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1. Introduction

1.1. Statement of the problem

Consider on a bounded Lipschitz domainΩ of Rn the quasilinear BVP{
div(a(u)A∇u) = 0 inΩ,
u|Γ = f ,

(1)

where a is a scalar function and A is a matrix with variable coefficients, and Γ is the boundary of
Γ. Assume that we can define the map Λa : f 7→ a(u)A∇u( f ) ·ν between two well chosen spaces,
where u( f ) is the solution of the BVP (1), when it exists, and ν is the unit exterior normal vector
field toΓ. In the case where a is supposed to be unknown we ask whetherΛa determines uniquely
a. This problem can be seen as a Calderón type problem for the quasilinear BVP (1). We are mainly
interested in establishing a stability inequality for this inverse problem.
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1.2. Assumptions and notations

Throughout this text, 0 < α < 1 and Ω is a C 2,α bounded domain of Rn (n ≥ 3) with boundary Γ.
Fix A = (ai j ) ∈C 1,α(Rn ,Rn×n) satisfying (ai j (x)) is symmetric for each x ∈Rn ,

κ−1|ξ|2 ≤ A(x)ξ ·ξ, x,ξ ∈Rn , (2)

and

max
1≤ i , j ≤n

∥∥∥ai j
∥∥∥

C 1,α(Rn )
≤ κ, (3)

where κ> 1 is a given constant.
Pick κ > 0. Let µ : [0,∞) → [κ,∞) and γ : [0,∞) → [0,∞) be two nondecreasing functions. If

ϱ= ϱ(n, |Ω|) denotes the constant appearing in (6) then consider the assumptions

(a1) a ∈C 1(R), a ≥κ and qa = a′/a ∈C 0,1(R).
(a2) a(z) ≤µ(ϱ−1|z|), z ∈R.
(a3) |a′(z)| ≤ γ(ϱ−1|z|), z ∈R.

Let γ̃ : [0,∞) → [0,∞) be another nondecreasing function. We need also to introduce the
following assumption,

(ã1) a ∈C 2(R), a ≥κ and |a′′(z)| ≤ γ̃(ϱ−1|z|), z ∈R.

Note that (ã1) implies (a1).
The set of functions a : R→ R satisfying (a1) (resp. (ã1), (a2) and (a3) is denoted hereafter by

A (resp. Ã ).
In the rest of this text Γ0 denotes a nonempty open subset of Γ. We define H 1/2

Γ0
(Γ) as follows

H 1/2
Γ0

(Γ) = {
f ∈ H 1/2(Γ); supp( f ) ⊂ Γ0

}
.

We equip H 1/2
Γ0

(Γ) with the norm of H 1/2(Γ).

Also, fix Γ1 ⋑ Γ0 an open subset of Γ and χ ∈C∞
0 (Γ1) so that χ= 1 in Γ0.

For any t ∈R, ft will denote the constant function given by ft (s) = t , s ∈ Γ.
Finally,

Cm =Cm
(
n,Ω,κ,κ,α,µ(m),γ(m)

)> 0, m ≥ 0,

C 0
m =C 0

m

(
n,Ω,κ,κ,α,m,µ(m),γ(m)

)> 0, m ≥ 0,

C 1
m =C 1

m

(
n,Ω,κ,κ,α,m,µ(m),γ(m), γ̃(m),Γ0,Γ1

)> 0, m ≥ 0,

will denote generic constants.

1.3. Main result

We show in Subsection 2.1 that, under assumption (a1), for each f ∈ C 2,α(Γ) the BVP (1) admits
a unique solution ua = ua( f ) ∈ C 2,α(Ω). Furthermore, when a satisfies both (a1) and (a2) the
Dirichlet-to-Neumann map

Λa : C 2,α(Γ) → H−1/2(Γ) : f 7→ a(u)A∇ua( f ) ·ν
is well defined, where ν is the unit normal vector field on Γ.

Set C 2,α
Γ0

(Γ) = { f ∈ C 2,α(Γ); supp( f ) ⊂ Γ0} and define the family of localized Dirichlet-to-

Neumann maps (Λ̃t
a)t ∈R as follows

Λ̃t
a : f ∈C 2,α

Γ0
(Γ) 7→χΛa

(
ft + f

) ∈ H−1/2(Γ), t ∈R.
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We will prove in Subsection 2.2 that, under the assumption (a3), for each t ∈ R and a ∈A , Λ̃t
a

is Fréchet differentiable in a neighborhood of the origin. Furthermore, dΛ̃t
a(0), the Fréchet dif-

ferential of Λ̃t
a at 0, has an extension, still denoted by dΛ̃t

a(0), belonging to B(H 1/2
Γ0

(Γ), H−1/2(Γ)),
and

sup
|t |≤τ

∥∥dΛ̃t
a(0)

∥∥
op <∞, τ> 0.

Here and Henceforth ∥ ·∥op stands for the norm of B(H 1/2
Γ0

(Γ), H−1/2(Γ)).

We remark that since C 2,α
Γ0

(Γ) is dense in H 1/2
Γ0

(Γ) the above extension of dΛ̃t
a(0) is entirely

determined by dΛ̃t
a(0).

Theorem 1. For any a1, a2 ∈ Ã and τ> 0 we have

∥a1 −a2∥C ([−τ,τ]) ≤C 1
τ sup
|t |≤τ

∥∥dΛ̃t
a1

(0)−dΛ̃t
a2

(0)
∥∥

op
.

The following uniqueness result is straightforward from the preceding theorem.

