I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Anis Rajhi

Compactly supported cohomology of a tower of graphs and generic representations
of $\mathrm{PGL}_{\boldsymbol{n}}$ over a local field
Volume 361 (2023), p. 1133-1149
Published online: 24 October 2023
https://doi.org/10.5802/crmath. 485

(c) BY

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

Compactly supported cohomology of a tower of graphs and generic representations of PGL_{n} over a local field

Anis Rajhi ${ }^{a, b}$
${ }^{a}$ Department of quantitative methods, Higher business school of Tunis, Manouba University, Manouba 2010, Tunisia
${ }^{b}$ Department of mathematics, Faculty of Sciences and Humanities in Dawadmi, Shaqra University, 11911 Shaqra, Saudi Arabia
E-mail: anis.rajhi.maths@gmail.com

Abstract

Let F be a non-archimedean locally compact field and let G_{n} be the group $\mathrm{PGL}_{n}(\mathrm{~F})$. In this paper we construct a tower $\left(\widetilde{\mathrm{X}}_{k}\right)_{k \geqslant 0}$ of graphs fibred over the one-skeleton of the Bruhat-Tits building of G_{n}. We prove that a non-spherical and irreducible generic complex representation of G_{n} can be realized as a quotient of the compactly supported cohomology of the graph $\widetilde{\mathrm{X}}_{k}$ for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.

2020 Mathematics Subject Classification. 22E50, 20 E 42.
Manuscript received 31 October 2022, revised 24 February 2023, accepted 28 February 2023.

1. Introduction

Let F be a non-archimedean locally compact field and let G_{n} be the locally profinite group $\mathrm{PGL}_{n}(\mathrm{~F})$. In [4], P. Broussous has constructed a projective tower of simplicial complexes fibred over the Bruhat-Tits building of G_{n}. The idea (due to P. Schneider) consists of constructing simplicial complexes whose structure is very related to that of the Bruhat-Tits building. The goal of a such construction is to try to find geometric interpretation of certain classes of irreducible smooth representations of G_{n}. Such a geometric interpretation exists for example for the Steinberg representation of G_{n} which can be realized (see [3, Thm. 3]) as the cohomology with compact support in top dimension of the Bruhat-Tits building. In a second work (see [5]), P. Broussous has constructed in the case $n=2$ a slightly modified version of his previous construction. More precisely, he construct a tower of directed graphs $\left(\widetilde{\mathrm{X}}_{k}\right)_{k \geqslant 0}$ fibred over the Bruhat-Tits tree of G_{2}. Based on the existence of new vectors for irreducible generic representations of G_{2}, he proves that an irreducible generic representation π of G_{2} can be realized as a quotient of the compactly supported cohomology space $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$, where $c(\pi)$ is an integer related to the conductor of
the representation π. He proves moreover that if π is cuspidal then it can be realized as a subrepresentation of the last cohomology space and that a such realization is unique. In a parallel direction, the author has constructed a simplicial complex fibred over the Bruhat-Tits building of G_{n} whose top compactly supported cohomology realize as subquotient all the irreducible cuspidal level zero representations of G_{n}, see [9].

In this paper our aim is to generalize the construction of Broussous given in [5] to the case $n \geqslant 3$. More precisely we construct a projective tower $\left(\widetilde{\mathrm{X}}_{k}\right)_{k \geqslant 0}$ of directed graphs fibred over the 1 -skeleton of the Bruhat-Tits building of G_{n}. In our construction, the graphs considered will be defined in terms of combinatorial geodesic paths of the Bruhat-Tits building of G_{n}.

Let π be an irreducible smooth generic and non-spherical representation of G_{n}. We prove that there exists an injective intertwining operator

$$
\Psi_{\pi}^{\vee}: V^{\vee} \longrightarrow \mathscr{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)
$$

where V^{\vee} is the contragredient representation of π and $\mathscr{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ is the space of smooth harmonic forms on the graph $\widetilde{\mathrm{X}}_{c(\pi)}$. By applying contragredients to this intertwining operator and then by restriction to $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ we obtain a nonzero intertwining operator

$$
\Psi_{\pi}: H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right) \longrightarrow V .
$$

That is the representation π is isomorphic to a quotient of $\left.H_{c}^{1} \widetilde{X}_{c(\pi)}, \mathbb{C}\right)$. In the case when π is cuspidal, the G_{n}-equivariant map Ψ_{π} splits so that π injects in $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$. We prove that such an injection is unique, that is :

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{G}_{n}}\left(\pi, H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)\right)=1 .
$$

2. Notations and preliminaries

In this article, F will be a non-archimedean locally compact field. We write $\mathfrak{o}_{\mathrm{F}}$ for the ring of integers of $\mathrm{F}, \mathfrak{p}_{\mathrm{F}}$ for the maximal ideal of $\mathfrak{o}_{\mathrm{F}}, k_{\mathrm{F}}:=\mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}}$ for the residue class field of F and q_{F} for the cardinal of k_{F}. We fix a normalized uniformizer ϖ_{F} of $\mathfrak{o}_{\mathrm{F}}$ and we denote by v_{F} the normalized valuation of F .

2.1. The projective general linear group $\mathrm{PGL}_{n}(\mathrm{~F})$

For every integer $n \geqslant 2$, the projective general linear group $\mathrm{PGL}_{n}(\mathrm{~F})$ will be denoted by G_{n}. If $k \geqslant 1$ is an integer, we write $\widetilde{\Gamma}_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)$ for the following subgroup of $\mathrm{GL}_{n}(\mathrm{~F})$

$$
\widetilde{\Gamma}_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right) \in \mathrm{GL}_{n}\left(\mathfrak{o}_{\mathrm{F}}\right) \right\rvert\, a \in \mathrm{GL}_{n-1}\left(\mathfrak{o}_{\mathrm{F}}\right), d \in \mathfrak{o}_{\mathrm{F}}^{\times}, c \equiv 0 \bmod \mathfrak{p}_{\mathrm{F}}^{k}\right\}
$$

and we write $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)$ for its image in G_{n}. We denote also the image in G_{n} of the standard maximal compact subgroup of $\mathrm{GL}_{n}(\mathrm{~F})$ by $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{0}\right)$.

2.2. The Bruhat-Tits building of G_{n}

In this section we fix some notations and recall some well-known facts. For more details the reader may refer to [1], [7] or [10]. Recall that a lattice of the vector space F^{n} is an open compact subgroup of the additive group of F^{n}. A such lattice is an $\mathfrak{o}_{\mathrm{F}}$-lattice if moreover it is an $\mathfrak{o}_{\mathrm{F}}$ submodule of F^{n}. Equivalently, an $\mathfrak{o}_{\mathrm{F}}$-lattice of F^{n} is a free $\mathfrak{o}_{\mathrm{F}}$-submodule L of F^{n} of rank n. If L is an $\mathfrak{o}_{\mathrm{F}}$-lattice of F^{n} then $\mathrm{L}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n}$ for some F -basis of F^{n}. More generally if L and

M are two $\mathfrak{o}_{\mathrm{F}}$-lattices of F^{n} then there exist an F-basis $\left(f_{1}, \ldots, f_{n}\right)$ of F^{n} and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, with $\alpha_{1} \leqslant \cdots \leqslant \alpha_{n}$, such that

$$
\mathrm{L}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n} \quad \text { and } \mathrm{M}=\mathfrak{p}_{\mathrm{F}}^{\alpha_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{\alpha_{n}} f_{n} .
$$

For two $\mathfrak{o}_{\mathrm{F}}$-lattices L and M of F^{n}, we say that L and M are equivalent if $\mathrm{L}=\lambda \mathrm{M}$ for some $\lambda \in \mathrm{F}^{\times}$, and we denote the class of L by $[\mathrm{L}]$. The Bruhat-Tits building of G_{n}, denoted by $\mathscr{B} \mathscr{T}_{n}$, can be defined as the simplicial complex whose vertices are the equivalence classes of $\mathfrak{o}_{\mathrm{F}}$-lattices in F^{n} and in which a collection $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{q}$ of pairwise distinct vertices form a q-simplex if we can choose representatives $\mathrm{L}_{i} \in \Lambda_{i}$, for $i \in\{0, \ldots, q\}$, such that

$$
\omega_{\mathrm{F}} \mathrm{~L}_{0}<\mathrm{L}_{q}<\mathrm{L}_{q-1}<\cdots<\mathrm{L}_{0}
$$

A q-simplex as above define the following flag of the k_{F}-vector space $\mathrm{L}_{0} / \varpi_{\mathrm{F}} \mathrm{L}_{0}$

$$
\{0\}<\mathrm{L}_{q} / \varpi_{\mathrm{F}} \mathrm{~L}_{0}<\mathrm{L}_{q-1} / \varpi_{\mathrm{F}} \mathrm{~L}_{0}<\cdots<\mathrm{L}_{0} / \varpi_{\mathrm{F}} \mathrm{~L}_{0}
$$

