, ht ≤ k −2, and∣∣H∧A

∣∣= h1 +
t∑

i=1
(hi −hi−1)(k −hi −1)+ t ,

then H = h1 + [0, t −1] and A = min(A \ {0})∗ [0,k −1].

In this paper, we prove similar direct and inverse results for the sumset H (r ) A when A is
a finite nonempty set of positive integers. In Sections 2 and 3, we prove our main theorems,
Theorem 9 and Theorem 14, the direct and inverse theorems for sumset H (r ) A, when A is a finite
set of positive integers. Consequentaly we prove direct and inverse theorems when A contains
nonnegative integers with 0 ∈ A.

To state our main results we need some notation that are used throughout the paper. Let
H = {h1,h2, . . . ,ht } be a set of positive integers with 0 = h0 < h1 < h2 < ·· · < ht and r be a positive
integer. If t = 1, then H (r ) A = h(r )

1 A. So, we assume t ≥ 2. If r > ht , then h(r )
i A = hi A for 1 ≤ i ≤ t ,

giving H (r ) A = H A. So we assume that r ≤ ht . There always exists a unique positive integer l such



Mohan and Ram Krishna Pandey 5

that hl−1 < r ≤ hl , where 1 ≤ l ≤ t . For i = 1,2, . . . , t , let hi = mi r + ϵi , where 0 ≤ ϵi ≤ r −1. For
given set H of positive integers and set of integers A with |H | = t and |A| = k, let

L (H (r ) A) = hl−1(k −1)+ (l −1)+
t∑

i=l
r (mi −mi−1)(k −mi )

+
t∑

i=l

(
(ϵi −ϵi−1)(k −mi −1)−max{ϵi ,ϵi−1}(mi −mi−1)+1

)
. (1)

Note that, if 0 ≤ i ≤ l −1, then mi = 0 and ϵi = hi . So, we can also write

L (H (r ) A) =
t∑

i=1

(
r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−max{ϵi ,ϵi−1}(mi −mi−1)+1

)
.

For i = 1, . . . , t , define

Mi =
⌊

hi −hi−1

r

⌋
and for j = 0, . . . , t −1, define

N j =
{⌈

h j

r

⌉
if l −1 ≤ j ≤ t −1

0 otherwise.

Also, let {0}(r ) A = {0}.

2. Direct Theorems

Theorem 9. Let A be a nonempty finite set of k ≥ 3 positive integers. Let r be a positive integer and
H be a set of t ≥ 2 positive integers with 1 ≤ r ≤ max(H) ≤ (k −1)r −1. Then∣∣H (r ) A

∣∣≥L (H (r ) A). (2)

This lower bound is best possible.

Proof. Let A = {a1, a2, . . . , ak } and H = {h1,h2, . . . ,ht } be such that

0 < a1 < a2 < ·· · < ak and 0 = h0 < h1 < h2 < ·· · < ht .

For i = 0,1, . . . , t , write hi = mi r +ϵi , where 0 ≤ ϵi ≤ r −1. Then, we have

0 = m0 ≤ m1 ≤ m2 ≤ ·· · ≤ mt ≤ k −2.

Since l is a positive integer satisfying hl−1 < r ≤ hl , we have mi = 0 and ϵi = hi for i = 0, . . . , l −1.
Set S0 =;. Define

Si = (hi −hi−1)(r ) Ai +max
{
h(r )

i−1 A
}

for i = 1,2, . . . , t ,

where
Ai =

{
a1, . . . , ak−Ni−1

}
for i = 1,2, . . . , t .

Note that Si ⊆ h(r )
i A ⊆ H (r ) A and max(Si ) < min(Si+1) for all i ∈ [1, t − 1]. We shall define sets

Ti ⊆ h(r )
i A that satistfy Ti ∩ Si = ; for i ∈ [0, t ]. Let Ri = Si ∪ Ti ⊆ h(r )

i A, for i = 0,1, . . . , t . If
i ∈ [0, l − 1], then define Ti = ;. So, |R0| = 0 for l ≥ 1, and by Theorem 1, we have |Ri | = |Si | ≥
(hi −hi−1)(k − 1)+ 1 for l ≥ 2 and i ∈ [1, l − 1]. If i ∈ [l , t ], then we define Ti for every possible
values of ϵi−1 and ϵi , and consequently find |Ri |.

Let i ∈ [l , t ] be such that ϵi−1 = 0 and ϵi ≥ 0. Then Mi = mi −mi−1 and Ni−1 = mi−1. Let Ti =;
in this case. Then by Theorem 3, we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.
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Let i ∈ [l , t ] be such that ϵi > ϵi−1 > 0 and mi = mi−1. Then Mi = mi − mi−1 = 0 and
Ni−1 = mi−1 +1. For j = 0,1, . . . ,ϵi −ϵi−1, define

T 0
i , j = (ϵi −ϵi−1 − j )ak−mi−1 + (ϵi−1 + j )ak−mi +

mi∑
p=1

r ak−mi+p .

Then, we have max(Si ) = T 0
i ,0 < T 0

i ,1 < ·· · < T 0
i ,ϵi−ϵi−1

= max(h(r )
i A) < min(Si+1). Let

Ti =
{

T 0
i , j : j = 1, . . . ,ϵi −ϵi−1

}
. (3)

Then by Theorem 3 and (3), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1+ (ϵi −ϵi−1)

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.

Let i ∈ [l , t ] be such that ϵi > ϵi−1 > 0 and mi = mi−1 + 1. Then Mi = mi − mi−1 = 1 and
Ni−1 = mi−1 +1 = mi . For j = 0, . . . ,ϵi −ϵi−1 −1, define

T 0
i , j = (ϵi −ϵi−1 − j )ak−mi−1−2 + r ak−mi−1−1 + (ϵi−1 + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p ,

T 1
i , j = (ϵi −ϵi−1 − j )ak−mi−1−2 + (r −1)ak−mi−1−1 + (ϵi−1 + j +1)ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p

and for j = 0,1, . . . ,r −ϵi ,

U 0
i , j = (r − j )ak−mi−1−1 + (ϵi + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p .

Then, we have max(Si ) = T 0
i ,0 < T 1

i ,0 < T 0
i ,1 < T 1

i ,1 < ·· · < T 0
i ,ϵi−ϵi−1−1 < T 1

i ,ϵi−ϵi−1−1 < U 0
i ,0 < U 0

i ,1 <
·· · < U 0

i ,r−ϵi
= max(h(r )

i A) < min(Si+1). Assume
{
T 0

i , j : j = 1, . . . ,ϵi − ϵi−1 −1
} = ;, if ϵi − ϵi−1 = 1.