Corollary 2. Let a j ∈ C 2(R) satisfies a j ≥ κ, j = 1,2. Then Λ̃t
a1

= Λ̃t
a2

in a neighborhood of the
origin for each t ∈R implies a1 = a2.

It is worth noticing that if a1 and a2 are as in Corollary 2 then a1 and a2 satisfy also (a2), (a3)
and (ã1) with

µ(τ) = max
|z|≤τ

max
j=1,2

a j (ϱz), γ(τ) = max
|z|≤τ

max
j=1,2

∣∣∣a′
j (ϱz)

∣∣∣ , τ≥ 0,

and

γ̃(τ) = max
|z|≤τ

max
j=1,2

∣∣∣a′′
j (ϱz)

∣∣∣ , τ≥ 0.

These µ, γ and γ̃ depends of course on a1 and a2.
We also emphasize that Theorem 1 and Corollary 2 show that the determination of the

nonlinear term in fact can be done only through the knowledge of the Dirichlet-to-Neumann
map on an arbitrary subset of the boundary.

1.4. Comments

There are only very few stability inequalities in the literature devoted to the determination of
nonlinear terms in quasilinear and semilinear elliptic equations by boundary measurements.
The semilinear case was studied in [5] by using a method based on linearization together with
stability inequality for the problem of determining the potential in a Schrödinger equation by
boundary measurements. The result in [5] was recently improved in [4]. Both quasilinear and
semilinear elliptic inverse problems were considered in [13] where a method exploiting the
singularities of fundamental solutions was used to establish stability inequalities. This method
was used previously in [3] to obtain a stability inequality at the boundary of the conformal factor
in an inverse conductivity problem. We show in the present paper how we can modify the proof
of [3, (1.2) of Theorem 1.1] to derive the stability inequality stated in Theorem 1. The localization
argument was inspired by that in [13].

There is a recent rich literature dealing with uniqueness issue concerning the determination of
nonlinearities in elliptic equations by boundary measurements using the so-called higher order
linearization method. We refer to the recent work [2] and references therein for more details. We
also quote without being exhaustive the following references [1,6,7,9,10,12,14–21] on semilinear
and quasilinear elliptic inverse problems.
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2. Preliminaries

2.1. Solvability of the BVP and the Dirichlet-to-Neumann map

Suppose that a satisfies (a1) and introduce the divergence form quasilinear operator

Q(x,u,∇u) = div(a(u)A∇u), x ∈Ω, u ∈C 2(Ω).

The following observation will be crucial in the sequel : u ∈C 2(Ω) satisfies Q(x,u,∇u) = 0 in Ω if
and only if

Q0(x,u,∇u) =
n∑

i , j=1
ai j (x)∂2

i j u(x)+b (x,u,∇u) = 0, x ∈Ω, (4)

where
b(x, z, p) = B(x) ·p +qa(z)A(x)p ·p, x ∈Ω, z ∈R, p ∈Rn ,

with

B j (x) =
n∑

i=1
∂i ai j (x), x ∈Ω, 1 ≤ j ≤ n.

As b(·, ·,0) = 0 one can easily check that Q0 satisfies to the assumptions of [8, Theorem 15.12,
page 382]. Let f ∈C 2,α(Γ). Il light of the observation above we derive that the quasilinear BVP{

div(a(u)A∇u) = 0 inΩ,
u|Γ = f ,

(5)

admits a solution ua = ua( f ) ∈ C 2,α(Ω). The uniqueness of solutions of (1) holds from [8,
Theorem 10.7, p. 268] applied to Q.

Also, as
a(z)p · A(x)p ≥κκ−1|p|2

we infer from [8, Theorem 10.9, p. 272] that

max
Ω

∣∣ua
(

f
)∣∣≤ ϱmax

Γ

∣∣ f
∣∣ , (6)

where ϱ= ϱ(n, |Ω|).
On the other hand according to [8, Theorem 6.8, p. 100], for each f ∈ C 2,α(Γ), there exists a

unique E f ∈C 2,α(Ω) satisfying
∆E f = 0 inΩ, E f|Γ = f ,

and from [8, Theorem 6.6, p. 98] we have∥∥E f
∥∥

C 2,α(Ω) ≤ c
∥∥ f

∥∥
C 2,α(Γ) , (7)

where c = c(Ω,α) > 0.
Assume that a satisfies (a1) and (a2) and let f ∈ C 2,α(Γ). Then straightforward computations

show that v = ua( f )−E f is the solution of the BVP{−div
(
a(ua( f ))A∇v

)= div
(
a(ua( f ))A∇E f

)
inΩ,

v|Γ = 0.
(8)

Multiplying the first equation of (8) by v and integrating over Ω. We then obtain from Green’s
formula ∫

Ω
a

(
ua( f )

)
A∇v ·∇vd x =−

∫
Ω

a
(
ua( f )

)
A∇E f ·∇vd x.

Set

Bm =
{

f ∈C 2,α(Γ); max
Γ

∣∣ f
∣∣< m

}
.

If f ∈Bm then the last identity together with (6) yield

κκ−1 ∥∇v∥2
L2(Ω) ≤ κµ(m)

∥∥∇E f
∥∥

L2(Ω) ∥∇v∥L2(Ω),
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which, combined with the fact of w ∈ H 1(Ω) 7→ ∥∇w∥L2(Ω) defines an equivalent norm on H 1
0 (Ω),

implies

∥v∥H 1(Ω) ≤ℵµ(m)
∥∥ f

∥∥
C 2,α(Γ) .