The type of a such q-simplex is defined to be the type of the corresponding flag of the k_{F}-vector space $\mathrm{L}_{0} / \varpi_{\mathrm{F}} \mathrm{L}_{0} \simeq k_{\mathrm{F}}^{n}$. Note that the maximal dimension of the flag corresponding to a simplex σ of $\mathscr{B} \mathscr{T}_{n}$ is equal to $n-2$. Thus \mathscr{B}_{n} is a simplicial complex of dimension $n-1$. The group $\mathrm{GL}_{n}(\mathrm{~F})$ acts naturally on $\mathscr{B} \mathscr{T}_{n}$ by simplicial automorphisms and its center $\mathrm{Z}\left(\mathrm{GL}_{n}(\mathrm{~F})\right) \simeq \mathrm{F}^{\times}$acts trivially. So the group G_{n} acts simplicially on $\mathscr{B} \mathscr{T}_{n}$ and the action is transitive on vertices (resp. chambers, q-simplices of a fixed type). Let's recall that a labelling of \mathscr{B}_{n} is a map from the set $\mathscr{B} \mathscr{T}_{n}^{0}$ of vertices of $\mathscr{B} \mathscr{T}_{n}$ to the set $\{0, \ldots, n-1\}$ whose restriction to every chamber is injective. We can construct a labelling $\lambda: \mathscr{B} \mathscr{T}_{n}^{0} \longrightarrow\{0, \ldots, n-1\}$ of $\mathscr{B} \mathscr{T}_{n}$ as follows (see [7, 19.3]). Let L_{0} be a fixed $\mathfrak{o}_{\mathrm{F}}$-lattices of F^{n}. If v is a vertex of $\mathscr{B} \mathscr{T}_{n}$, we can choose a representative L such that $\mathrm{L}_{0} \subset \mathrm{~L}$. Since $\mathfrak{o}_{\mathrm{F}}$ is a principal ideal domain, the finitely generated torsion $\mathfrak{o}_{\mathrm{F}}-$ module $\mathrm{L} / \mathrm{L}_{0}$ is isomorphic to

$$
\mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}}^{k_{1}} \oplus \cdots \oplus \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}}^{k_{n}}
$$

for some n-tupe of integers $0 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \leqslant k_{n}$. Then

$$
\lambda(\nu)=\sum_{i=0}^{n} k_{i} \bmod n .
$$

The simplicial complex $\mathscr{B} \mathscr{T}_{n}$ is the union of a family of subcomplexes, called apartments, defined as follows. A frame is a set $\mathscr{F}=\left\{d_{1}, \ldots, d_{n}\right\}$ of one-dimensional F -vector subspaces of F^{n} so that $\mathrm{F}^{n}=d_{1}+\cdots+d_{n}$. The apartment corresponding to the frame \mathscr{F} is formed by all simplices σ with vertices Λ which are equivalence classes of lattices with representatives $\mathrm{L} \in \Lambda$ such that

$$
\mathrm{L}=\mathrm{L}_{1}+\cdots+\mathrm{L}_{n}
$$

where L_{i} is a lattice of the F -vector space d_{i}. If we fix an F-basis $\left(f_{1}, \ldots, f_{n}\right)$ of F^{n} adapted to the decomposition $\mathrm{F}^{n}=d_{1}+\cdots+d_{n}$, then a vertex $[\mathrm{L}]$ is in the apartment corresponding to the frame \mathscr{F} if and only if

$$
\mathrm{L}=\mathfrak{p}_{\mathrm{F}}^{\alpha_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{\alpha_{n}} f_{n},
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$. Note that the set of frames of F^{n} can be identified with the set of maximal F-split torus of G_{n}. To a frame $\mathscr{F}=\left\{d_{1}, \ldots, d_{n}\right\}$ we can associate the maximal F -split torus $\mathrm{S} \subset \mathrm{G}_{n}$ acting diagonally with respect the decomposition of F^{n} as direct sum of vectorial lines. Under this identification, for every maximal F -split torus S of G_{n}, we denote by \mathscr{A}_{S} the corresponding apartment of $\mathscr{B} \mathscr{T}_{n}$. The apartment corresponding to the diagonal torus T will be called the standard apartment of $\mathscr{B} \mathscr{T}_{n}$ and denoted by \mathscr{A}_{0}.

The geometric realization $\left|\mathscr{B} \mathscr{T}_{n}\right|$ of the building $\mathscr{B} \mathscr{T}_{n}$ is equipped by a metric defined, up to a multiplicative scalar, as follows. The geometric realization of each apartment $|\mathscr{A}|$ can be identified to the euclidian space

$$
\mathbb{R}_{0}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}
$$

via the map defined by the following way. We fix an F -basis $\left(f_{1}, \ldots, f_{n}\right)$ of F^{n} corresponding to the apartment \mathscr{A}. The set \mathscr{A}^{0} of vertices of \mathscr{A} is then embedded in \mathbb{R}_{0}^{n} via the map $\varphi: \mathscr{A}^{0} \longrightarrow \mathbb{R}_{0}^{n}$ defined by

$$
\varphi\left(\left[\mathfrak{p}_{\mathrm{F}}^{x_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{x_{n}} f_{n}\right]\right)=x-\frac{1}{n} \sigma(x) e,
$$

where for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}, \sigma(x)=x_{1}+\cdots+x_{n}$ and where $e=(1, \ldots, 1)$. This map extends to a bijection $\varphi:|\mathscr{A}| \longrightarrow \mathbb{R}_{0}^{n}$. Via this identification we can then equip $|\mathscr{A}|$ by an euclidian metric. More explicitly, if [L] and [M] are two vertices of \mathscr{A} with

$$
\mathrm{L}=\mathfrak{p}_{\mathrm{F}}^{x_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{x_{n}} f_{n} \quad \text { and } \quad \mathrm{M}=\mathfrak{p}_{\mathrm{F}}^{y_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{y_{n}} f_{n},
$$

then

$$
d_{\mathscr{A}}([\mathrm{L}],[\mathrm{M}])=\frac{1}{\sqrt{1-\frac{1}{n}}} d_{0}\left(x-\frac{1}{n} \sigma(x) e, y-\frac{1}{n} \sigma(y) e\right)
$$

where d_{0} is the euclidian metric of \mathbb{R}_{0}^{n}. We note that in the above formula the term $1 / \sqrt{1-1 / n}$ is just used to normalize the metric of the building. The metric d of $\left|\mathscr{B} \mathscr{T}_{n}\right|$ is then defined as follows. If $x, y \in \mathscr{B} \mathscr{T}_{n}$ then $d(x, y)=d_{\mathscr{A}}(x, y)$ for any apartment \mathscr{A} containing x and y and this is independent of the choice of apartment containing them. Finally we recall that the action of the group G_{n} on $\left|\mathscr{B} \mathscr{T}_{n}\right|$ is by isometries.

2.3. Smooth representations of a locally profinite group

Let G be a locally profinite group. By a representation of G we mean a pair (π, V) formed by a \mathbb{C} vector space V and by a group homomorphism $\pi: G \longrightarrow \mathrm{GL}_{\mathbb{C}}(V)$. A such representation is called smooth if for every $\nu \in V$ the stabilizer

$$
\operatorname{Stab}_{G}(\nu):=\{g \in \mathscr{G} \mid \pi(g) \cdot v=v\}
$$

is an open subgroup of G. In this paper all the representations will be assumed to be smooth and complex. A representation (π, V) of G is called admissible if for every compact open subgroup K of G the space $V^{K}=\{\nu \in V \mid \forall k \in K, \pi(k) \nu=\nu\}$ of K-fixed vectors is finite dimensional. If (π, V) is a representation of G, its contragredient π^{\vee} is the representation of G in the subspace V^{\vee} of the algebraic dual V^{*} formed by the linear forms whose stabilizers in G is open.

Let H be a closed subgroup of G and (ρ, W) a representation of H. We recall that the induced representation from H to G of (ρ, W), denoted by $\operatorname{Ind}_{H}^{G} \rho$, is the representation of G on the space $\operatorname{Ind}_{H}^{G} W$ formed by the locally constant functions $f: G \longrightarrow W$ such that $f(h g)=\rho(h) . f(h)$ for every $g \in G$ and $h \in H$, where the action of G on $\operatorname{Ind}_{H}^{G} \rho$ is by left translation. The compactly induced representation c-ind ${ }_{H}^{G} \rho$ is defined as the subrepresentation of $\operatorname{Ind}_{H}^{G} \rho$ formed by the functions $f \in \operatorname{Ind}_{H}^{G} W$ whose support is compact modulo H.

2.4. Locally profinite group acting on directed graphs

Throughout this paper, we call graph every one dimensional simplicial complex. If Y is a graph, the set of vertices (resp. edges) of Y will be denoted by Y^{0} (resp. Y^{1}). A locally finite graph is a graph Y for which every vertex belongs to a finite number of edges. All graphs in this paper will be assumed to be locally finite. A directed graph is a graph Y with a map $\mathrm{Y}^{1} \longrightarrow \mathrm{Y}^{0} \times \mathrm{Y}^{0}, a \longmapsto\left(a^{-}, a^{+}\right)$, such that for every edge a one has $a=\left\{a^{-}, a^{+}\right\}$, where for any edge a we denote by a^{+}and a^{-}its head and tail respectively. A path in a graph Y is a sequence $\left(s_{0}, \ldots, s_{m}\right)$ of vertices such that two consecutive vertices are linked by an edge. The graph Y is called connected if every pair of vertices are linked by a path. A cover of a graph Y is a family $\left(Y_{\alpha}\right)_{\alpha \in \Delta}$ of subgraphs such that

$$
Y=\bigcup_{\alpha \in \Delta} Y_{\alpha} .
$$

The nerve of a such cover, denoted $\mathscr{N}\left(Y,\left(Y_{\alpha}\right)_{\alpha \in \Delta}\right)$ or just $\mathscr{N}(Y)$ if there is no risk of confusion, is the simplicial complex whose vertex set is Δ and in which a finite number of vertices $\alpha_{0}, \ldots, \alpha_{r}$ form a simplex if

$$
\bigcap_{i=0}^{r} \mathrm{Y}_{\alpha_{i}} \neq \varnothing .
$$

In the remainder of this section the notations and definitions are taken from [5]. If Y is a graph, we denote by $C_{0}(Y, \mathbb{C})$ (resp. $C_{1}(Y, \mathbb{C})$) the \mathbb{C}-vector space with basis Y^{0} (resp. Y^{1}). Let $C_{c}^{i}(Y, \mathbb{C})$, $i=1,2$, be the \mathbb{C}-vector space of 1 -cochains with finite support : $C_{c}^{i}(Y, \mathbb{C})$ is the subspace of the algebraic dual of $C_{i}(Y, \mathbb{C})$ formed of those linear forms whose restrictions to the basis Y^{i} have finite support. The coboundary map

$$
d: C_{c}^{0}(Y, \mathbb{C}) \longrightarrow C_{c}^{1}(Y, \mathbb{C})
$$

is defined by $d(f)(a)=f\left(a^{+}\right)-f\left(a^{-}\right)$. Then the compactly supported cohomology space $H_{c}^{1}(Y, \mathbb{C})$ of the graph Y is defined by

$$
H_{c}^{1}(Y, \mathbb{C})=C_{c}^{1}(Y, \mathbb{C}) / d C_{c}^{0}(Y, \mathbb{C}) .
$$