Let

Ti =
{
T 0

i , j : j = 1, . . . ,ϵi −ϵi−1 −1
}∪{

T 1
i , j : j = 0, . . . ,ϵi −ϵi−1 −1

}∪{
U 0

i , j : j = 0, . . . ,r −ϵi
}
. (4)

Then by Theorem 3 and (4), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1+2(ϵi −ϵi−1)+ (r −ϵi )

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.

Let i ∈ [l , t ] be such that ϵi > ϵi−1 > 0 and mi > mi−1 + 1. Then Mi = mi − mi−1 ≥ 2 and
Ni−1 = mi−1 +1. For j = 0, . . . ,ϵi −ϵi−1 −1 and q = 1, . . . ,mi −mi−1, define

T 0
i , j = (ϵi −ϵi−1 − j )ak−mi−1 +

(
mi−mi−1∑

p=1
r ak−mi−1+p

)
+ (ϵi−1 + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p ,

T q
i , j = (ϵi −ϵi−1 − j )ak−mi−1 +

(
mi−mi−1∑

p=1, p ̸=mi−mi−1+1−q
r ak−mi−1+p

)
+ (r −1)ak−mi−1−q

+ (ϵi−1 + j +1)ak−mi−1 +
mi−1∑
p=1

r ak−mi−1+p .

For j = 0, . . . ,r −ϵi −1 and q = 1, . . . ,mi −mi−1 −1, define

U 0
i , j = (r − j )ak−mi +

mi−mi−1−1∑
p=1

r ak−mi+p + (ϵi + j )ak−mi−1 +
mi−1∑
p=1

r ak−mi−1+p ,
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U q
i , j = (r − j )ak−mi +

(
mi−mi−1−1∑

p=1, p ̸=mi−mi−1−q
r ak−mi+p

)
+ (r −1)ak−mi−1−q + (ϵi + j +1)ak−mi−1

+
mi−1∑
p=1

r ak−mi−1+p .

Furthermore, define

U 0
i ,r−ϵi

= ϵi ak−mi +
k∑

p=k−mi+1
r ap .

Then U 0
i ,r−ϵi

= max(h(r )
i A) < min(Si+1) and

max(Si ) = T 0
i ,0 < T 1

i ,0 < ·· · < T mi−mi−1
i ,0 <

T 0
i ,1 < T 1

i ,1 < ·· · < T mi−mi−1
i ,1 <

...
...

...
...

...
...

...

T 0
i ,ϵi−ϵi−1−1 < T 1

i ,ϵi−ϵi−1−1 < ·· · < T mi−mi−1
i ,ϵi−ϵi−1−1 <

U 0
i ,0 < U 1

i ,0 < ·· · < U mi−mi−1−1
i ,0 <

U 0
i ,1 < U 1

i ,1 < ·· · < U mi−mi−1−1
i ,1 <

...
...

...
...

...
...

...

U 0
i ,r−ϵi−1 < U 1

i ,r−ϵi−1 < ·· · < U mi−mi−1−1
i ,r−ϵi−1 < U 0

i ,r−ϵi
.

Assume {T 0
i , j : j = 1, . . . ,ϵi −ϵi−1 −1} =;, if ϵi −ϵi−1 = 1. Let

Ti =
{
T 0

i , j : j = 1, . . . ,ϵi −ϵi−1 −1
}∪{

T q
i , j : j = 0, . . . ,ϵi −ϵi−1 −1; q = 1, . . . ,mi −mi−1

}
∪{

U 0
i , j : j = 0, . . . ,r −ϵi

}∪{
U q

i , j : j = 0, . . . ,r −ϵi −1; q = 1, . . . ,mi −mi−1 −1
}
. (5)

Then by Theorem 3 and (5), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1

+ (ϵi −ϵi−1)(mi −mi−1 +1)+ (r −ϵi )(mi −mi−1)

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.

Let i ∈ [l , t ] be such that ϵi = ϵi−1 > 0 and mi = mi−1 + 1. Then Mi = mi − mi−1 = 1 and
Ni−1 = mi−1 +1. For j = 0, . . . ,r −ϵi , define

U 0
i , j = (r − j )ak−mi−1−1 + (ϵi + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p .

Then max(Si ) =U 0
i ,0 <U 0

i ,1 < ·· · <U 0
i ,r−ϵi

= max(h(r )
i A) < min(Si+1). Let

Ti =
{
U 0

i , j : j = 1, . . . ,r −ϵi
}
. (6)

Then by Theorem 3 and (6), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1+ (r −ϵi )

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.
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Let i ∈ [l , t ] be such that ϵi = ϵi−1 > 0 and mi > mi−1 + 1. Then Mi = mi − mi−1 ≥ 2 and
Ni−1 = mi−1 +1. For j = 0, . . . ,r −ϵi −1 and q = 1, . . . ,mi −mi−1 −1, define

U 0
i , j = (r − j )ak−mi +

(
mi−mi−1−1∑

p=1
r ak−mi+p

)
+ (ϵi + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p

and

U q
i , j = (r − j )ak−mi +

(
mi−mi−1−1∑

p=1, p ̸=mi−mi−1−q
r ak−mi+p

)
+ (r −1)ak−mi−1−q + (ϵi + j +1)ak−mi−1

+
mi−1∑
p=1

r ak−mi−1+p .

Furthermore, define

U 0
i ,r−ϵi

= ϵi ak−mi +
mi∑

p=1
r ak−mi+p .

It is easy to see that U 0
i ,r−ϵi

= max(h(r )
i A) < min(Si+1) and

max(Si ) =U 0
i ,0 < U 1

i ,0 < ·· · < U mi−mi−1−1
i ,0 <

U 0
i ,1 < U 1

i ,1 < ·· · < U mi−mi−1−1
i ,1 <

...
...

...
...

...
...

...

U 0
i ,r−ϵi−1 < U 1

i ,r−ϵi−1 < ·· · < U mi−mi−1−1
i ,r−ϵi−1 < U 0

i ,r−ϵi
.

Let

Ti =
{
U 0

i , j : j = 1, . . . ,r −ϵi
}∪{

U q
i , j : j = 0, . . . ,r −ϵi −1 and q = 1, . . . ,mi −mi−1 −1

}
. (7)

Then by Theorem 3 and (7), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1

+ (r −ϵi )(mi −mi−1)

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi (mi −mi−1)+1.

Let i ∈ [l , t ] be such that ϵi < ϵi−1 and mi = mi−1 + 1. Then Mi = mi − mi−1 − 1 = 0 and
Ni−1 = mi−1 +1 = mi . For j = 0, . . . ,r −ϵi−1, define

T 0
i , j = (r +ϵi −ϵi−1 − j )ak−mi−1−1 + (ϵi−1 + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p .