Here and henceforth, ℵ=ℵ(n,Ω,κ,κ,α) > 0 is a generic constant.
Whence ∥∥ua

(
f
)∥∥

H 1(Ω) ≤ℵµ(m)
∥∥ f

∥∥
C 2,α(Γ) . (9)

We endow H 1/2(Γ) with the quotient norm

∥ϕ∥H 1/2(Γ) = min
{∥v∥H 1(Ω); v ∈ ϕ̇}

, ϕ ∈ H 1/2(Γ),

where

ϕ̇= {
v ∈ H 1(Ω); v|Γ =ϕ

}
.

For each ψ ∈ H−1/2(Γ) we define χψ by〈
χψ,ϕ

〉
1/2 =

〈
ψ,χϕ

〉
1/2 , ϕ ∈ H 1/2(Γ),

where 〈·, ·〉1/2 is the duality pairing between H 1/2(Γ) and its dual H−1/2(Γ).
It is not difficult to check that χψ ∈ H−1/2(Γ), supp(χψ) ⊂ Γ1 and the following identity holds〈

χψ,ϕ
〉

1/2 = 〈ψ,ϕ〉1/2, ϕ ∈ H 1/2
Γ0

(Γ). (10)

This identity will be very useful in the sequel.
Let ϕ ∈ H 1/2(Γ) and v ∈ ϕ̇. Appying Green’s formula, we get∫

Γ
a( f )A∇ua( f ) ·νϕd s =

∫
Ω

a
(
ua( f )

)
A∇ua( f ) ·∇vd x.

We recall that ν is the unit exterior normal vector field on Γ.
Using that ua( f ) is the solution of the BVP (1), we easily check that the right hand side of the

above identity is independent of v , v ∈ ϕ̇.
This identity suggests to define the Dirichlet-to-Neumann map

Λa : C 2,α(Γ) → H−1/2(Γ),

associated to a, by the formula〈
Λa( f ),ϕ

〉
1/2 =

∫
Ω

a
(
ua( f )

)
A∇ua( f ) ·∇vd x, ϕ ∈ H 1/2(Γ), v ∈ ϕ̇.

Using (9), we get ∥∥Λa( f )
∥∥

H−1/2(Γ) ≤ℵµ(m)2∥ f ∥C 2,α(Γ), f ∈Bm . (11)

2.2. Differentiability properties

We need a gradient bound for the solution of the BVP (1). To this end we set

B+
m = {

f ∈Bm ; ∥ f ∥C 2,α(Γ) < c−1m
}

, m > 0,

where c is the constant in (7).
Fix f ∈ B+

m and a ∈ A . We apply [8, Theorem 15.9, p. 380] with ϕ = E f /∥E f ∥C 2(Ω) and
u = ua( f )/∥E f ∥C 2(Ω) which is the solution of (1) when a(z) is substituted by a(∥E f ∥C 2(Ω)z). We
obtain

max
Ω

∣∣∇ua( f )
∣∣≤C 0

m∥ f ∥C 2,α(Γ). (12)

Next, we establish thatΛa , a ∈A , is Fréchet differentiable in a neighborhood of the origin. For
η> 0 define

B
η
m =

{
f ∈B+

m ∩C 2,α
Γ0

(Γ); ∥ f ∥C 2,α(Γ) < η
}

.



1460 Mourad Choulli

Lemma 3. Let m > 0. There exists ηm = ηm(n,Ω,κ,κ,α,m,µ(m),γ(m)) > 0 such that for each
a ∈A we have ∥∥ua( f )−ua(g )

∥∥
H 1(Ω) ≤Cm∥ f − g∥C 2,α(Γ), f , g ∈B

ηm
m ,

Proof. Let η> 0 to be determined later. Pick f , g ∈B
η
m and set h = g − f . Let σ= a(ua(g )) and

p(x) =
∫ 1

0
a′ (ua( f )(x)+ t

[
ua(g )(x)−ua( f )(x)

])
d t , x ∈Ω.

It is then straightforward to check that u = ua(g )−ua( f ) is the solution of the BVP{−div(σA∇u) = div
(
pu A∇ua( f )

)
inΩ,

u|Γ = h.

We split u into two terms u = E h + v , where v is the solution of the BVP{−div(σA∇v)−div
(
pv A∇ua( f )

)= div(F ) inΩ,
v|Γ = 0,

with

F =σA∇E h +qE h A∇ua( f ).

Applying Green’s formula, we find∫
Ω
σA∇v ·∇v +

∫
Ω

qv A∇ua( f ) ·∇v =−
∫
Ω

F ·∇v.

From (12) and Poincaré’s inequality we derive

κκ−1∥∇v∥2
L2(Ω) −C 0

mη∥∇v∥2
L2(Ω) ≤Cm∥∇v∥L2(Ω)∥h∥C 2,α(Γ).

If η= ηm is chosen sufficiently small is such a way that

κκ−1 −C 0
mη≥κκ−1/2,

then we obtain

∥∇v∥L2(Ω) ≤Cm∥h∥C 2,α(Γ),

from which the expected inequality follows readily. □

In the sequel ηm , m > 0, will denote the constant in Lemma 3.

Lemma 4. Pick a ∈A and m > 0. Then

∥Λa( f )−Λa(g )∥H−1/2(Γ) ≤Cm∥ f − g∥C 2,α(Γ), f , g ∈B
ηm
m .

Proof. Let f , g ∈B
ηm
m . For ϕ ∈ H 1/2(Γ) and v ∈ ϕ̇, we have〈

Λa(g )−Λa( f ),ϕ
〉

1/2 = I1 + I2,

where

I1 =
∫
Ω

[
a

(
ua(g )

)−a
(
ua( f )

)]
A∇ua(g ) ·∇vd x,

I2 =
∫
Ω

a
(
ua( f )

)
A

[∇ua(g )−∇ua( f )
] ·∇vd x.