Let G be a locally profinite group and Y be a directed graph. We assume that G acts on Y by automorphisms of directed graphs. For all $s \in Y^{0}, a \in Y^{1}$, the incidence numbers are defined by $\left[a: a^{+}\right]=+1,\left[a: a^{-}\right]=-1$, and $[a: s]=0$ if $s \notin\left\{a^{+}, a^{-}\right\}$. These incidence numbers are equivariant in the sense that $[g . a: g . s]=[a: s]$, for all $g \in G$. The group G acts on $C_{i}(\mathrm{Y}, \mathbb{C})$ and $C_{c}^{i}(\mathrm{Y}, \mathbb{C})$. If the action of G on Y is proper, that is for every $s \in Y^{0}$, the stabilizer $\operatorname{Stab}_{G}(s):=\{g \in G \mid g . s=s\}$ is open and compact, then the spaces $C_{i}(Y, \mathbb{C})$ and $C_{c}^{i}(Y, \mathbb{C})$ are smooth G-modules. The coboundary map is G-equivariant so that $H_{c}^{1}(Y, \mathbb{C})$ have a structure of a smooth G-module.

The space of harmonic forms of the graph Y is defined as the subspace of $C^{1}(Y, \mathbb{C})$ formed by the elements $f \in C^{1}(Y, \mathbb{C})$ verifying the following harmonicity condition (see $[5, \S(1.3)]$):

$$
\sum_{a \in Y^{1}}[a: s] f(a)=0 \quad \text { for all } s \in Y^{0} .
$$

This space will be denoted by $\mathscr{H}(Y, \mathbb{C})$. It is naturally provided by a linear action of G. The smooth part of $\mathscr{H}(Y, \mathbb{C})$ under the action of G, i.e. the space of smooth harmonic forms is denoted by $\mathscr{H}_{\infty}(Y, \mathbb{C})$.

Lemma 1 ([5, (1.3.2)]). The algebraic dual of $H_{c}^{1}(Y, \mathbb{C})$ naturally identifies with $\mathscr{H}(Y, \mathbb{C})$. Under this isomorphism, the contragredient representation of $H_{c}^{1}(Y, \mathbb{C})$ corresponds to $\mathscr{H}_{\infty}(Y, \mathbb{C})$.

3. Combinatorial geodesic paths in $\mathscr{B} \mathscr{T}_{n}$

The aim of this section is to define a class of combinatorial paths in \mathscr{B}_{n} and to study the action of the group G_{n} on this class of paths. The pointwise stabilisers of such paths will be related to the new-vectors subgroups of $\mathrm{GL}_{n}(\mathrm{~F})$ (the subgroups defined in (1)), see [8].

3.1. Geodesic paths of $\mathscr{B} \mathscr{T}_{n}$ and their prolongations

Definition 2. Let $k \geqslant 0$ be an integer. A geodesic path of length k in $\mathscr{B} \mathscr{T}_{n}$ (or more simply geodesic k-path) is a path $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right)$ of $\mathscr{B} \mathscr{T}_{n}$ such that for every $i, j \in\{0, \ldots, k\}, d\left(\alpha_{i}, \alpha_{j}\right)=|i-j|$. We denote the set of geodesic k-paths of $\mathscr{B} \mathscr{T}_{n}$ by $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$.

Remark 3. We notice that when $n \geqslant 4$ the edges of $\mathscr{B} \mathscr{T}_{n}$ are not all of length one, but in the particular cases $n=2$ and $n=3$ all the edges of $\mathscr{B} \mathscr{T}_{n}$ are of length one. We also note that every geodesic k-path of $\mathscr{B} \mathscr{T}_{n}$ lies in a same apartment. In fact if $\alpha \in \mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ is a geodesic k-path as previously, then the geometric realization of any apartment containing the vertices α_{0} and α_{k} contain the segment $\left[\alpha_{0}, \alpha_{k}\right]$ and then all the vertices of α are contained in the apartment \mathscr{A}.

In the following, if s is a vertex of \mathscr{B}_{n} we write $V(s)$ for its combinatorial neighborhood. That is $\mathscr{V}(s)$ is the set of vertices of $\mathscr{B} \mathscr{T}_{n}$ which are linked to s by an edge.

Definition 4. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$. A vertex s of \mathscr{B}_{n} is called a right (resp. left) prolongation of α if $s \in \mathscr{V}\left(\alpha_{k}\right)$ (resp. $\left.s \in \mathcal{V}\left(\alpha_{0}\right)\right)$ and the sequence $\left(\alpha_{0}, \ldots, \alpha_{k}, s\right)$ (resp. $\left(s, \alpha_{0}, \ldots, \alpha_{k}\right)$) is a geodesic $(k+1)$-path. We denote the set of right and left prolongation of a geodesic k-path α respectively by $\mathscr{P}^{+}(\alpha)$ and $\mathscr{P}^{-}(\alpha)$.

Proposition 5. Let $k \geqslant 1$ be an integer and let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ be a geodesic k-path of $\mathscr{B} \mathscr{T}_{n}$. Then for every apartment \mathscr{A} containing α, there exists a unique right (resp. left) prolongation of α in the apartment \mathscr{A}.

Proof. Let \mathscr{A} be an apartment containing the path α. Assume that α have two right prolongations x and y in \mathscr{A}, that is $x, y \in \mathscr{V}\left(\alpha_{k}\right)$ and the two sequences $\left(\alpha_{0}, \ldots, \alpha_{k}, x\right)$ and $\left(\alpha_{0}, \ldots, \alpha_{k}, y\right)$ are geodesic $(k+1)$-paths of \mathscr{A}. So in the geometric realization $|\mathscr{A}|$ of the apartment \mathscr{A} we have $\alpha_{k} \in\left[\alpha_{0}, x\right] \cap\left[\alpha_{0}, y\right]$. Therefore we have $\alpha_{k}=t x+(1-t) \alpha_{0}$ and $\alpha_{k}=s y+(1-s) \alpha_{0}$ for same t and s in $10,1\left[\right.$. Moreover the two vertices x and y are of the same distance from α_{k}, that is $d\left(x, \alpha_{k}\right)=d\left(y, \alpha_{k}\right)$. So we have $\left\|x-\alpha_{k}\right\|=\left\|y-\alpha_{k}\right\|$ (here $\|\cdot\|$ is the euclidian norm of $|\mathscr{A}| \simeq \mathbb{R}_{0}^{n}$). From this we obtain $(1-t)\left\|x-\alpha_{0}\right\|=(1-s)\left\|y-\alpha_{0}\right\|$. But $\left\|x-\alpha_{0}\right\|=\left\|y-\alpha_{0}\right\|$ so we get $t=s$ and then $x=y$.

Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ be a geodesic path of $\mathscr{B} \mathscr{T}_{n}$. The inverse of α, denoted by α^{-1}, is defined by $\alpha^{-1}:=\left(\alpha_{k}, \ldots, \alpha_{0}\right)$. It is clear that α^{-1} is a geodesic path of $\mathscr{B} \mathscr{T}_{n}$. If $k \geqslant 1$, the tail and the head of α are the two geodesic paths defined respectively by

$$
\alpha^{-}:=\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \quad \text { and } \quad \alpha^{+}:=\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

We define also the initial and terminal directed edge of α respectively by $e^{-}(\alpha):=\left(\alpha_{0}, \alpha_{1}\right)$ and $e^{+}(\alpha):=\left(\alpha_{k-1}, \alpha_{k}\right)$.

Proposition 6. Let $k \geqslant 1$ be an integer and let $\alpha, \beta \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$. If α and β are contained in a same apartment and if $e^{-}(\alpha)=e^{-}(\beta)$ (resp. $\left.e^{+}(\alpha)=e^{+}(\beta)\right)$, then $\alpha=\beta$.

Proof. By induction on k, let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k+1}\right)$ and $\beta=\left(\beta_{0}, \ldots, \beta_{k+1}\right)$ two geodesic $(k+1)$-paths such that $e^{-}(\alpha)=e^{-}(\beta)$. Assume that α and β are contained in a same apartment \mathscr{A}. Since the two geodesic k-paths α^{-}and β^{-}are contained in the same apartment \mathscr{A} and as they have the same initial directed edges then by induction hypothesis we have $\alpha^{-}=\beta^{-}$, that is $\alpha_{i}=\beta_{i}$ for each $i \in\{0, \ldots, k\}$. So the two vertices α_{k+1} and β_{k+1} are two right prolongation of the geodesic k-paths α^{-}which are contained in the same apartment \mathscr{A}. Then by the previous proposition we obtain $\alpha_{k+1}=\beta_{k+1}$ and then $\alpha=\beta$ as required.