Then max(Si ) = T 0
i ,0 < T 0

i ,1 < ·· · < T 0
i ,r−ϵi−1

= max(h(r )
i A) < min(Si+1). Let

Ti =
{
T 0

i , j : j = 1, . . . ,r −ϵi−1
}
. (8)

Then by Theorem 3 and (8), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1+ (r −ϵi−1)

= r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi−1(mi −mi−1)+1.



Mohan and Ram Krishna Pandey 9

Let i ∈ [l , t ] be such that ϵi < ϵi−1 and mi > mi−1 + 1. Then Mi = mi − mi−1 − 1 ≥ 1 and
Ni−1 = mi−1 +1. For j = 0, . . . ,r −ϵi−1 −1 and q = 1, . . . ,mi −mi−1 −1, define

T 0
i , j = (r +ϵi −ϵi−1 − j )ak−mi +

(
mi−mi−1−1∑

p=1
r ak−mi+p

)
+ (ϵi−1 + j )ak−mi−1 +

mi−1∑
p=1

r ak−mi−1+p ,

T q
i , j = (r +ϵi −ϵi−1 − j )ak−mi +

(
mi−mi−1−1∑

p=1, p ̸=mi−mi−1−q
r ak−mi+p

)
+ (r −1)ak−mi−1−q

+ (ϵi−1 + j +1)ak−mi−1 +
mi−1∑
p=1

r ak−mi−1+p .

Define also

T 0
i ,r−ϵi−1

= ϵi ak−mi +
mi∑

p=1
r ak−mi+p .

It is easy to see that T 0
i ,r−ϵi−1

= max(h(r )
i A) < min(Si+1) and

max(Si ) = T 0
i ,0 < T 1

i ,0 < ·· · < T mi−mi−1−1
i ,0 <

T 0
i ,1 < T 1

i ,1 < ·· · < T mi−mi−1−1
i ,1 <

...
...

...
...

...
...

...

T 0
i ,r−ϵi−1−1 < T 1

i ,r−ϵi−1−1 < ·· · < T mi−mi−1−1
i ,r−ϵi−1−1 < T 0

i ,r−ϵi−1
< min(Si+1).

Let

Ti =
{
T 0

i , j : j = 1, . . . ,r −ϵi−1
}∪{

T q
i , j : j = 0, . . . ,r −ϵi−1 −1 and q = 1, . . . ,mi −mi−1 −1

}
. (9)

Then by Theorem 3 and (9), we have

|Ri | = |Si |+ |Ti |
≥ Mi r (k −Ni−1 −Mi )+ (hi −hi−1 −Mi r )(k −Ni−1 −2Mi −1)+1

+ (r −ϵi−1)(mi −mi−1)

> r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−ϵi−1(mi −mi−1)+1.

Hence

|H (r ) A| ≥
t∑

i=0
|Ri | =

l−1∑
i=0

|Si |+
t∑

i=l

|Si ∪Ti |

≥
l−1∑
i=1

(hi −hi−1)(k −1)+1

+
t∑

i=l
r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−max{ϵi ,ϵi−1}(mi −mi−1)+1

= hl−1(k −1)+ (l −1)

+
t∑

i=l
r (mi −mi−1)(k −mi ) + (ϵi −ϵi−1)(k −mi −1)−max{ϵi ,ϵi−1}(mi −mi−1)+1

=L (H (r ) A).

This proves (2). Next, we show that this bound is best possible. Let H = [1, (k − 1)r − 1],
A = {1,2, . . . ,k}. Then H (r ) A ⊆ [1,2(r −1)+3r +·· ·+kr ]. So |H (r ) A| ≤ r k(k+1)

2 − r −2. On the other
hand, we have by (2), |H (r ) A| ≥ r k(k+1)

2 − r −2. This completes the proof of Theorem 9. □
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Remark 10. Following the notation from Theorem 9.

(a) If 0 = h0 < h1 < ·· · < ht0−1 < (k −1)r ≤ ht0 < ·· · < ht ≤ kr with t0 ≥ 2, then we have

max(h(r )
t0−1 A) < max−(h(r )

t0
A) < max(h(r )

t0
A) < max(h(r )

t0+1 A) < ·· · < max(h(r )
t A).

So |H (r ) A| ≥ |H (r )
t0−1 A|+t−t0+2 ≥L (H (r )

t0−1 A)+t−t0+2, where Ht0−1 = {h1, . . . ,ht0−1}, t0 ≥ 2.
This lower bound is best possible, as that can be verified with A = [1,k] and H = [1,r k].
Clearly, we have |H (r ) A| = r k(k+1)

2 .
(b) If 0 = h0 < (k −1)r ≤ h1 < ·· · < ht ≤ kr , then

H (r ) A ⊇ h(r )
1 A∪{

max(h(r )
i A) : i = 2, . . . , t

}
.

Therefore∣∣H (r ) A
∣∣≥ ∣∣h(r )

1 A
∣∣+ t −1 ≥ m1r (k −m1)+ (h1 −m1r )(k −2m1 −1)+ t ,

where m1 = ⌊h1/r ⌋. To check, this bound is best possible, we take A = [1,k] and H =
[(k−1)r,kr ]. Then H (r ) A = [r +2r +·· ·+(k−1)r,r +2r +·· ·+kr ] and hence |H (r ) A| = kr +1.

Corollary 11. Let A be a nonempty finite set of k ≥ 4 nonnegative integers with 0 ∈ A. Let r be
a positive integer and H be a set of t ≥ 2 positive integers with 1 ≤ r ≤ max(H) ≤ (k −2)r −1. Let
m = ⌈min(H)/r ⌉ and m1 = ⌊min(H)/r ⌋. Then∣∣H (r ) A

∣∣≥ m1r (m −m1 +1)+ (min(H)−m1r )(m −2m1)+L
(
H (r )(A \ {0})

)
. (10)

This lower bound is best possible.

Proof. Let A = {0, a1, . . . , ak−1} be a set of nonnegative integers with 0 < a1 < ·· · < ak−1 and H =
{h1,h2, . . . ,ht } be a set of positive integers with 0 = h0 < h1 = min(H) < h2 < ·· · < ht = max(H).
Consider A

′ = A \ {0}. Then H (r ) A
′ ⊆ H (r ) A.

Let m = ⌈h1/r ⌉, h1 = m1r +ϵ1, where 0 ≤ ϵ1 ≤ r −1 and B = {0, a1, . . . , am}. Then

h(r )
1 B ⊆ H (r ) A

and h(r )
1 B ∩H (r ) A

′ = max(h(r )
1 B) = min(H (r ) A′) = r a1 +·· ·+r am1 +ϵ1am1+1. Hence by Theorem 3

and Theorem 9, we have∣∣H (r ) A
∣∣≥ ∣∣h(r )

1 B
∣∣+ ∣∣H (r ) A′∣∣−1

≥ m1r (m −m1 +1)+ (min(H)−m1r )(m −2m1)+L
(
H (r )(A \ {0})

)
.