We can proceed similarly to the proof of Lemma 3 to derive that∣∣I j
∣∣≤Cm

∥∥ua(g )−ua( f )
∥∥

H 1(Ω) ∥v∥H 1(Ω), j = 1,2.

The expected inequality follows easily by using Lemma 3. □
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Let f ∈ B
ηm
m . Similarly to the calculations we carried out in the proof of Lemma 3, we show

that the bilinear continuous form

b(v, w) =
∫
Ω

[
a

(
ua( f )

)
A∇v +a′ (ua( f )

)
v A∇ua( f )

] ·∇wd x, v, w ∈ H 1
0 (Ω),

is coercive. In light of Lemma 12, we obtain that the BVP{
div

[
a

(
ua( f )

)
A∇v +a′ (ua( f )

)
v∇ua( f ))

]= 0 inΩ,
v|Γ = h,

(13)

admits a unique weak solution va = va( f ,h) ∈ H 1(Ω) satisfying∥∥va( f ,h)
∥∥

H 1(Ω) ≤Cm∥h∥H 1/2(Γ) (14)

and hence ∥∥va( f ,h)
∥∥

H 1(Ω) ≤Cm∥h∥C 2,α(Γ). (15)

We refer to Appendix A for the exact definition of weak solutions.
Next, pick ϵ> 0 such that f +h ∈B

ηm
m for each h ∈C 2,α

Γ0
(Γ) satisfying ∥h∥C 2,α(Γ) < ϵ. Set then

w = ua( f +h)−ua( f )− va( f ,h).

Simple computations show that w is the weak solution of the BVP{
div

[
a

(
ua( f )

)
A∇w +a′ (ua( f )

)
w∇ua( f ))

]= div(F ) inΩ,
w|Γ = 0,

with

F = a′ (ua( f )
)[

ua
(

f +h)
)−ua( f )

]∇ua( f )

− [
a

(
ua( f +h)

)−a
(
ua( f )

)]∇ua( f +h)

= {
a′ (ua( f )

)[
ua( f +h))−ua( f )

]− [
a

(
ua( f +h)

)−a
(
ua( f )

)]}∇ua( f )

+ [
a

(
ua( f +h)

)−a
(
ua( f )

)][∇ua( f )−∇ua( f +h)
]

.

In particular, we have

b(w, w) =
∫
Ω

F ·∇w. (16)

Using that

a′ (ua( f )
)[

ua( f +h))−ua( f )
]− [

a
(
ua( f +h)

)−a
(
ua( f )

)]
= [

ua( f +h))−ua( f )
]∫ 1

0

[
a′ (ua( f )

)−a′(ua( f )+ t
(
ua( f +h)−ua( f )

)]
d t ,

and the uniform continuity of a′ in [−ϱm,ϱm], we obtain∥∥a′ (ua( f )
)[

ua( f +h))−ua( f )
]− [

a
(
ua( f +h)

)−a
(
ua( f )

)]∥∥
L∞(Ω) = o

(∥h∥C 2,α(Γ)

)
.

On the other hand similar estimates as above give∥∥[
a

(
ua( f +h)

)−a
(
ua( f )

)][∇ua( f )−∇ua( f +h)
]∥∥

H 1(Ω) ≤Cm∥h∥2
C 2,α(Γ).

The last two inequalities together with (16) yield

∥w∥H 1(Ω) = o
(∥h∥C 2,α(Γ)

)
.

In other words we proved that f ∈B
ηm
m 7→ ua( f ) ∈ H 1(Ω) is Fréchet differentiable with

dua( f )(h) = va( f ,h), f ∈B
ηm
m , h ∈C 2,α

Γ0
(Γ).

Using the definition ofΛa we can then state the following result.
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Proposition 5. For each m > 0, the mapping

f ∈B
ηm
m 7→Λa( f ) ∈ H−1/2(Γ)

is Fréchet differentiable with〈
dΛa( f )(h),ϕ

〉
1/2 =

∫
Ω

[
a

(
ua( f )

)
A∇va( f ,h)+a′ (ua( f )

)
va( f ,h)A∇ua( f )

] ·∇vd x,

f ∈B
ηm
m , h ∈C 2,α

Γ0
(Γ), ϕ ∈ H 1/2(Γ) and v ∈ ϕ̇.

The fact that dΛa( f ), f ∈ B
ηm
m , is extended to a bounded linear map from H 1/2

Γ0
(Γ) into

H−1/2(Γ) is immediate from (14).

Remark 6. If the assumption (a1) is substituted by the following one

(a’1) a ∈C 1,1(R), a ≥κ,

then one can prove that f ∈ B
ηm
m 7→ va( f , ·) ∈ B(C 2,α

Γ0
(Γ), H 1(Ω)) is continuous. In that case

f ∈B
ηm
m 7→Λa( f ) ∈ H−1/2(Γ) is continuously Fréchet differentiable.

3. Proof of the main result

As we already mentioned we give a proof based on an adaptation of [3, proof of (1.2) of Theo-
rem 1.1] combined with a localization argument borrowed from [13].