3.2. Action of G_{n} on the sets $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$

The group G_{n} acts on its building \mathscr{B}_{n} by isometries, so G_{n} acts naturally on the sets $\mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ for each integer $k \geqslant 0$. The action is given by

$$
g \cdot\left(\alpha_{0}, \ldots, \alpha_{k}\right)=\left(g . \alpha_{0}, \ldots, g \cdot \alpha_{k}\right)
$$

for every $g \in G_{n}$ and for every $\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in \mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$. Note that since the set $\mathscr{C}_{0}\left(\mathscr{B}_{n}\right)$ may be identified with the set of vertices of $\mathscr{B} \mathscr{T}_{n}$, then the action of G_{n} on $\mathscr{C}_{0}\left(\mathscr{B} \mathscr{T}_{n}\right)$ is transitive. In the particular case $n=2$, the action of G_{2} on the sets $\mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{2}\right)$ is transitive for every integer $k \geqslant 0$, see [5]. The situation is slightly different when $n \geqslant 3$. We are going to prove that in this last case, the sets $\mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ (for $k \geqslant 1$) have exactly two G_{n}-orbits. We first define the type of a directed edge of $\mathscr{B} \mathscr{T}_{n}$ and we will prove in the lemma bellow that two geodesic 1-paths are in the same G_{n}-orbit
if and only if they have the same type. Let $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ be a directed edge of $\mathscr{B} \mathscr{T}_{n}$, where L_{0} and L_{1} are two $\mathfrak{o}_{\mathrm{F}}$-lattices such that

$$
\varrho_{\mathrm{F}} L_{0}<L_{1}<L_{0} .
$$

The type of the directed edge e, denoted $\xi(e)$, is defined by

$$
\xi(e)=\operatorname{dim}_{k_{\mathrm{F}}}\left(L_{1} / \varrho_{\mathrm{F}} L_{0}\right) .
$$

This definition is clearly independent of the choice of representatives. For every directed edge e of $\mathscr{B} \mathscr{T}_{n}$, we write e^{-1} for the inverse of e which is obtained from e by interchanging its vertices.

Lemma 7.

(i) For every directed edge e of $\mathscr{B} \mathscr{T}_{n}, \xi\left(e^{-1}\right)=n-\xi(e)$,
(ii) For every $e \in \mathscr{C}_{1}\left(\mathscr{B} \mathscr{T}_{n}\right), \xi(e) \in\{1, n-1\}$,
(iii) Two elements e, é $\in \mathscr{C}_{1}\left(\mathscr{B} \mathscr{T}_{n}\right)$ are in the same G_{n}-orbit if and only if they have the same type.

Proof. In the proof of the three statements we use the following notations. For each integer $n \geqslant 1$, we write Δ_{n} for the set of integers $\{1, \ldots, n\}$. If $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ is a directed edge of $\mathscr{B} \mathscr{T}_{n}$ with $\omega_{\mathrm{F}} L_{0}<L_{1}<L_{0}$ and if $\left(f_{1}, \ldots, f_{n}\right)$ is a basis of F^{n} for which

$$
L_{0}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n} \quad \text { and } \quad L_{1}=\mathfrak{p}_{\mathrm{F}}^{k_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{k_{n}} f_{n}
$$

where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ and $k_{1} \leqslant \cdots \leqslant k_{n}$, we put $A_{0}=\left\{i \in \Delta_{n} \mid k_{i}=0\right\}$ and $A_{1}=\left\{i \in \Delta_{n} \mid k_{i}=1\right\}$ and we write p and q respectively for their cardinality. The condition $\varpi_{\mathrm{F}} L_{0}<L_{1}<L_{0}$ implies that $k_{i} \in\{0,1\}$ for each $i \in \Delta_{n}$ and that $p, q \in\{1, \ldots, n-1\}$ and $p+q=n$.
(i). Let $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ be a directed edge with $\varpi_{\mathrm{F}} L_{0}<L_{1}<L_{0}$. The inverse of e is then given by $e^{-1}=\left(\left[\omega_{\mathrm{F}}^{-1} L_{1}\right],\left[L_{0}\right]\right)$ with $L_{1}<L_{0}<\omega_{\mathrm{F}}^{-1} L_{1}$. Let $\left(f_{1}, \ldots, f_{n}\right)$ be a basis of F^{n} for which

$$
L_{0}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n} \quad \text { and } \quad L_{1}=\mathfrak{p}_{\mathrm{F}}^{k_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{k_{n}} f_{n}
$$

where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ with $k_{1} \leqslant \cdots \leqslant k_{n}$. With the previous notations we have the identifications of k_{F}-vector spaces

$$
\begin{equation*}
L_{1} / \varpi_{\mathrm{F}} L_{0} \simeq \bigoplus_{i=1}^{n} \mathfrak{p}_{\mathrm{F}}^{k_{i}} / \mathfrak{p}_{\mathrm{F}} \simeq \bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{p}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^{p} \tag{2}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
L_{0} / L_{1} \simeq \bigoplus_{i=1}^{n} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}}^{k_{i}} \simeq \bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} / \mathfrak{o}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^{q} \tag{3}
\end{equation*}
$$

So we obtain $\operatorname{dim}_{k_{\mathrm{F}}}\left(L_{0} / L_{1}\right)=n-\operatorname{dim}_{k_{\mathrm{F}}}\left(L_{1} / \Phi_{\mathrm{F}} L_{0}\right)$, and then $\xi\left(e^{-1}\right)=n-\xi(e)$.
(ii). Let $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ be a directed edge of $\mathscr{B} \mathscr{T}_{n}$ with $\varpi_{\mathrm{F}} L_{0}<L_{1}<L_{0}$ and let \mathscr{A} be an apartment containing e. To simplify, we can assume that in a some F-basis (f_{1}, \ldots, f_{n}) of F^{n} we have $L_{0}=$ $\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n}$ and $L_{1}=\mathfrak{p}_{\mathrm{F}}^{x_{1}} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{x_{n}} f_{n}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ is in \mathbb{Z}^{n}. As previously, the $x_{i}^{\prime} \mathrm{s}$ are in $\{0,1\}$.

Now if we assume that $e \in \mathscr{C}_{1}\left(\mathscr{B} \mathscr{T}_{n}\right)$ then $d\left(\left[L_{0}\right],\left[L_{1}\right]\right)=1$. We have then

$$
d_{0}\left(0, x-\frac{1}{n} \sigma(x) e\right)=\frac{\sqrt{n-1}}{\sqrt{n}}
$$

that is

$$
\sum_{i=1}^{n}\left(x_{i}-\frac{1}{n} \sigma(x)\right)^{2}=\frac{n-1}{n}
$$

and then

$$
\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\frac{1}{n} \sigma(x)^{2}=\frac{n-1}{n} .
$$

But since $x_{i} \in\{0,1\}$ then $\sigma(x)-\sigma(x)^{2} / n=(n-1) / n$ which implies that the values of $\sigma(x)$ are 1 or $n-1$. Moreover, from the isomorphisms (2) and (3) we deduce that $\sigma(x)=n-\xi(e)$, so as desired we have $\xi(e) \in\{1, n-1\}$.
(iii). Let $e \in \mathscr{C}_{1}\left(\mathscr{B} \mathscr{T}_{n}\right)$ with $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ and $\omega_{\mathrm{F}} L_{0}<L_{1}<L_{0}$. Let's prove firstly that if $\xi(e)=1$ then there exist an F-basis $\left(f_{1}, \ldots, f_{n}\right)$ of F^{n} such that $L_{0}=\mathfrak{p}_{\mathrm{F}}^{-1} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{-1} f_{n-1}+\mathfrak{o}_{\mathrm{F}} f_{n}$ and $L_{1}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n}$ and if $\xi(e)=n-1$ then there exist an F-basis $\left(h_{1}, \ldots, h_{n}\right)$ of F^{n} such that $L_{0}=\mathfrak{o}_{\mathrm{F}} h_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} h_{n}$ and $L_{1}=\mathfrak{o}_{\mathrm{F}} h_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} h_{n-1}+\mathfrak{p}_{\mathrm{F}} h_{n}$. Assume that $\xi(e)=n-1$ (the proof of the case $\xi(e)=1$ is similar). For a some F-basis $\left(h_{1}, \ldots, h_{n}\right)$ of F^{n} we have $L_{0}=\mathfrak{o}_{\mathrm{F}} h_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} h_{n}$ and $L_{1}=\mathfrak{p}_{\mathrm{F}}^{k_{1}} h_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{k_{n}} h_{n}$ where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ with $k_{1} \leqslant \cdots \leqslant k_{n}$.

As mentioned previously, for each $i \in \Delta_{n}$ the integer k_{i} is in $\{0,1\}$. The fact that $k_{1} \leqslant \cdots \leqslant k_{n}$ implies that $\left(k_{1}, \ldots, k_{n}\right)=(0, \ldots, 0,1, \ldots, 1)$, where 0 appear p-times and 1 appear q-times.

So we have

$$
L_{1} / \varpi_{\mathrm{F}} L_{0} \simeq \bigoplus_{i=1}^{p} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \oplus \bigoplus_{i=p+1}^{q} \mathfrak{p}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^{p}
$$

But since $\xi(e)=n-1$, that is $\operatorname{dim}_{k_{\mathrm{F}}}\left(L_{1} / \varpi_{\mathrm{F}} L_{0}\right)=n-1$, then we have $L_{1}=\mathfrak{o}_{\mathrm{F}} h_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} h_{n-1}+\mathfrak{p}_{\mathrm{F}} h_{n}$. So as desired we have an F-basis $\left(h_{1}, \ldots, h_{n}\right)$ of F^{n} for which $L_{0}=\mathfrak{o}_{\mathrm{F}} h_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} h_{n}$ and $L_{1}=\mathfrak{o}_{\mathrm{F}} h_{1}+$ $\cdots+\mathfrak{o}_{\mathrm{F}} h_{n-1}+\mathfrak{p}_{\mathrm{F}} h_{n}$. Let's prove now that two elements $e, e^{\prime} \in \mathscr{C}_{1}\left(\mathscr{B}_{n}\right)$ are in the same G_{n}-orbit if and only if they have the same type. Assume that $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ (resp. $\left.e^{\prime}=\left(\left[L_{0}^{\prime}\right],\left[L_{1}^{\prime}\right]\right)\right)$ where L_{0} and L_{1} (resp. L_{0}^{\prime} and L_{1}^{\prime}) are two $\mathfrak{o}_{\mathrm{F}}$-lattices such that $\omega_{\mathrm{F}} L_{0}<L_{1}<L_{0}\left(\right.$ resp. $\omega_{\mathrm{F}} L_{0}^{\prime}<L_{1}^{\prime}<L_{0}^{\prime}$). If e and e^{\prime} have the same type, say for example $\xi(e)=\xi\left(e^{\prime}\right)=1$, then by the previous point we can find two F-basis $\left(f_{1}, \ldots, f_{n}\right)$ and $\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ for which $L_{0}=\mathfrak{p}_{\mathrm{F}}^{-1} f_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{-1} f_{n-1}+\mathfrak{o}_{\mathrm{F}} f_{n}$ and $L_{1}=\mathfrak{o}_{\mathrm{F}} f_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n}$ and likewise $L_{0}^{\prime}=\mathfrak{p}_{\mathrm{F}}^{-1} f_{1}^{\prime}+\cdots+\mathfrak{p}_{\mathrm{F}}^{-1} f_{n-1}^{\prime}+\mathfrak{o}_{\mathrm{F}} f_{n}^{\prime}$ and $L_{1}^{\prime}=\mathfrak{o}_{\mathrm{F}} f_{1}^{\prime}+\cdots+\mathfrak{o}_{\mathrm{F}} f_{n}^{\prime}$. So if $g \in \mathrm{G}_{n}$ is the unique element sending the F-basis $\left(f_{1}, \ldots, f_{n}\right)$ on $\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ we have $g L_{0}=L_{0}^{\prime}$ and $g L_{1}=L_{1}^{\prime}$, thus $g . e=e^{\prime}$ and then e and e^{\prime} are in the same G_{n}-orbit. The converse is obvious.