This proves the Corollary. To check optimallity of the bound, take A = [0,k − 1] and H =
[1, (k−2)r −1]. Then H (r ) A ⊆ [0,2(r −1)+3r +·· ·+(k−1)r ] and |H (r ) A| ≤ r k(k−1)

2 −r −1. From (10),
we have |H (r ) A| ≥ r k(k−1)

2 − r −1. □

Remark 12. Following the notation from Corollary 11.

(a) If 0 = h0 < h1 < ·· · < ht0−1 < (k −2)r ≤ ht0 < ·· · < ht ≤ (k −1)r with t0 ≥ 2, then we have

max
(
h(r )

t0−1 A
)< max−

(
h(r )

t0
A

)< max
(
h(r )

t0
A

)< max
(
h(r )

t0+1 A
)< ·· · < max

(
h(r )

t A
)
.

So |H (r ) A| ≥ m1r (m−m1+1)+(min(H)−m1r )(m−2m1)+L
(
H (r )(A\{0})

)+t−t0+2. This
lower bound is best possible, as that can be verified with A = [0,k−1] and H = [1, (k−1)r ].
Clearly, we have |H (r ) A| = r k(k−1)

2 + 1. Also, if we take H = [1, (k − 1)r ] ∪ X , where
X ⊆ [(k −1)r +1,kr ], then again |H (r ) A| = r k(k−1)

2 +1.
(b) If 0 = h0 < (k −2)r ≤ h1 < ·· · < ht ≤ (k −1)r , then

H (r ) A ⊇ h(r )
1 A∪{

max(h(r )
i A) : i = 2, . . . , t

}
.

Therefore

|H (r ) A| ≥ |h(r )
1 A|+ t −1 ≥ m1r (k −m1)+ (h1 −m1r )(k −2m1 −1)+ t ,
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where m1 = ⌊h1/r ⌋. To check, this bound is best possible, we take A = [0,k − 1] and
H = [(k−2)r, (k−1)r ]. Then H (r ) A = [r +2r +·· ·+(k−3)r,r +2r +·· ·+(k−1)r ] and hence
|H (r ) A| = (2k −3)r +1.

Remark 13.

(a) For r = max(H) = ht , Theorem 5 follows from Theorem 9 as a consequence.
(b) For r = 1, Theorem 7 follows from Remark 10 and Remark 12 as a consequence.

3. Inverse problem

This section deals with the inverse theorems associated with the sumset H (r ) A. In this section, we
charaterize the sets A and H , when the cardinality of H (r ) A is equal to its optimal lower bound.
There are some cases in which either A or H or both may not be arithmetic progression but size
of H (r ) A is equal to the optimal lower bound (called extremal set). See some extremal sets in [6,
Section 3] and [4, Section 2.2]. Here we give some more example of extremal sets.

(1) Let A be a set of k (≥ 3) integers and r be a positive integer. If H = {1,r k} or H = {r k−1,r k},
then |H (r ) A| = k +1.

(2) Let A = {a1, a2, a1 + a2} with 0 < a1 < a2 and H ⊆ {1,2,3} with r = 1; or A = {0, a1, a2,
a1 +a2, } with H ⊆ {1,2,3} and r = 1. Then the sets A are extremal sets.

We now present the main inverse results associated with H (r ) A.

Theorem 14. Let r ≥ 1 be a positive integer, A be a nonempty finite set of k ≥ 6 positive integers
and H be a set of t ≥ 2 positive integers with 1 ≤ r ≤ max(H) ≤ (k −1)r −1. If∣∣H (r ) A

∣∣=L
(
H (r ) A

)
,

then H is an arithmetic progression with common difference d ≤ r and A is an arithmetic
progression with common difference d ∗min(A).

Proof. Let A = {a1, a2, . . . , ak } and H = {h1,h2, . . . ,ht } be such that

0 < a1 < a2 < ·· · < ak and 0 = h0 < h1 < h2 < ·· · < ht .

For i = 1, . . . , t , let hi = mi r + ϵi , where 0 ≤ ϵi ≤ r − 1. Let l be a positive integer such that
hl−1 < r ≤ hl , where 1 ≤ l ≤ t . Since |H (r ) A| is equal to its lower bound given in (2), we have,
from the proof of Theorem 9 that, |H (r ) A| =∑t

i=1|Ri |. This implies that

|R1| =
∣∣h(r )

1 A
∣∣= m1r (k −m1)+ (h1 −m1r )(k −2m1 −1)+1

and |Ri | = |Si |+ |Ti | = r (mi −mi−1)(k −mi )+ (ϵi −ϵi−1)(k −mi −1)−max{ϵi ,ϵi−1}(mi −mi−1)+1,
for i = 2, . . . , t . If h1 > 1, then by Theorem 4, the set A is an arithmetic progression. Let h1 = 1 and
h2 > 2. Then we have

R1 = A and R2 = S2 ∪T2.

Therefore |S2| is minimum and hence A2 = {a1, a2, . . . , ak−1} is an arithmetic progression. Now we
show that ak−1 −ak−2 = ak −ak−1. Let m2 ≤ k −3. We have

am2+1 < min
(
(h2 −1)(r ) A2

)+am2+1

< min
(
(h2 −1)(r ) A2

)+am2+2

...

< min
(
(h2 −1)(r ) A2

)+ak−1

< min
(
(h2 −1)(r ) A2

)+ak = min(R2).
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We also have R1 = A and a1 < a2 < ·· · < am2+1 < am2+2 < ·· · < ak < min((h2 − 1)(r ) A2)+ ak =
min(R2). So min((h2−1)(r ) A2)+am2+i = am2+i+1 for i = 1,2, . . . ,k−m2−1. This gives ak−1−ak−2 =
ak −ak−1.

Let m2 = k −2 and ϵ2 = 0. Then

ak−2 < r a1 +·· ·+ r ak−2

< r a1 +·· ·+ r ak−3 + (r −1)ak−2 +ak−1

< r a1 +·· ·+ r ak−3 + (r −1)ak−2 +ak = min(R2).

This implies that r a1+·· ·+r ak−3+(r −1)ak−2 = ak−1−ak−2 = ak −ak−1. Let m2 = k−2 and ϵ2 ≥ 1.
Then r ≥ 2, m1 = 0 and ak−1 < min(h(r )

2 A)) < min(R2). Note that

|R2| = 2r (k −2)−ϵ2(k −3)

and by Theorem 3 ∣∣h(r )
2 A

∣∣≥ 2r (k −2)−ϵ2(k −3)+1.