3.1. Special solutions

We construct in a general setting special solutions of a divergence form operator vanishing
outside Γ0. To this end, let A= (Ai j ) ∈C 1,α(Rn ,Rn×n) satisfying

λ−1|ξ|2 ≤A(x)ξ ·ξ, x ∈Rn , ξ ∈Rn ,

and
max

1≤i , j≤n

∥∥∥Ai j
∥∥∥

C 1,α(Rn )
≤λ,

for some constant λ> 1.
Recall that the canonical parametrix for the operator div(A∇· ) is given by

H(x, y) =
[
A−1(y)(x − y) · (x − y)

](2−n)/2

(n −2)|Sn−1
[
det(A(y)

]1/2
, x, y ∈Rn , x ̸= y.

Theorem 7. [ [11, Theorem 3, p. 271]] Pick Ω0 ⊃Ω. For each y ∈Ω0, there exists uy ∈C 2(Ω0 \ {y})
satisfying div(A∇u) = 0 inΩ0 \ {y},∣∣uy (x)−H(x, y)

∣∣≤C |x − y |2−n+α, x ∈Ω0 \ {y},∣∣∇uy (x)−∇H(x, y)
∣∣≤C |x − y |1−n+α, x ∈Ω0 \ {y},

where C =C (n,Ω0,α,λ) > 0.

Pick x0 ∈ Γ0 and let r0 > 0 sufficiently small in such a way that B(x0,r0)∩Γ⋐ Γ0. As B(x0,r0)\Ω
contains a cone with a vertex at x0, we find δ0 > 0 and a vector ξ ∈ Sn−1 such that, for each
0 < δ≤ δ0, we have yδ = x0 +δξ ∈ B(x0,r0) \Ω and dist(yδ,Ω) ≥ cδ, for some constant c = c(Ω) > 0
(see Figure 1 below).

In the sequel Ω0 = Ω∪B(x0,r0) and uδ = uyδ , 0 < δ ≤ δ0, where uyδ is given by Theorem 7.
Reducing δ0 if necessary, we may assume that

dist
(
yδ,∂Ω0

)≥ r0/2, 0 < δ≤ δ0. (17)
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On the other hand, using that the continuous bilinear form

b0(u, v) =
∫
Ω0

A∇u ·∇v, u, v ∈ H 1
0 (Ω0),

is coercive, we derive that the BVP {
div(A∇v) = 0 inΩ0,
v|∂Ω0 = uδ,

(18)

admits a unique weak solution vδ ∈ H 1(Ω0) satisfying

∥vδ∥H 1(Ω0) ≤C∥uδ∥H 1/2(∂Ω0), 0 < δ≤ δ0. (19)

where C =C (n,Ω0,λ) > 0.

Lemma 8. We have
∥vδ∥H 1/2(Γ) ≤C , 0 < δ≤ δ0, (20)

where C =C (n,Ω,α,λ, x0,r0) > 0.

Proof. Let Ω̃= {x ∈Ω0; dist(x,∂Ω0) < r0/4}. By the continuity of the trace operator, we have

∥uδ∥H 1/2(∂Ω0) ≤C∥uδ∥H 1(Ω̃), 0 < δ≤ δ0, (21)

for some constant C =C (Ω0,r0) > 0. Then in light of the inequality

∥uδ∥H 1(Ω̃) ≤ ∥uδ−H(·, yδ)∥H 1(Ω̃) +∥H(·, yδ)∥H 1(Ω̃), 0 < δ≤ δ0,

(17) and Theorem 7 we obtain
∥uδ∥H 1(Ω̃) ≤C , 0 < δ≤ δ0, (22)

where C =C (n,Ω,α,λ, x0,r0) > 0.
A combination of (19), (21) and (22) then implies

∥vδ∥H 1/2(Γ) ≤C , 0 < δ≤ δ0,

where C is as above. □

Let P ∈ L∞(Rn ,Rn) satisfying ∥P∥L∞(Rn ) ≤ λ and consider on H 1
0 (Ω)× H 1

0 (Ω) the continuous
bilinear forms

b(u, v) =
∫
Ω

[A∇u +uP ] ·∇v, u, v ∈ H 1
0 (Ω).

b∗(u, v) =
∫
Ω

[A∇u ·∇v − vP ·∇u], u, v ∈ H 1
0 (Ω).

We assume that b and b∗ are coercive: there exists c0 > 0 such that

b(u,u) ≥ c0∥u∥H 1
0 (Ω), b∗(u,u) ≥ c0∥u∥H 1

0 (Ω) u ∈ H 1
0 (Ω).

Let f ∈ H 1/2(Γ). From Lemma 12 and its proof the BVP{
div(A∇u +uP ) = 0 inΩ,
u|Γ = f ,

(23)

has a unique weak solution u( f ) ∈ H 1(Ω) satisfying

∥u( f )∥H 1(Ω) ≤C∥ f ∥H 1/2(Γ), (24)

where C =C (n,Ω,λ,c0) > 0.
Similarly, the BVP {

div(A∇u∗)−P ·∇u∗ = 0 inΩ,
u∗
|Γ = f ,

(25)

admits unique weak solution u∗( f ) ∈ H 1(Ω) satisfying∥∥u∗( f )
∥∥

H 1(Ω) ≤C∥ f ∥H 1/2(Γ), (26)
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where C is as in (24).
Set fδ = (uδ− vδ)|Γ ∈ H 1/2(Γ), 0 < δ≤ δ0. By construction we have vδ = uδ on ∂Ω0 ∩Γ⋑ Γ \Γ0.

Hence supp( fδ) ⊂ Γ0 (see Figure 1 below). That is we have fδ ∈ H 1/2
Γ0

(Γ).

Figure 1.