Proposition 8. Let $n \geqslant 3$ be an integer. For every $k \geqslant 1$, the set $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ have two G_{n}-orbits.
Proof. Let us prove firstly that two elements α and β of $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ are in the same G_{n}-orbit if and only if their initial directed edges $e^{-}(\alpha)$ and $e^{-}(\beta)$ are likewise. If α and β are in the same $\mathrm{G}_{n^{-}}$ orbit then clearly $e^{-}(\alpha)$ and $e^{-}(\beta)$ are also in the same G_{n}-orbit. Conversely, assume that $e^{-}(\alpha)$ and $e^{-}(\beta)$ are in the same G_{n}-orbit, that is for same $g \in \mathrm{G}_{n}$ one has $e^{-}(\alpha)=g \cdot e^{-}(\beta)$. So we have $e^{-}(\alpha)=e^{-}(g . \beta)$.

Let \mathscr{A} and \mathscr{B} two apartments containing α and $g . \beta$ respectively. Since the pointwise stabiliser H_{0} of the edge $e^{-}(\alpha)$ acts transitively on the set of apartments containing $e^{-}(\alpha)$ (see [6, Cor. (7.4.9)]), then there exist $h \in H_{0}$ such that $h . \mathscr{B}=\mathscr{A}$. So the two geodesic k-paths α and $h g . \beta$ are contained in the same apartment \mathscr{A} and have the same initial directed edge (that is $\left.e^{-}(\alpha)=e^{-}(h g . \beta)\right)$. Thus the Proposition 6 implies that $\alpha=h g . \beta$ and then α and β are in the same G_{n}-orbit. Consequently, two elements α and β of $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ are in the same G_{n}-orbit if and only if $e^{-}(\alpha)$ and $e^{-}(\beta)$ are likewise. The result follows then from Lemma 7.

One can prove that if $\alpha \in \mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ then all the directed edges of α have the same type. So we can define the type of a geodesic k-path α, denoted by $\xi(\alpha)$, as the type of any of its directed edges. The G_{n}-orbit of $\mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ corresponding to the type $n-1$ (resp. type 1) will be denoted by $\mathscr{C}_{k}^{+}\left(\mathscr{B}_{n}\right)\left(\right.$ resp. $\left.\mathscr{C}_{k}^{-}\left(\mathscr{B} \mathscr{T}_{n}\right)\right)$. The Lemma 7 implies that if $\alpha \in \mathscr{C}_{k}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$ then its inverse α^{-1} is in $\mathscr{C}_{k}^{-}\left(\mathscr{B} \mathscr{T}_{n}\right)$. So for every $\alpha \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ the pair $\left\{\alpha, \alpha^{-1}\right\}$ constitute a system of representatives of $\mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ for the action of the group G_{n}. The path $\gamma=\left(\left[L_{0}\right],\left[L_{1}\right], \ldots,\left[L_{k}\right]\right)$, where for $i \in\{0, \ldots, k\}$

$$
\begin{equation*}
L_{i}=\mathfrak{o}_{\mathrm{F}} e_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} e_{n-1}+\mathfrak{p}_{\mathrm{F}}^{i} e_{n} \tag{4}
\end{equation*}
$$

is an element of $\mathscr{C}_{k}^{+}\left(\mathscr{B}_{n}\right)$ contained in the standard apartment of $\mathscr{B} \mathscr{T}_{n}$, this k-path will be called the standard geodesic k-path.

Lemma 9. For every $\alpha \in \mathscr{C}_{k}\left(\mathscr{B}_{n}\right)$ the stabilizer $\operatorname{Stab}_{G_{n}}(\alpha)$ acts transitively on $\mathscr{P}^{+}(\alpha)$ and $\mathscr{P}^{-}(\alpha)$.
Proof. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right) \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$. We will prove that the action of $\operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$ is transitive on $\mathscr{P}^{+}(\alpha)$. By a similar way we get the same thing for $\mathscr{P}^{-}(\alpha)$. Let $s, t \in \mathscr{P}^{+}(\alpha)$, that is $\beta=\left(\alpha_{0}, \ldots, \alpha_{k}, s\right)$ and $\gamma=\left(\alpha_{0}, \ldots, \alpha_{k}, t\right)$ are two geodesic $(k+1)$-paths. Since every geodesic path of $\mathscr{B}_{\mathscr{T}_{n}}$ is contained in a some apartment, then there are two apartments \mathscr{A} and \mathscr{B} containing β and γ respectively. The stabilizer $\operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$ is also the pointwise stabilizer in G_{n} of the segment $\left[\alpha_{0}, \alpha_{k}\right]$. So $\operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$ acts transitively on the set of apartments containing α (see [6, Cor. (7.4.9)]). Then there exist $g \in \operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$ such that $g . \mathscr{A}=\mathscr{B}$. So $g . s$ is a right prolongation of the geodesic path α contained in the apartment \mathscr{B}. Hence, the two vertices t and $g . s$ are two right prolongations of α contained in the apartment \mathscr{B}. Then by the Proposition 5, we obtain $g . s=t$ and then as desired the action of $\operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$ on $\mathscr{P}^{+}(\alpha)$ is transitive.

Corollary 10. For every $\alpha \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ we have :

$$
\mathscr{P}^{+}(\alpha)=\mathscr{P}^{+}\left(e^{+}(\alpha)\right) \quad \text { and } \quad \mathscr{P}^{-}(\alpha)=\mathscr{P}^{-}\left(e^{-}(\alpha)\right)
$$

that is the right (resp. left) prolongation of the geodesic path α are exactly the right (resp. left) prolongation of the directed edge $e^{+}(\alpha)$ (resp. $e^{-}(\alpha)$).

Proof. Let's prove the first equality, the proof of the second is similar. It is clear that $\mathscr{P}^{+}(\alpha) \subset$ $\mathscr{P}^{+}\left(e^{+}(\alpha)\right)$. Since the two sets $\mathscr{P}^{+}(\alpha)$ and $\mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ are finite it suffice to prove that they have the same cardinality. If Γ_{α} denoted the subgroup $\operatorname{Stab}_{\mathrm{G}_{n}}(\alpha)$, then by the previous lemma Γ_{α} acts transitively on $\mathscr{P}^{+}(\alpha)$. So for any $s \in \mathscr{P}^{+}(\alpha)$ we can identify the set $\mathscr{P}^{+}(\alpha)$ with the quotient set $\Gamma_{\alpha} / \operatorname{Stab}_{\Gamma_{\alpha}}(s)$. Similarly, the set $\mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ identifies with the quotient set $\Gamma_{e^{+}(\alpha)} / \operatorname{Stab}_{\Gamma_{e^{+}(\alpha)}}(t)$ for any $t \in \mathscr{P}^{+}\left(e^{+}(\alpha)\right)$. Now since the action of G_{n} on $\mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ have two orbits and since an element $\beta \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ and its inverse β^{-1} have the same stabilizers in G_{n} then we can assume that α is the standard geodesic k-path defined as previously by ($\left[L_{0}\right],\left[L_{1}\right], \ldots,\left[L_{k}\right]$), where $L_{i}=$ $\mathfrak{o}_{\mathrm{F}} e_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} e_{n-1}+\mathfrak{p}_{\mathrm{F}}^{i} e_{n}$ for $i \in\{0, \ldots, k\}$. If s is the vertex $\left[L_{k+1}\right]$, it is clearly that $s \in \mathscr{P}^{+}(\alpha)$. By an easy computation we obtain that $\Gamma_{\alpha}=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)$ and $\operatorname{Stab}_{\Gamma_{\alpha}}(s)=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k+1}\right)$. Moreover, we can check that $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right) / \Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k+1}\right)$ have cardinality q_{F}^{n-1}. Similarly, we can check easily that the vertex s whose equivalence class of $\mathfrak{o}_{\mathrm{F}}$-lattice is represented by L_{k+1} is in $\mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ and that $\Gamma_{e^{+}(\alpha)}=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}\right)$ and $\operatorname{Stab}_{\Gamma_{e^{+}(\alpha)}}(s)=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{2}\right)$. Furthermore, we can check that $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}\right) / \Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{2}\right)$ have also cardinality q_{F}^{n-1}. So as desired we have the equality between the two sets $\mathscr{P}^{+}(\alpha)$ and $\mathscr{P}^{+}\left(e^{+}(\alpha)\right)$.