Let y be an element of h(r )
2 A, which is different from min(h(r )

2 A). If y ∉ R2, then

H (r ) A ⊇ {
a1, a2, . . . , ak−1

}∪{
min(h(r )

2 A), y
}∪( t⋃

i=2
Ri

)
.

This gives |H (r ) A| > ∑t
i=1|Ri |, which is not possible. Therefore y ∈ R2. This gives that h(r )

2 A =
R2 ∪

{
min(h(r )

2 A)
}

and ∣∣h(r )
2 A

∣∣= 2r (k −2)−ϵ2(k −3)+1

and so by Theorem 4, A is an arithmetic progression.
Let h1 = 1 and h2 = 2. Then R1 = A. Consider R ′

1 = {a1 +ai : i = 2, . . . ,k −1}, a subset of h(r )
2 A.

Then max(R ′
1) < min(R2) = a1 + ak . Therefore R ′

1 ⊆ R1 = A. This gives that a1 + ai = ai+1 for
i = 2, . . . ,k −1. Also ak = a1 +ak−1 < a2 +ak−1 < a2 +ak = min+(R2) and ak < min(R2) < min+(R2)
give a2 +ak−1 = a1 +ak . Hence A is an arithmetic progression.

Let A = a1 + d1 · [0,k − 1], where d1 is the common difference of A. We show that H is an
arithmetic progression with common difference d and d1 = d a1. Note that, for all i ∈ [1, t −1], we
have

max−(Ri ) < min
{
(hi+1 −hi )(r ) Ai+1

}+max−(Ri ) < min(Ri+1).

But we already know that

max−(Ri ) < max(Ri ) < min(Ri+1).

So

min
{
(hi+1 −hi )(r ) Ai+1

}+max−(Ri ) = max(Ri ).

This implies that

min
{
(hi+1 −hi )(r ) Ai+1

}= max(Ri )−max−(Ri ) = as+1 −as = a2 −a1 for some s. (11)

Consider the following cases:

(a) Let i ∈ [1, t − 1] be such that ϵi = ϵi+1. Then mi+1 > mi . If mi+1 − mi ≥ 2, then
min{(hi+1 − hi )(r ) Ai+1} = r a1 + ·· · + r ami+1−mi > a2 > a2 − a1, which contradicts (11).
Hence mi+1 −mi = 1 and r a1 = (hi+1 −hi )a1 = a2 −a1.

(b) Let i ∈ [1, t − 1] be such that ϵi < ϵi+1. Then mi+1 ≥ mi . If mi+1 − mi ≥ 1, then
min{(hi+1−hi )(r ) Ai+1} = r a1+·· ·+r ami+1−mi +(ϵi+1−ϵi )ami+1−mi+1 > a2 > a2−a1, which
contradicts (11). Hence mi+1 = mi and (ϵi+1 −ϵi )a1 = (hi+1 −hi )a1 = a2 −a1.

(c) Let i ∈ [1, t − 1] be such that ϵi > ϵi+1. Then mi+1 > mi . If mi+1 > mi + 1, then
min{(hi+1 −hi )(r ) Ai+1} = r a1 + ·· ·+ r ami+1−mi−1 + (r + ϵi+1 − ϵi )ami+1−mi > a2 > a2 − a1,
which contradicts (11). Hence mi+1 = mi +1 and (r +ϵi+1−ϵi )a1 = (hi+1−hi )a1 = a2−a1.
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Hence, (hi+1 −hi )a1 = a2 −a1 = d1 for each i = 1, . . . , t −1. So H is an arithmetic progresion with
common difference d ≤ r and d1 = d a1. This completes the proof. □

Corollary 15. Let r ≥ 1 and t > t0 ≥ 2 be integers. Let A be a nonempty finite set of k ≥ 6
positive integers and H = {h1,h2, . . . ,ht } be a set of t positive integers with h1 < h2 < ·· · < ht0−1 ≤
(k −1)r −1 < ht0 < ·· · < ht < kr . If (t0,h1) ̸= (2,1) and |H (r ) A| = L (H (r )

t0−1 A)+ t − t0 +2, then H is
an arithmetic progression with common difference d ≤ r and A is an arithmetic progression with
common difference d ∗min(A), where Ht0−1 = {h1,h2, . . . ,ht0−1}.

Proof. Note that

max
(
H (r )

t0−1 A
)= max

(
h(r )

t0−1 A
)< max−

(
h(r )

t0
A

)< max
(
h(r )

t0
A

)< max
(
h(r )

t0+1 A
)< ·· · < max

(
h(r )

t A
)

and
H (r ) A ⊇ H (r )

t0−1 A∪{
max−

(
h(r )

t0
A

)}∪{
max

(
h(r )

i A
)

: i = t0, . . . , t
}
.

Therefore
∣∣H (r )

t0−1 A
∣∣ = L (H (r )

t0−1 A). If t0 ≥ 3, then by Theorem 14, Ht0−1 is an arithmetic progres-
sion with common difference d and A is an arithmetic progression with common difference
d ∗min(A). Since (t0,h1) ̸= (2,1), so if t0 = 2, then h1 > 1. So by Theorem 4, A is an arithmetic
progression.

Claim. If t0 ≥ 2, t ≥ t0 +1, and A is an arithmetic progression with common difference d1, then

(1) ϵt0 < ϵt0−1,
(2) mt0−1 = k −2,
(3) hi −hi−1 = d for i = t0, . . . , t and the common difference of A is d1 = d a1.

Proof of the claim. Note that mt0−1r + ϵt0−1 = ht0−1 ≤ (k − 1)r − 1 = (k − 2)r + r − 1. Hence
mt0−1 ≤ k −2. Also ht0 ≥ (k −1)r and ht0 < ht ≤ kr −1, i.e., ht0 ≤ kr −2 = (k −1)r + r −2. Thus
(k −1)r ≤ ht0 ≤ (k −1)r + r −2. Hence mt0 = k −1 and 0 ≤ ϵt0 ≤ r −2. Note also that

max
(
h(r )

t0
A

)= ϵt0 a1 + r a2 +·· ·+ r ak ,

max−
(
h(r )

t0
A

)= (ϵt0 +1)a1 + (r −1)a2 +·· ·+ r ak .

(1). If ϵt0 ≥ ϵt0−1, then

max
(
h(r )

t0−1 A
)< y = r a1 +·· ·+ r ak−mt0−1−1 +ϵt0 ak−mt0−1 + r ak−(mt0−1−1) +·· ·+ r ak < max−

(
h(r )

t0
A

)
,

and y ∈ h(r )
t0

A, which is a contradiction. Hence ϵt0 < ϵt0−1.