Until the end of this subsection C =C (n,Ω,λ,α,c0, x0,r0) > 0 denotes a generic constant.
For δ> 0 define

ℓn(δ) =


1, n = 3,
| lnδ|1/2, n = 4,
δ2−n/2, n ≥ 5.

Lemma 9. Let 0 < δ≤ δ0 and denote by wδ ∈ H 1(Ω) the weak solution of the BVP (23) when f = fδ.
Then wδ = H(·, yδ)+ zδ with

∥zδ∥H 1(Ω) ≤Cℓn(δ).

Proof. We first note that z̃δ = wδ−uδ ∈ H 1(Ω) is the weak solution of the BVP{−div(A∇z̃ + z̃P ) = div(uδP ) inΩ,
z̃ |Γ =−vδ,

It follows from Lemma 13 that

∥z̃δ∥H 1(Ω) ≤C
(∥vδ∥H 1/2(Γ) +∥uδ∥L2(Ω)

)
.

Using that dist(yδ,Ω) ≥ cδ (and henceΩ⊂ B(R, yδ)\B(yδ,cδ/2) for some large R > 0 independent
on δ) we easily derive from Theorem 7

∥uδ∥L2(Ω) ≤Cℓn(δ).

We combine this estimate with (20) in order to obtain

∥z̃δ∥H 1(Ω) ≤Cℓn(δ). (27)

Let zδ = z̃δ+uδ−H(·, yδ). Then we have the decomposition wδ = H(·, yδ)+zδ. Using once again
Theorem 7 and (27), we obtain

∥zδ∥H 1(Ω) ≤Cℓn(δ)

as expected. □
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Lemma 10. Assume that P ∈ W 1,∞(Ω) with ∥P∥W 1,∞(Ω) ≤ λ. Let 0 < δ ≤ δ0 and denote by
w∗
δ
∈ H 1(Ω) the weak solution of the BVP (25) when f = fδ. Then wδ = H(·, yδ)+ z∗

δ
with∥∥z∗

δ

∥∥
H 1(Ω) ≤Cℓn(δ).

Proof. As z̃∗
δ
= w∗

δ
−uδ is the solution of the BVP{

div(A∇z̃∗)−P ·∇z̃∗ = P ·∇uδ inΩ,
z̃∗
|Γ =−vδ,

we obtain from Lemma (14) ∥∥z̃∗
δ

∥∥
H 1(Ω) ≤C

(∥vδ∥H 1/2(Γ) +∥uδ∥L2(Ω)

)
.

The rest of the proof is similar to that of Lemma 9. □

3.2. Stability of determining the conformal factor at the boundary

Suppose that A=σA, where A is as in Section 1 and σ ∈C 1,α(Rn), define

Λσ : H 1/2(Γ) → H−1/2(Γ)

as follows 〈
Λσ( f ),ϕ

〉
1/2 =

∫
Ω

[
σA∇uσ( f )+uσ( f )P

] ·∇v, ϕ ∈ H 1/2
Γ0

(Γ), v ∈ ϕ̇.

where uσ( f ) is the solution of (23) when A=σA. We also consider

Λ̃σ : f ∈ H 1/2
Γ0

(Γ) 7→χΛσ( f ) ∈ H 1/2(Γ).

Pick P j , j = 1,2 satisfying the assumptions of Lemma 10.
Let u j = uσ j when P = P j , Λ j =Λσ j , j = 1,2. Set then σ=σ1 −σ2, P = P1 −P2 and u = u1 −u2.

With these notations we have〈
(Λ1 −Λ2)( f ), v|Γ

〉
1/2 =

∫
Ω
σA∇u1( f ) ·∇v +

∫
Ω
σ2 A∇u ·∇v

+
∫
Ω

[
u1( f )P −uP2

] ·∇v, v ∈ H 1(Ω).

We use this identity with v = v∗(g ), g ∈ H 1/2(Γ), the weak solution of the BVP{
div(σ2 A∇v∗)−P2 ·∇v∗ = 0 inΩ,
v∗
|Γ = g .

Since∫
Ω
σ2 A∇u ·∇v∗(g )d x −

∫
Ω

uP2 ·∇v∗(g )d x

=−
∫
Ω

udiv
(
σ2∇v∗(g )

)
d x −

∫
Ω

uP2 ·∇v∗(g )d x = 0

we obtain by taking into account (10)〈(
Λ̃1 − Λ̃2

)
( f ), g

〉
1/2

=
∫
Ω
σA∇u1( f ) ·∇v∗(g )d x +

∫
Ω

u1( f )P ·∇v∗(g )d x, f , g ∈ H 1/2
Γ0

(Γ).

Let H j = H when A=σ j A, j = 1,2. That is we have

H j (x, y) =
[

A−1(y)(x − y) · (x − y)
](2−n)/2

(n −2)
∣∣Sn−1

∣∣σ(y)
[
det(A(y)

]1/2
, x, y ∈Rn , x ̸= y.



1466 Mourad Choulli

According to Lemmas 9 and 10, with f = g = fδ, A=σ j A and P = P j , j = 1 or j = 2, we have

u1( fδ) = H1(·, yδ)+ zδ, 0 < δ≤ δ0,

v∗( fδ) = H2(·, yδ)+ z∗
δ , 0 < δ≤ δ0,

where zδ and z∗
δ

satisfies

∥zδ∥H 1(Ω) ≤Cℓn(δ),
∥∥z∗

δ

∥∥
H 1(Ω) ≤Cℓn(δ), 0 < δ≤ δ0.

In the rest subsection we always need to reduce δ0. For simplicity convenience we keep the
notation δ0.