Corollary 11. For every $\alpha, \beta \in \mathscr{C}_{k+1}\left(\mathscr{B}_{n}\right)$, if $\alpha^{+}=\beta^{+}\left(\right.$resp. $\left.\alpha^{-}=\beta^{-}\right)$then $\mathscr{P}^{+}(\alpha)=\mathscr{P}^{+}(\beta)$ (resp. $\left.\mathscr{P}^{-}(\alpha)=\mathscr{P}^{-}(\beta)\right)$.
Proof. If $\alpha^{+}=\beta^{+}\left(\right.$resp. $\alpha^{-}=\beta^{-}$) then $e^{+}(\alpha)=e^{+}(\beta)$ (resp. $e^{+}(\alpha)=e^{+}(\beta)$) and then the equality $\mathscr{P}^{+}(\alpha)=\mathscr{P}^{+}(\beta)$ (resp. $\left.\mathscr{P}^{-}(\alpha)=\mathscr{P}^{-}(\beta)\right)$ follows from the previous corollary.
Lemma 12. Let s_{0} be a vertex of $\mathscr{B}_{\mathscr{T}_{n}}$. If $L_{0} \in s_{0}$ then for every vertex $x \in \mathscr{V}\left(s_{0}\right)$ there is a unique representative $L \in x$ such that

$$
\varpi_{\mathrm{F}} L_{0}<L<L_{0}
$$

Proof. Let us fix a representative $L_{0} \in s_{0}$. Let L and L^{\prime} two representatives of x such that $\varpi_{\mathrm{F}} L_{0}<$ $L<L_{0}$ and $\omega_{\mathrm{F}} L_{0}<L^{\prime}<L_{0}$. Since L and L^{\prime} are equivalent then $L^{\prime}=\lambda L$ for some $\lambda \in \mathrm{F}^{\times}$. Put $\lambda=\omega_{\mathrm{F}}^{m} u$ for some $m \in \mathbb{Z}$ and $u \in \mathfrak{o}_{\mathrm{F}}^{\times}$. We have $\omega_{\mathrm{F}} L_{0}<L<L_{0}$ which implies $\omega_{\mathrm{F}}^{m+1} L_{0}<\lambda L<\omega_{\mathrm{F}}^{m} L_{0}$, that is $\varpi_{\mathrm{F}}^{m+1} L_{0}<L^{\prime}<\varpi_{\mathrm{F}}^{m} L_{0}$. The two inclusions $\omega_{\mathrm{F}} L_{0}<L^{\prime}<L_{0}$ and $\varpi_{\mathrm{F}}^{m+1} L_{0}<L^{\prime}<\varpi_{\mathrm{F}}^{m} L_{0}$ implies then that $m=0$. Indeed, if we assume to the contrary that $m \neq 0$, say for example $m>0$, then we have $\omega_{\mathrm{F}}^{m} L_{0} \leqslant \omega_{\mathrm{F}} L_{0}$. So from the two inclusions $\omega_{\mathrm{F}} L_{0}<L^{\prime}<L_{0}$ and $\omega_{\mathrm{F}}^{m+1} L_{0}<L^{\prime}<\omega_{\mathrm{F}}^{m} L_{0}$ we obtain $L^{\prime}<\omega_{\mathrm{F}}^{m} L_{0} \leqslant \omega_{\mathrm{F}} L_{0}<L^{\prime}$ which is a contradiction. We deduce then that $L^{\prime}=u L=L$.

Let s_{0} be a vertex of $\mathscr{B} \mathscr{T}_{n}$ and $L_{0} \in s_{0}$ be a fixed representative. By the previous lemma to any vertex $x \in \mathscr{V}\left(s_{0}\right)$ we can associate a non-trivial subspace of the k_{F}-vector space $\widetilde{V}_{s_{0}}:=L_{0} / \omega_{\mathrm{F}} L_{0}$.

Indeed, if $x \in \mathscr{V}\left(s_{0}\right)$ and $L_{x} \in x$ is the unique representative such that $\varpi_{\mathrm{F}} L_{0}<L_{x}<L_{0}$, then V_{x} is defined as $L_{x} / \Phi_{\mathrm{F}} L_{0}$. For every subspaces X and Y of $\widetilde{V}_{s_{0}}$, we put

$$
\delta(X, Y)=\operatorname{dim}_{k_{\mathrm{F}}}(X+Y)-\operatorname{dim}_{k_{\mathrm{F}}}(X \cap Y) .
$$

In the following proposition, we give two formulas for the metric of $\mathscr{B} \mathscr{T}_{n}$ on the set of vertices in the neighborhood a fixed vertex s_{0} of $\mathscr{B} \mathscr{T}_{n}$ in terms of the corresponding k_{F}-vector spaces.

Proposition 13. For every vertex s_{0} of $\mathscr{B} \mathscr{T}_{n}$ we have :
(i) If $x \in \mathcal{V}\left(s_{0}\right)$, then

$$
d\left(s_{0}, x\right)=\frac{1}{\sqrt{n-1}}\left(n \operatorname{dim} V_{x}-\left(\operatorname{dim} V_{x}\right)^{2}\right)^{\frac{1}{2}} .
$$

(ii) If $x, y \in \mathcal{V}\left(s_{0}\right)$, then

$$
d(x, y)=\frac{1}{\sqrt{n-1}}\left(n \delta\left(V_{x}, V_{y}\right)-\left(\operatorname{dim} V_{x}-\operatorname{dim} V_{y}\right)^{2}\right)^{\frac{1}{2}} .
$$

Proof. (i). Let us fix an $\mathfrak{o}_{\mathrm{F}}$-lattice L_{0} representing the vertex s_{0}. Let $x \in \mathcal{V}\left(s_{0}\right)$. We can choose an apartment \mathscr{A} containing s_{0} and x. Without loss of generality we can assume that \mathscr{A} is the standard apartment and that $L_{0}=\mathfrak{o}_{\mathrm{F}} e_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} e_{n}$, where (e_{1}, \ldots, e_{n}) is the standard basis of F^{n}. Let L_{x} be the unique representative of the vertex x such that $\omega_{\mathrm{F}} L_{0}<L_{x}<L_{0}$. Since the vertex x lies in \mathscr{A} then for some $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ we can write $L_{x}=\mathfrak{p}_{\mathrm{F}}^{a_{1}} e_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{a_{n}} e_{n}$. As in the proof of Lemma 7, the coordinates $a_{i} \in\{0,1\}$ and not all the $a_{i}^{\prime} \mathrm{s}$ are zero or one. Moreover, if $A_{0}=\left\{i \in \Delta_{n} \mid a_{i}=0\right\}$ and $A_{1}=\left\{i \in \Delta_{n} \mid a_{i}=1\right\}$, then clearly $A_{0} \sqcup A_{1}=\Delta_{n}$. So we have

$$
L_{x}=\bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{p}_{\mathrm{F}}
$$

and then

$$
V_{x}=L_{x} / \omega_{\mathrm{F}} L_{0} \simeq \bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{p}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^{\left|A_{0}\right|}
$$

Consequently $\operatorname{dim}\left(V_{x}\right)=\left|A_{0}\right|$. We have

$$
\begin{aligned}
d\left(s_{0}, x\right) & =\sqrt{\frac{n}{n-1}} d_{0}\left(0, a-\frac{1}{n} \sigma(a) e\right)=\sqrt{\frac{n}{n-1}}\left\|a-\frac{\sigma(a)}{n} e\right\| \\
& =\sqrt{\frac{n}{n-1}}\left(\sum_{i=1}^{n}\left(a_{i}-\frac{\sigma(a)}{n}\right)^{2}\right)^{\frac{1}{2}}=\sqrt{\frac{n}{n-1}}\left(\sum_{i=1}^{n} a_{i}^{2}-\frac{2 \sigma(a)}{n} a_{i}+\frac{\sigma(a)^{2}}{n^{2}}\right)^{\frac{1}{2}} \\
& =\sqrt{\frac{n}{n-1}}\left(\sum_{i=1}^{n} a_{i}^{2}-\frac{2 \sigma(a)^{2}}{n}+\frac{\sigma(a)^{2}}{n}\right)^{\frac{1}{2}}
\end{aligned}
$$

But as $a_{i} \in\{0,1\}$ for every $i \in \Delta_{n}$, then

$$
d\left(s_{0}, x\right)=\sqrt{\frac{n}{n-1}}\left(\sigma(a)-\frac{\sigma(a)^{2}}{n}\right)^{\frac{1}{2}} .
$$

On the other hand

$$
\sigma(a)=\sum_{i=1}^{n} a_{i}=\sum_{i \in A_{1}} 1=\left|A_{1}\right|=n-\operatorname{dim} V_{x} .
$$

So we get

$$
d\left(s_{0}, x\right)=\sqrt{\frac{n}{n-1}}\left(n-\operatorname{dim} V_{x}-\frac{\left(n-\operatorname{dim} V_{x}\right)^{2}}{n}\right)^{\frac{1}{2}},
$$

and then

$$
d\left(s_{0}, x\right)=\frac{1}{\sqrt{n-1}}\left(n \operatorname{dim} V_{x}-\left(\operatorname{dim} V_{x}\right)^{2}\right)^{\frac{1}{2}} .
$$

(ii). The proof of the second formula is obtained by a similar way.

If x and y are two vertices of $\mathscr{B} \mathscr{T}_{n}$ we write $[x, y]^{0}$ for the combinatorial segment between x and y. That is $[x, y]^{0}$ is the set of vertices z of $\mathscr{B} \mathscr{T}_{n}$ such that $d(x, z)+d(z, y)=d(x, y)$.