(2). If mt0−1 ≤ k −3, then

max
(
h(r )

t0−1 A
)

< r a1 +·· ·+ r ak−mt0−1−2 + (r − (ϵt0−1 −ϵt0 ))ak−mt0−1−1 +ϵt0−1ak−mt0−1 + r ak−mt0−1+1 +·· ·+ r ak

< max−
(
h(r )

t0
A

)
,

which is a contradiction. Hence ϵt0 < ϵt0−1 and mt0−1 = k −2. Consequently, we can write

max
(
h(r )

t0−1 A
)< (r − (ϵt0−1 −ϵt0 ))a1 +ϵt0−1a2 + r a3 +·· ·+ r ak < max

(
h(r )

t0
A

)
.

But we already know that

max
(
h(r )

t0−1 A
)< max−

(
h(r )

t0
A

)< max
(
h(r )

t0
A

)
.

This implies that

(r − (ϵt0−1 −ϵt0 ))a1 +ϵt0−1a2 + r a3 +·· ·+ r ak = max−
(
h(r )

t0
A

)
,

which gives ϵt0−1 = r −1. Therefore ht0 −ht0−1 = (k −1)r +ϵt0 − (k −2)r − (r −1) = ϵt0 +1. Now we
have

max−
(
h(r )

t0−1 A
)< (ϵt0 +1)a1 + r a2 + (r −1)a3 + r a4 +·· ·+ r ak < max−

(
h(r )

t0
A

)
.
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We also have
max−

(
h(r )

t0−1 A
)< max

(
h(r )

t0−1 A
)< max−

(
h(r )

t0
A

)
.

Therefore
(ϵt0 +1)a1 + r a2 + (r −1)a3 + r a4 +·· ·+ r ak = max

(
h(r )

t0−1 A
)
.

This gives
(ϵt0 +1)a1 = a3 −a2 = d1.

This implies that a1 divides d1, so d1 = d a1 where d = ϵt0 +1. Hence ht0 −ht0−1 = d .

(3). Now we show that hi −hi−1 = d for i = t0 +1, . . . , t .
Note that

max−
(
h(r )

t0
A

)< max−
(
h(r )

t0+1 A
)< ·· · < max−

(
h(r )

t A
)< max

(
h(r )

t A
)
.

We already have

max−
(
h(r )

t0
A

)< max
(
h(r )

t0
A

)< max
(
h(r )

t0+1 A
) · · · < max

(
h(r )

t A
)
.

Therefore
max

(
h(r )

i A
)= max−

(
h(r )

i+1 A
)
,

which gives (ϵi+1 − ϵi )a1 = a2 − a1 = d1 for i = t0, t0 + 1, . . . , t − 1. Hence, H is an arithmetic
progression with common difference d and A is an arithmetic progression with common dif-
ference d a1. □

Now we discuss the case when t = t0.

Corollary 16. Let r ≥ 1 and t ≥ 2 be positive integers. Let A be a nonempty finite set of k ≥ 6 positive
integers and H = {h1,h2, . . . ,ht } be a set of t positive integers with h1 < ·· · < ht−1 ≤ (k−1)r−1 < ht <
kr . If (t ,h1) ̸= (2,1) and |H (r ) A| = L ((H \ {ht })(r ) A)+2, then H is an arithmetic progression with
common difference d ≤ r and A is an arithmetic progression with common difference d ∗min(A).

Proof. Note that

max
(
(H \ {ht })(r ) A

)= max
(
h(r )

t−1 A
)< max−

(
h(r )

t A
)< max

(
h(r )

t A
)

and
H (r ) A ⊇ (H \ {ht })(r ) A∪{

max−
(
h(r )

t A
)
,max

(
h(r )

t A
)}

.

Therefore
∣∣H (r )

t−1 A
∣∣ = L ((H \ {ht })(r ) A). Also, if t = 2 and h1 > 1, then by Theorem 4, A is an

arithmetic progression.

Claim. If t ≥ 2, then

(1) ht−1 > r ,
(2) ϵt ≤ ϵt−1,
(3) mt−1 = k −2.

Proof of the claim.

(1). If ht−1 ≤ r , then max(h(r )
t−1 A) = ht−1ak . Note that

ht−1ak < (ϵt +1)a1 + r a2 + (r −1)a3 +·· ·+ r ak < (ϵt +1)a1 + (r −1)a2 +·· ·+ r ak = max−
(
h(r )

t A
)
,

which is a contradiction. Hence ht−1 > r and so mt−1 ≥ 1.
Note that mt−1r + ϵt−1 = ht−1 ≤ (k − 1)r − 1 = (k − 2)r + r − 1. Hence mt−1 ≤ k − 2. Also

(k −1)r ≤ ht ≤ kr −1. Hence mt = k −1. Note also that

max
(
h(r )

t−1 A
)= ϵt−1ak−mt−1 + r ak−mt−1+1 +·· ·+ r ak ,

max
(
h(r )

t A
)= ϵt a1 + r a2 +·· ·+ r ak ,

max− h(r )
t A = (ϵt +1)a1 + (r −1)a2 +·· ·+ r ak .
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(2). Let ϵt > ϵt−1. Then

max
(
h(r )

t−1 A
)< x = r a1 +·· ·+ r ak−mt−1−1 +ϵt ak−mt−1 + r ak−(mt−1−1) +·· ·+ r ak

≤ y = r a1 +ϵt a2 + r a3 +·· ·+ r ak

≤ (ϵt +1)a1 + (r −1)a2 +·· ·+ r ak = max−
(
h(r )

t A
)
,

and x, y ∈ h(r )
t A. If x < y or y < max−(h(r )

t A), then we get a contradiction. So we assume that
x = y = max−(h(r )

t A). This implies that ϵt = r − 1 and mt−1 = k − 2. Since ϵt > ϵt−1, we have
ϵt−1 ≤ r − 2. Now consider z = r a1 + r a2 + (r − 1)a3 + r a4 + ·· · + r ak ∈ h(r )

t A. Then we have
max(h(r )

t−1 A) < z < max−(h(r )
t A), which is again a contradiction. Hence ϵt ≤ ϵt−1.

(3). If mt−1 ≤ k −3, then

max
(
h(r )

t−1 A
)

< r a1 +·· ·+ r ak−mt−1−2 + (r − (ϵt−1 −ϵt ))ak−mt−1−1 +ϵt−1ak−mt−1 + r ak−mt−1+1 +·· ·+ r ak

< max−
(
h(r )

t A
)
,

which is a contradiction. Hence ϵt ≤ ϵt−1 and mt−1 = k −2. Consequently, we can write

max
(
h(r )

t−1 A
)< (r − (ϵt−1 −ϵt ))a1 +ϵt−1a2 + r a3 +·· ·+ r ak < max

(
h(r )

t A
)
.