Fix Υ a nonempty closed subset of Γ0 and assume that ∥σ∥C (Υ) = σ(x0). Proceeding as in the
proof [3, (2.8)], we get

C∥σ∥C (Υ) ≤ δn−2
∫
Ω
σA∇u1( fδ) ·∇v∗( fδ)d x +δα

We also prove in a similar manner∣∣∣∣∫
Ω

u1( f )P ·∇v∗( fδ)d x

∣∣∣∣≤Cℓn(δ)δ1−n/2,∣∣〈(Λ̃1 − Λ̃2
)

( fδ), v∗( fδ)
〉

1/2

∣∣≤C ′∥∥Λ̃1 − Λ̃2
∥∥

opδ
2−n .

Here and in the sequel C ′ =C ′(n,Ω,λ,α,Γ0,Γ1, x0,r0) > 0 denotes a generic constant.
Hence

C ′∥σ∥C (Υ) ≤
∥∥Λ̃1 − Λ̃2

∥∥
op +max

(
δn/2−1ℓn(δ),δα

)
, 0 < δ≤ δ0,

from which we derive

∥σ∥C (Υ) ≤C ′∥∥Λ̃1 − Λ̃2
∥∥

op . (28)

3.3. Proof of Theorem 1

Let a1, a2 ∈ Ã . We apply the preceding result with

σ j = a j

(
ua j ( f )

)
, P j = a′

(
ua j ( f )

)
∇ua j ( f ), f ∈ Bηm

m , j = 1,2, t ∈R.

Note that the coercivity of b and b∗ when P = P j , j = 1,2, was already demonstrated in the
previous section, with coercivity constant independent on f ∈ Bηm

m .
By taking f = 0 we easily get from (28)

|a1(0)−a2(0)| ≤C 1
0

∥∥dΛ̃0
a1

(0)−dΛ̃0
a2

(0)
∥∥

op
. (29)

For each a ∈A and t ∈R, we obtain by straightforward computations that

uat ( f ) = ua
(

f + ft
)− ft ,

where at (z) = a(z + t ), z ∈R. This identity yields

Λa
(

f + ft
)=Λat ( f ), f ∈C 2,α

Γ0
(Γ). (30)

The following assumptions hold for the family (at )t∈R : for any τ> 0, we have

at (z) ≤µτ
(
ϱ−1|z|)=µ(

ϱ−1(|z|+τ)
)

, a ∈R, |t | ≤ τ,∣∣(at )′(z)
∣∣≤ γτ (

ϱ−1|z|)= γ(
ϱ−1(|z|+τ)

)
, a ∈R, |t | ≤ τ,∣∣(at )′′(z)

∣∣≤ γ̃τ (
ϱ−1|z|)= γ̃(

ϱ−1(|z|+τ)
)

, a ∈R, |t | ≤ τ.

Identity (30) shows that Λ̃t
a is Fréchet differentiable in a neighborhood of the origin with

dΛ̃t
a(0) = dΛ̃at (0).
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Furthermore, (14) and Proposition (5) with a = at gives

sup
|t |≤τ

∥∥dΛ̃t
a(0)

∥∥
op ≤C 0

τ . (31)

Now, we easily get by applying (29), with a1 and a2 substituted by at
1 and at

2,

|a1(t )−a2(t )| ≤C 1
τ

∥∥dΛ̃t
a1

(0)−dΛ̃t
a2

(0)
∥∥

op
, |t | ≤ τ.

That is we have
∥a1 −a2∥C ([−η,η]) ≤C 1

τ sup
|t |≤η

∥∥dΛ̃t
a1

(0)−dΛ̃t
a2

(0)
∥∥

op
,

which is the expected inequality.

Appendix A. Technical elementary lemmas

Let A= (Ai j ) ∈ L∞(Rn ,Rn×n) satisfying

2β|ξ|2 ≤A(x)ξ ·ξ, x,ξ ∈Rn ,

for some β> 0, and P ∈ L∞(Rn ,Rn).
Pick a bounded domainΩ ofRn and consider on H 1

0 (Ω)×H 1
0 (Ω) the continuous bilinear forms

b(u, v) =
∫
Ω

[A∇u +uP ] ·∇v, u, v ∈ H 1
0 (Ω).

b∗(u, v) =
∫
Ω

[A∇u ·∇v − vP ·∇u] , u, v ∈ H 1
0 (Ω).

Denote by µΩ the Poincaré’s constant ofΩ:

∥u∥L2(Ω) ≤µΩ∥∇u∥L2(Ω), u ∈ H 1
0 (Ω).

Lemma 11. Under the assumption ∥P∥L∞(Rn ) ≤µ−1
Ω β, we have

b(u,u) ≥β∥∇u∥2
L2(Ω), u ∈ H 1

0 (Ω), (32)

b∗(u,u) ≥β∥∇u∥2
L2(Ω), u ∈ H 1

0 (Ω). (33)

Proof. Let u ∈ H 1
0 (Ω). As∫
Ω

uP ·∇u ≤ ∥P∥L∞(Rn )∥u∥L2(Ω)∥∇u∥L2(Ω) ≤µΩ∥P∥L∞(Rn )∥∇u∥2
L2(Ω),

we get
b(u,u) ≥ (

2β−µΩ∥P∥L∞(Rn )
)∥∇u∥2

L2(Ω).

Therefore (32) follows. The proof of (33) is similar. □

We introduce a definition. Let f ∈ H 1/2(Γ). We say that u ∈ H 1(Ω) is a weak solution of the BVP{
div(A∇u +uP ) = 0 inΩ,
u|Γ = f

(34)

if u|Γ = f (in the trace sense) and

b(u, v) = 0, v ∈ H 1
0 (Ω).