Corollary 14. If $x, y \in \mathscr{V}\left(s_{0}\right)$, then $s_{0} \in[x, y]^{0}$ if and only if $V_{x} \oplus V_{y}=\widetilde{V}_{s_{0}}$.
Proof. Follows from the previous proposition by an easy computation.
If $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ is a k-path of $\mathscr{B} \mathscr{T}_{n}$ (where $k \geqslant 1$), the initial (resp. terminal) vertex of α, that is α_{0} (resp. α_{k}), will be denoted by $s^{-}(\alpha)$ (resp. $s^{+}(\alpha)$). If α and β are respectively a k-path and an ℓ-path with $s^{+}(\alpha)=s^{-}(\beta)$, then their concatenation $\alpha \beta$ is the $(k+\ell)$-path of $\mathscr{B} \mathscr{T}_{n}$ defined by

$$
\alpha \beta:=\left(\alpha_{0}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{\ell}\right)
$$

It is not true in general that the concatenation of two geodesic paths of \mathscr{B}_{n} is a geodesic path. But we have the following result :

Lemma 15. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ and $\beta=\left(\beta_{0}, \ldots, \beta_{\ell}\right)$ two geodesic paths of $\mathscr{B} \mathscr{T}_{n}$ of length k and ℓ respectively and with $s^{+}(\alpha)=s^{-}(\beta)$. Then $\alpha \beta$ is a geodesic $(k+\ell)$-path if and only if $\beta_{1} \in \mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ (resp. $\alpha_{k-1} \in \mathscr{P}^{-}\left(e^{-}(\beta)\right)$).

Proof. If $\alpha \beta$ is geodesic then it is clear that $\beta_{1} \in \mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ (resp. $\alpha_{k-1} \in \mathscr{P}^{-}\left(e^{-}(\beta)\right)$). For the converse, we will prove by induction on $\ell \geqslant 1$ that for every geodesic path $\beta=\left(\beta_{0}, \ldots, \beta_{\ell}\right)$ of length ℓ such that $s^{+}(\alpha)=s^{-}(\beta)$, if $\beta_{1} \in \mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ (resp. $\alpha_{k-1} \in \mathscr{P}^{-}\left(e^{-}(\beta)\right)$) then the $(k+\ell)$-path $\alpha \beta$ is geodesic. For $\ell=1$ the property follows from Corollary 10 . Assume that the property is true for the order ℓ. Let $\beta=\left(\beta_{0}, \ldots, \beta_{\ell+1}\right)$ be a geodesic $(\ell+1)$-path of $\mathscr{B} \mathscr{T}_{n}$ such that $s^{+}(\alpha)=s^{-}(\beta)$ and with $\beta_{1} \in \mathscr{P}^{+}\left(e^{+}(\alpha)\right)$ (in the case when $\alpha_{k-1} \in \mathscr{P}^{-}\left(e^{-}(\beta)\right)$ the proof is similar). From the induction hypothesis, the ($k+\ell$)-path $\alpha \beta^{-}$, that is the path ($\alpha_{0}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{\ell}$), is geodesic. Since moreover the vertex $\beta_{\ell+1}$ is a right prolongation of the directed edge $e^{+}\left(\alpha \beta^{-}\right)$then by Corollary 10 the path

$$
\alpha \beta=\left(\alpha_{0}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{\ell}, \beta_{\ell+1}\right)
$$

is also geodesic.
Corollary 16. Let $\alpha \in \mathscr{C}_{k}\left(\mathscr{B} \mathscr{T}_{n}\right)$ and $\beta \in \mathscr{C}_{\ell}\left(\mathscr{B} \mathscr{T}_{n}\right)$, where $k, \ell \geqslant 1$. If α is joined to β by a nontrivial geodesic path, that is there exists an integer $0<m \leqslant \min (k, \ell)$ such that

$$
\alpha_{i}=\beta_{i-k+m}, \text { for every } i \in\{k-m, \ldots, k\}
$$

then the sequence $\alpha \cup \beta:=\left(\alpha_{0}, \ldots, \alpha_{k}, \beta_{m+1}, \ldots, \beta_{\ell}\right)$ is a geodesic path. In particular if $\alpha, \beta \in$ $\mathscr{C}_{k+1}\left(\mathscr{B T}_{n}\right)$ such that $\alpha^{+}=\beta^{-}$(resp. $\left.\alpha^{-}=\beta^{+}\right)$then $\alpha \cup \beta$ is a geodesic $(k+2)$-path.

Proof. The case when $m=\min (k, \ell)$ is obvious since in this case α is a subpath of β or β is a subpath of α. Assume then that $m<\min (k, \ell)$. Since $\widetilde{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{k-m}\right)$ is a subpath of α then $\widetilde{\alpha}$ is geodesic. Moreover it is clear that $s^{+}(\widetilde{\alpha})=s^{-}(\beta)$ (since from the hypothesis $\alpha_{k-m}=\beta_{0}$). So the concatenation $\widetilde{\alpha} \beta$ is a path of $\mathscr{B} \mathscr{T}_{n}$. But $\widetilde{\alpha} \beta$ is nothing other than $\alpha \cup \beta$. The vertex β_{1} is clearly a right prolongation of the directed edge $e^{+}(\widetilde{\alpha})$ as $\beta_{1}=\alpha_{k-m+1}$. So by the previous lemma $\alpha \cup \beta$ is geodesic.

4. The projective tower of graphs over $\mathscr{B} \mathscr{T}_{n}{ }^{(1)}$

In this section, our purpose is to give the construction of the tower of directed graphs lying equivariantly over the 1-skeleton of the building $\mathscr{B}_{\mathscr{T}_{n}}$ and to give some basic properties of these tower of directed graphs. We note that our construction generalizes the construction of Broussous given in [5] for the case $n=2$. In the sequel, we will be interested then by the case $n \geqslant 3$.

4.1. The construction

For every integer $k \geqslant 0$, we define the graph $\widetilde{\mathrm{X}}_{k}$ as the directed graph whose vertex (resp. edges) set is the set $\mathscr{C}_{k}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)\left(\right.$ resp. $\left.\mathscr{C}_{k+1}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)\right)$. The structure of directed graph of $\widetilde{\mathrm{X}}_{k}$ is given by :

$$
a^{-}=\left(\alpha_{0}, \ldots, \alpha_{k}\right), a^{+}=\left(\alpha_{1}, \ldots, \alpha_{k+1}\right), \text { if } a=\left(\alpha_{0}, \ldots, \alpha_{k+1}\right) .
$$

Let's notice firstly that the graph $\widetilde{\mathrm{X}}_{0}$ is nothing other than the directed graph whose vertices are those of \mathscr{B}_{n} and for which the edges set is $\mathscr{C}_{1}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$. The action of G_{n} on the sets $\mathscr{C}_{k}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$ induce an action on the graph $\widetilde{\mathrm{X}}_{k}$ by automorphisms of directed graphs. Moreover, since the stabilizers of the vertices of $\widetilde{\mathrm{X}}_{k}$ are open and compact then the action is proper. From the previous section, the action of G_{n} on the graph $\widetilde{\mathrm{X}}_{k}$ is transitive on vertices and edges. For every vertex s (resp. edge a) of $\widetilde{\mathrm{X}}_{k}$, we write Γ_{s} (resp. Γ_{a}) for the stabilizer in G_{n} of s (resp. a). The stabilizer in G_{n} of the standard vertex (resp. edge) of $\widetilde{\mathrm{X}}_{k}$, that is the standard geodesic k-path (resp. $(k+1)$-path) given in (4), is the subgroup $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)\left(\right.$ resp. $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k+1}\right)$).
Proposition 17. For every vertex s of $\widetilde{\mathrm{X}}_{k}$ the stabilizer Γ_{s} acts transitively on the two sets of neighborhoods:

$$
V^{-}(s)=\left\{a \in \widetilde{\mathrm{X}}_{k}^{1} \mid a^{-}=s\right\} \quad \text { and } \quad V^{+}(s)=\left\{a \in \widetilde{\mathrm{X}}_{k}^{1} \mid a^{+}=s\right\}
$$

Proof. Follows immediately from Lemma 9.
Recall that the 1-skeleton of the building \mathscr{B}_{n}, denoted by $\mathscr{B}_{n}{ }^{(1)}$, is the subcomplex of $\mathscr{B} \mathscr{T}_{n}$ formed by the faces of dimension at most one. When $k=2 m$ is even, there is a natural simplicial projection $p_{k}: \widetilde{\mathrm{X}}_{k} \longrightarrow \mathscr{B} \mathscr{T}_{n}^{(1)}$ defined on vertices by

$$
p_{k}\left(s_{-m}, \ldots, s_{0}, \ldots, s_{m}\right)=s_{0}
$$

Similarly, When $k=2 m+1$ is odd, there is a natural simplicial projection $p_{k}: \widetilde{\mathrm{X}}_{k}^{s d} \longrightarrow \widetilde{\mathscr{B}}_{n}^{(1)}$, where $\widetilde{\mathrm{X}}_{k}^{s d}$ and $\widetilde{B \mathcal{F}}_{n}^{(1)}$ are respectively the barycentric subdivision of the graphs $\widetilde{\mathrm{X}}_{k}$ and $\mathscr{B}_{n}{ }^{(1)}$. The family of graphs $\left(\widetilde{\mathrm{X}}_{k}\right)_{k \geqslant 0}$ constitute a tower of graphs over the graph $\mathscr{B} \mathscr{T}_{n}^{(1)}$ in the sense that we have the following diagram of simplicial maps

$$
\cdots \longrightarrow \widetilde{\mathrm{X}}_{k+1} \xrightarrow{\varphi_{k}^{\varepsilon}} \widetilde{\mathrm{X}}_{k} \longrightarrow \cdots \longrightarrow \widetilde{\mathrm{X}}_{0} \xrightarrow{p_{0}} \mathscr{B}_{n}^{(1)}
$$

where for $\varepsilon= \pm$ and for $k \geqslant 0$, the map $\varphi_{k}^{\varepsilon}: \widetilde{\mathrm{X}}_{k+1} \longrightarrow \widetilde{\mathrm{X}}_{k}$ is the simplicial map defined on vertices by $\varphi_{k}^{\varepsilon}(s)=s^{\varepsilon}$.