But we already know
max

(
h(r )

t−1 A
)< max−

(
h(r )

t A
)< max

(
h(r )

t A
)
.

This implies
(r − (ϵt−1 −ϵt ))a1 +ϵt−1a2 + r a3 +·· ·+ r ak = max−

(
h(r )

t A
)
.

This gives ϵt−1 = r −1. Therefore ht −ht−1 = (k −1)r +ϵt − (k −2)r − (r −1) = ϵt +1. We have

max−
(
h(r )

t−1 A
)< (ϵt +1)a1 + r a2 + (r −1)a3 + r a4 +·· ·+ r ak < max−

(
h(r )

t A
)
.

We also have

max−
(
h(r )

t−1 A
)< max(h(r )

t−1 A) < max−
(
h(r )

t A
)
.

Therefore

(ϵt +1)a1 + r a2 + (r −1)a3 + r a4 +·· ·+ r ak = max
(
h(r )

t−1 A
)
.

This gives

(ϵt +1)a1 = a3 −a2. (12)

If t ≥ 3, by Theorem 14, H \ {ht } is an arithmetic progression with common difference d ≤ r and
A is an arithmetic progression with common difference d ∗min(A). Therefore

(ϵt +1)a1 = a3 −a2 = d a1,

which implies ht −ht−1 = ϵ2+1 = d . Hence, if t ≥ 3, H is an arithmetic progression with common
difference d ≤ r and A is an arithmetic progression with common difference d ∗min(A). If t = 2,
then H = {h1,h2} is an arithmetic progression with common difference d = h2 −h1 = ϵt +1 ≤ r .
Since h1 > 1 and

∣∣H (r )
1 A

∣∣=L ((H \{h2})(r ) A) = |h(r )
1 A| = m1r (k−m1)+ϵ1(k−2m1−1)+1, we have

from Theorem 4 that A is an arithmetic progression with common difference d a1 from (12). □

Corollary 17. Let r ≥ 2 be a positive integer and A be a nonempty finite set of k ≥ 6 positive
integers and H be a set of t ≥ 2 positive integers with (k − 1)r − 1 < min(H) < max(H) < kr . Let
m1 = ⌊min(H)/r ⌋. If ∣∣H (r ) A

∣∣= m1r (k −m1)+ (h1 −m1r )(k −2m1 −1)+ t ,

then H is an arithmetic progression with common difference d ≤ r − 1 and A is an arithmetic
progression with common difference d ∗min(A).
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Proof. Note that
max

(
h(r )

2 A
)< max

(
h(r )

3 A
)< ·· · < max

(
h(r )

t A
)

and
H (r ) A ⊇ h(r )

1 A∪{
max

(
h(r )

i A
)

: 2 ≤ i ≤ t
}
.

Therefore
∣∣h(r )

1 A
∣∣= m1r (k−m1)+(h1−m1r )(k−2m1−1)+1 and by Theorem 4, A is an arithmetic

progression. Assume d1 is the common difference of A. Note that

max−
(
h(r )

1 A
)< max−

(
h(r )

2 A
)< ·· · < max−

(
h(r )

t A
)< max

(
h(r )

t A
)
.

We already have

max−
(
h(r )

1 A
)< max

(
h(r )

1 A
)< max

(
h(r )

2 A
) · · · < max

(
h(r )

t A
)
.

Therefore
max

(
h(r )

i A
)= max−

(
h(r )

i+1 A
)
,

which gives (ϵi+1 − ϵi )a1 = a2 − a1 = d1 for i = 1,2, . . . , t − 1. Hence, set H is an arithmetic
progression with common difference d ≤ r − 1 and set A is an arithmetic progression with
common difference d ∗min(A). □

Corollary 18. Let r be a positive integer, A be a finite set of k ≥ 7 nonnegative integers with 0 ∈ A,
and H be a set of t ≥ 2 positive integers with 1 ≤ r ≤ max(H) ≤ (k −2)r −1. Let m = ⌈min(H)/r ⌉
and m1 = ⌊min(H)/r ⌋. If∣∣H (r ) A

∣∣= m1r (m −m1 +1)+ (min(H)−m1r )(m −2m1)+L
(
H (r )(A \ {0})

)
, (13)

then H is an arithmetic progression with common difference d ≤ r and A is an arithmetic
progression with common difference d ∗min(A \ {0}). Moreover, if min(H) > 1, then d = 1.

Proof. Let A = {0, a1, . . . , ak−1} be a set of nonnegative integers with 0 < a1 < ·· · < ak−1 and H =
{h1,h2, . . . ,ht } be set of positive integer such that h1 < h2 < ·· · < ht . From (13) and Corollary 11,
we have ∣∣h(r )

1 B
∣∣= m1r (m −m1 +1)+ (h1 −m1r )(m −2m1)+1

and ∣∣H (r ) A′∣∣=L
(
H (r )(A′)

)
,

where A′ = {a1, a2, . . . , ak−1} and B = {0, a1, . . . , am} with m = ⌈h1/r ⌉. Then by Theorem 14, H is an
arithmetic progression with common difference d ≤ r and A′ is an arithmetic progression with
common difference d ∗min(A′). Now, we show that d = 1, if h1 > 1. To show that d = 1, it is
sufficient to prove that the common difference of arithmetic progression A is a1. If r = 1, then
d = 1. Assume r ≥ 2. Now, define Ri = Si ∪Ti for the set A′ as it was defined in Theorem 9. So

R1 = S1 = h(r )
1 A′ ⊆ h(r )

1 A.

Now max(h(r )
1 A′) = max(h(r )

1 A) implies that h(r )
1 A∩R2 =;. We write∣∣H (r ) A

∣∣= m1r (m −m1 +1)+ (h1 −m1r )(m −2m1)+ ∣∣h(r )
1 A′∣∣

+
t∑

i=2

(
r (mi −mi−1)(k −mi −1)+ (ϵi −ϵi−1)(k −mi −2)

− (max{ϵi ,ϵi−1})(mi −mi−1)+1
)
. (14)

If h1 = m1r + ϵ1 with m1 ≥ 1 and ϵ1 ≥ 1, then m = m1 + 1 and so |B | ≥ 3. Since
∣∣h(r )

1 B
∣∣ =

m1r (m−m1+1)+(h1−m1r )(m−2m1)+1, Theorem 4 implies that B is an arithmetic progression
with common difference a1. Furthermore, as A′ is also an arithmetic progression, we have
A = B ∪ A′ is an arithmetic progression with common difference a1.
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If h1 = m1r +ϵ1 with m1 = 0 or ϵ1 = 0, then m = 1 or m1 = m. Since

h(r )
1 B ∪h(r )

1 A′ ⊆ h(r )
1 A and h(r )

1 A∩R2 =;,

we have from (14) that∣∣h(r )
1 A

∣∣= ∣∣h(r )
1 B

∣∣+ ∣∣h(r )
1 A′∣∣−1

= m1r (m −m1 +1)+ (h1 −m1r )(m −2m1)+m1r (k −m1 −1)+ (h1 −m1r )(k −2m1 −2)+1

≤ m1r + (h1 −m1r )+m1r (k −m1 −1)+ (h1 −m1r )(k −2m1 −2)+1

= m1r (k −m1)+ (h1 −m1r )(k −2m1 −1)+1.