Note that this last condition implies that the first equation in (34) holds in H−1(Ω).
Also, we say that u∗ ∈ H 1(Ω) is a weak solution of the BVP{

div(A∇u∗)−P ·∇u∗ = 0 inΩ,
u∗
|Γ = f ,

(35)

if u∗
|Γ = f and

b∗
(
u∗, v

)= 0, v ∈ H 1
0 (Ω).
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Let us assume that A satisfies in addition

max
1≤ i , j ≤n

∥∥∥Ai j
∥∥∥

L∞(Rn )
≤ β̃,

for some β̃> 0.
Let E f be the unique element of ḟ so that ∥E f ∥H 1(Ω) = ∥ f ∥H 1/2(Γ) (E f is nothing but the

orthogonal projection of 0 ∈ H 1(Ω) on the closed convex set ḟ ). Then∥∥div
(
A∇E f +E f P

)∥∥
H−1(Ω) ≤

(
β̃+∥P∥L∞(Rn )

)∥ f ∥H 1/2(Γ). (36)

Furthermore, we have 〈
div

(
A∇E f +E f P

)
, v

〉
−1 = b(E f , v), v ∈ H 1

0 (Ω), (37)

where 〈·, ·〉−1 is the duality pairing between H 1
0 (Ω) and H−1(Ω).

Lemma 12. Suppose that ∥P∥L∞(Rn ) ≤µ−1
Ω β. Then we have

(i) the BVP (34) admits a unique weak solution u ∈ H 1(Ω) satisfying

∥u∥H 1(Ω) ≤C∥ f ∥H 1/2(Γ), (38)

and
(ii) the BVP (35) has a unique weak solution u∗ ∈ H 1(Ω) satisfying∥∥u∗∥∥

H 1(Ω) ≤C∥ f ∥H 1/2(Γ), (39)

where C =C (n,Ω,β, β̃) > 0.

Proof. We provide the proof of (i) and omit that of (ii) which is quite similar to that of (i).
Since b is coercive by Lemma 11, in light of (37) we get by applying Lax–Milgram’s lemma that

there exists a unique u0 ∈ H 1
0 (Ω) satisfying

b(u0, v) =−b(
E f , v

)
, v ∈ H 1

0 (Ω).

In particular we have
b(u0,u0) =−b(

E f ,u0
)

, v ∈ H 1
0 (Ω).

Using (32), (36) and (37), we derive

β∥∇u0∥L2(Ω) ≤
(
β̃+∥P∥L∞(Rn )

)∥ f ∥H 1/2(Γ). (40)

Clearly, u = u0 +E f satisfies
b(u, v) = 0, v ∈ H 1

0 (Ω).

and u|Γ = f . In other words u is a weak solution of (34) and, as a consequence of (40), u
satisfies (38).

We complete the proof by noting that the uniqueness of solutions of (34) is a straightforward
consequence of the coercivity of b. □

Consider now the BVP {
div(A∇u +uP ) = div(F ) inΩ,
u|Γ = f ,

(41)

where f ∈ H 1/2(Γ) and F ∈ L2(Ω)n .
Assume first that f = 0. In that case the variational problem associated to (41) has the form

b(u, v) = 〈divF, v〉−1, v ∈ H 1
0 (Ω), (42)

As in the preceding proof we show, with the help of Lax-Milgram’s lemma, that the variational
problem (42) admits a unique solution u(F ) ∈ H 1

0 (Ω) satisfying

∥u(F )∥H 1(Ω) ≤C∥F∥L2(Ω)n ,

where C =C (n,Ω,β, β̃) > 0.
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By linearity, the solution of (41) is the sum of the solution of (41) with f = 0 and the solution
of (41) with F = 0 (corresponding to (34)).

We derive from Lemma 12 the following result.

Lemma 13. Suppose that ∥P∥L∞(Rn ) ≤ µ−1
Ω β. Let f ∈ H 1/2(Γ) and F ∈ L2(Ω)n . Then the BVP (41)

admits a unique weak solution u ∈ H 1(Ω) satisfying

∥u∥H 1(Ω) ≤C
(∥ f ∥H 1/2(Γ) +∥F∥L2(Ω)n

)
, (43)

where C =C (n,Ω,β, β̃) > 0.

Next, consider the BVP {
div(A∇u∗)−P ·∇u∗ = R ·∇g inΩ,
u∗
|Γ = f ,

(44)

Assume that R ∈ W 1,∞(Ω) with ∥R∥W 1,∞(Ω) ≤ ϱ, for some ϱ > 0, and g ∈ H 1(Ω). A simple
integration by parts enables us to show that

∥R ·∇g∥H−1(Ω) ≤ c∥g∥L2(Ω),

where c = c(n,Ω,ϱ).
With the help of this inequality we can proceed as above in order to derive the following

lemma.

Lemma 14. Suppose that ∥P∥L∞(Rn ) ≤ µ−1
Ω β. Let g ∈ H 1(Ω) and R ∈ W 1,∞(Ω) satisfying

∥R∥W 1,∞(Ω) ≤ ϱ, for some ϱ > 0. Then the BVP (44) has a unique weak solution u∗ ∈ H 1(Ω) sat-
isfying ∥∥u∗∥∥

H 1(Ω) ≤C
(∥ f ∥H 1/2(Γ) +∥g∥L2(Ω)

)
, (45)

where C =C (n,Ω,β, β̃,ϱ) > 0.
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