This gives ∣∣h(r )
1 A

∣∣= m1r (k −m1)+ (h1 −m1r )(k −m1 −1)+1.

So, by Theorem 4, A is an arithmetic progression with common difference a1. This implies that
d = 1. Hence,

H = h1 + [0, t −1] and A = min(A \ {0})∗ [0,k −1]. □

As a consequence of Corollary 15, Corollary 16, Corollary 17 and Corollary 18, we have the
following Corollaries.

Corollary 19. Let r ≥ 1 and t > t0 ≥ 2 be integers. Let A be a nonempty finite set of k ≥ 7
nonnegative integers with 0 ∈ A and H = {h1,h2, . . . ,ht } be a set of t positive integers with
h1 < h2 < ·· · < ht0−1 ≤ (k − 2)r − 1 < ht0 < ·· · < ht < (k − 1)r . If (t0,h1) ̸= (2,1) and |H (r ) A| ≥
m1r (m−m1+1)+(min(H)−m1r )(m−2m1)+L

(
H (r )(A \{0})

)+ t − t0+2, then H is an arithmetic
progression with common difference d ≤ r and A is an arithmetic progression with common
difference d ∗min(A \ {0}). Moreover, if min(H) > 1, then d = 1.

Corollary 20. Let r ≥ 1 and t ≥ 2 be integers. Let A be a nonempty finite set of k ≥ 7 nonnegative
integers with 0 ∈ A and H = {h1,h2, . . . ,ht } be a set of t positive integers with h1 < h2 < ·· · < ht−1 ≤
(k −2)r −1 < ht < (k −1)r . If (t ,h1) ̸= (2,1) and |H (r ) A| ≥ m1r (m −m1 +1)+ (min(H)−m1r )(m −
2m1)+L

(
H (r )(A \{0})

)+2, then H is an arithmetic progression with common difference d ≤ r and
A is an arithmetic progression with common difference d ∗min(A \ {0}). Moreover, if min(H) > 1,
then d = 1.

Corollary 21. Let r ≥ 2 be a positive integer and A be a nonempty finite set of k ≥ 7 nonnegative
integers with 0 ∈ A and H be a set of t ≥ 2 positive integers with (k −2)r −1 < min(H) < max(H) <
(k −1)r . Let m1 = ⌊min(H)/r ⌋. If∣∣H (r ) A

∣∣= m1r (k −m1)+ (min(H)−m1r )(k −2m1 −1)+ t ,

then H is an arithmetic progression with common difference d ≤ r − 1 and A is an arithmetic
progression with common difference d ∗min(A \ {0}).

4. Conclusions

In Section 1.1, we have already discussed the relation between generalized H-fold sumset and
subsequence sum. Choosing a particular H we get some results of subsequence sum.

Corollary 22 ([7, Theorem 2.1]). Let k and r be positive integers. Let A be a finite sequence of
nonnegative integers with k distinct terms each with repetitions r .

If 0 ∉A and k ≥ 3, then ∑
(A) ≥ r k(k +1)

2
.

If 0 ∈A and k ≥ 4, then ∑
(A) ≥ 1+ r k(k −1)

2
.
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The above lower bounds are best possible.

Proof. If 0 ∉ A, then taking H = [1,kr ] in Remark 10(b), we get
∑

(A) ≥ r k(k+1)
2 . If 0 ∈ A, then

taking H = [1,kr ] in Remark 12(a), we get
∑

(A) ≥ 1+ r k(k−1)
2 . □

Corollary 23 ([7, Theorem 2.3]). Let k and r be positive integers. If A is a finite sequence of
nonnegative integers with k distinct terms each with repetitions r .

If 0 ∉A, k ≥ 6 and ∑
(A) = r k(k +1)

2
,

then A= d ∗ [1,k]r for some positive integer d.
If 0 ∈A, k ≥ 7 and ∑

(A) = 1+ r k(k −1)

2
,

then A= d ∗ [0,k −1]r for some positive integer d.

Proof. If 0 ∉ A, then taking H = [1,kr ] in Corollary 15, we get A = d ∗ [1,k]r for some positive
integer d . If 0 ∈ A, then taking H = [1,kr ] in Corollary 19, we get A = d ∗ [0,k − 1]r for some
positive integer d . □

Taking H = [α,kr ] in Theorem 9 and Remark 10 and taking H = [α, (k−1)r ] in Corollary 11 and
Remark 12, we get the following result.

Corollary 24 ([4, Corollary 3.2]). Let k ≥ 4, r ≥ 1 and α be integers with 1 ≤α< kr . Let m ∈ [1,k]
be the integer such that (m −1)r ≤α< mr . Let A be a finite sequence of nonnegative integers with
k distinct terms each with repetitions r .

If 0 ∉A, then ∑
α

(A) ≥ r k(k +1)

2
− r m(m +1)

2
+m(mr −α)+1.

If 0 ∈A, then ∑
α

(A) ≥ r k(k −1)

2
− r m(m −1)

2
+ (m −1)(mr −α)+1.

The above lower bounds are best possible.

Taking H = [α,kr −2], Theorem 14 and Corollaries 15–21 give the following result.

Corollary 25 ([4, Corollary 3.5]). Let k ≥ 7, r ≥ 1 and α be integers with 1 ≤ α ≤ kr − 2. Let
m ∈ [1,k] be the integer such that (m − 1)r ≤ α < mr . Let A be a finite sequence of nonnegative
integers with k distinct terms each with repetitions r .

If 0 ∉A and ∑
α

(A) = r k(k +1)

2
− r m(m +1)

2
+m(mr −α)+1,

then A= d ∗ [1,k]r for some positive integer d.
If 0 ∈A and ∑

α
(A) = r k(k −1)

2
− r m(m −1)

2
+ (m −1)(mr −α)+1,

then A= d ∗ [0,k −1]r for some positive integer d.
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