4.2. Connectivity of the graphs

The aim of this section is the study of the connectivity of the graphs $\widetilde{\mathrm{X}}_{k}$. We begin by defining a cover of $\widetilde{\mathrm{X}}_{k+1}$ by finite subgraphs whose nerve is a graph isomorphic to $\widetilde{\mathrm{X}}_{k}$. Assume that $k \geqslant 0$ is an integer. For every vertex s of $\widetilde{\mathrm{X}}_{k}$ we define the subgraph $\widetilde{\mathrm{X}}_{k+1}(s)$ of the graph $\widetilde{\mathrm{X}}_{k+1}$ as the subgraph whose edges are the geodesic $(k+2)$-paths $\alpha \in \mathscr{C}_{k+2}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$ of the form $\alpha=\left(x, s_{0}, \ldots, s_{k}, y\right)$, where x (resp. y) is a left (resp. right) prolongation of the path s. The vertices of $\widetilde{\mathrm{X}}_{k+1}(s)$ are exactly those $v \in \widetilde{\mathrm{X}}_{k+1}^{0}$ such that $v^{-}=s$ or $v^{+}=s$. Obviously the subgraphs $\widetilde{\mathrm{X}}_{k+1}(s)$, when s range over the set of vertices of $\widetilde{\mathrm{X}}_{k}$, form a cover the graph $\widetilde{\mathrm{X}}_{k+1}$. That is

$$
\begin{equation*}
\widetilde{\mathrm{X}}_{k+1}=\bigcup_{s \in \mathbb{X}_{k}^{0}} \widetilde{\mathrm{X}}_{k+1}(s) . \tag{5}
\end{equation*}
$$

For every vertex s_{0} of $\widetilde{\mathrm{X}}_{0}$ (considered as a vertex of $\left.\mathscr{B} \mathscr{T}_{n}\right)$ the subgraph $\widetilde{\mathrm{X}}_{1}\left(s_{0}\right)$ of $\widetilde{\mathrm{X}}_{1}$ has two types of vertices : the directed edges $\left(x, s_{0}\right) \in \mathscr{C}_{1}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$ and the directed edges $\left(s_{0}, y\right) \in \mathscr{C}_{1}^{+}\left(\mathscr{B} \mathscr{T}_{n}\right)$. Let us denote the k_{F}-vector space k_{F}^{n} by \bar{V}. The Lemma 7 implies that the vertex set of $\widetilde{\mathrm{X}}_{1}\left(s_{0}\right)$ may be identified with the set $\mathbb{P}^{1}(\bar{V}) \sqcup \mathbb{P}^{1}\left(\bar{V}^{*}\right)$, where $\mathbb{P}^{1}(\bar{V})$ is the set of one dimensional subspaces and
$\mathbb{P}^{1}\left(\bar{V}^{*}\right)$ is the set of one codimensional subspaces of \bar{V}. By the Corollary 14 we deduce that the graph $\widetilde{\mathrm{X}}_{1}\left(s_{0}\right)$ is isomorphic to the graph $\Delta(\bar{V})$ whose vertex set is $\mathbb{P}^{\mathrm{l}}(\bar{V}) \cup \mathbb{P}^{\mathrm{l}}\left(\bar{V}^{*}\right)$ and in which a vertex $D \in \mathbb{P}^{1}(\bar{V})$ is linked to a vertex $H \in \mathbb{P}^{l}\left(\bar{V}^{*}\right)$ if and only if $D \oplus H=\bar{V}$ and there is no edges between two distinct vertices of $\mathbb{P}^{1}(\bar{V})$ (resp. $\mathbb{P}^{1}\left(\bar{V}^{*}\right)$). One can prove easily that $\Delta(\bar{V})$ is a connected bipartite graph so that $\widetilde{\mathrm{X}}_{1}\left(s_{0}\right)$ is connected and bipartite for every vertex s_{0} of $\widetilde{\mathrm{X}}_{0}$.

Lemma 18. Let $k \geqslant 1$ be an integer. Then we have :
(i) For every $s \in \widetilde{\mathrm{X}}_{k}^{0}$, the graph $\widetilde{\mathrm{X}}_{k+1}(s)$ is a complete bipartite graph and hence connected,
(ii) The nerve $\mathscr{N}\left(\mathrm{X}_{k+1}\right)$ of the cover of $\widetilde{\mathrm{X}}_{k+1}$ given in (5) is isomorphic to the graph $\widetilde{\mathrm{X}}_{k}$.

Proof. (i). Let $s \in \widetilde{\mathrm{X}}_{k}^{0}$. The set of vertices of $\widetilde{\mathrm{X}}_{k+1}(s)$ is clearly partitioned into two subsets. The set \mathscr{U} of vertices $v \in \widetilde{\mathrm{X}}_{k+1}^{0}$ such that $v^{-}=s$ and the set V of vertices $v \in \widetilde{\mathrm{X}}_{k+1}^{0}$ such that $v^{+}=s$. By Corollary 16 we deduce that every vertex in \mathscr{U} is linked to every vertex in \mathscr{V}. So as desired the graph $\widetilde{\mathrm{X}}_{k+1}(s)$ is a complete bipartite graph and then connected.
(ii). Let s and t two distinct vertices of $\widetilde{\mathrm{X}}_{k}$. If s and t are linked by an edge then by Corollary 16 the two subgraphs $\widetilde{\mathrm{X}}_{k+1}(s)$ and $\widetilde{\mathrm{X}}_{k+1}(t)$ have at least a common vertex, namely the vertex $s \cup t$. Conversely, if the two subgraphs $\widetilde{\mathrm{X}}_{k+1}(s)$ and $\widetilde{\mathrm{X}}_{k+1}(t)$ have at least a common vertex, say v, then we have $v^{-}=s$ or $v^{+}=s$ and $v^{-}=t$ or $v^{+}=t$. As s and t are distinct then we deduce that $v^{-}=s$ and $v^{+}=t$ or $v^{-}=t$ and $\nu^{+}=s$. The Corollary 16 implies then that s and t are linked by an edge. So the nerve of the cover of $\widetilde{\mathrm{X}}_{k+1}$ by the subgraphs $\widetilde{\mathrm{X}}_{k+1}(s)$, for $s \in \widetilde{\mathrm{X}}_{k}^{0}$, is the graph $\widetilde{\mathrm{X}}_{k}$.

Theorem 19. For every integer $k \geqslant 0$, the geometric realization of $\widetilde{\mathrm{X}}_{k}$ is connected and locally compact.

Proof. The locally compactness of $\left|\widetilde{\mathrm{X}}_{k}\right|$ follows from the fact that the graphs $\widetilde{\mathrm{X}}_{k}$ are locally finite. For the connectedness, we will prove firstly that $\widetilde{\mathrm{X}}_{0}$ is connected. Let $s=[L]$ and $t=[M]$ be two distinct vertices of $\widetilde{\mathrm{X}}_{0}$, where L and M are two $\mathfrak{o}_{\mathrm{F}}$-lattices. Let us choose an F-basis (v_{1}, \ldots, v_{n}) of F^{n} for which $L=\mathfrak{o}_{\mathrm{F}} \nu_{1}+\cdots+\mathfrak{o}_{\mathrm{F}} v_{n}$ and $M=\mathfrak{p}_{\mathrm{F}}^{k_{1}} \nu_{1}+\cdots+\mathfrak{p}_{\mathrm{F}}^{k_{n}} v_{n}$, where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ with $k_{1} \leqslant \cdots \leqslant k_{n}$. By changing the representative $M \in[M]$ we can assume that $0<k_{1}$. Now let us consider the sequence $\left(L_{0}, \ldots, L_{m}\right)$ of $\mathfrak{o}_{\mathrm{F}}$-lattices, where $m=k_{1}+\cdots+k_{n}$, defined as follows. For every integer $0 \leqslant i \leqslant m$, if $k_{1}+\cdots+k_{j-1}+1 \leqslant i \leqslant k_{1}+\cdots+k_{j}$, where $1 \leqslant j \leqslant n$, then

$$
L_{i}=\bigoplus_{\ell=1}^{j-1} \mathfrak{p}_{\mathrm{F}}^{k_{\ell}} v_{\ell} \oplus \mathfrak{p}_{\mathrm{F}}^{i-\left(k_{1}+\cdots+k_{j-1}\right)} v_{j} \oplus \bigoplus_{\ell=j+1}^{n} \mathfrak{o}_{\mathrm{F}} v_{\ell} .
$$

By a straightforward computation, we can check easily that the sequence ($\left[L_{0}\right], \ldots,\left[L_{m}\right]$) is a path of the graph $\widetilde{\mathrm{X}}_{0}$ linking the vertex s to the vertex t. So as desired $\widetilde{\mathrm{X}}_{0}$ is connected. Now we will prove by induction that the graphs $\widetilde{\mathrm{X}}_{k}$ are connected for every non-negative integer k. Let $k \geqslant 0$ be an integer. Assume that the graph $\widetilde{\mathrm{X}}_{k}$ is connected and let's prove that $\widetilde{\mathrm{X}}_{k+1}$ is also connected. Let u and v be two distinct vertices of $\widetilde{\mathrm{X}}_{k+1}$. Since $\widetilde{\mathrm{X}}_{k+1}$ is covered by the subgraph $\widetilde{\mathrm{X}}_{k+1}(s)$, when s range over the set of vertices of $\widetilde{\mathrm{X}}_{k}$, then there exist two vertices $s, t \in \widetilde{\mathrm{X}}_{k}^{0}$ such that $u \in \widetilde{\mathrm{X}}_{k+1}^{0}(s)$ and $\nu \in \widetilde{\mathrm{X}}_{k+1}^{0}(t)$. As $\widetilde{\mathrm{X}}_{k}$ is connected then there exist a path $p=\left(p_{0}, \ldots, p_{m}\right)$ in $\widetilde{\mathrm{X}}_{k}$ linking the two vertices s and t (say $p_{0}=s$ and $p_{m}=t$). For every integer $i \in\{1, \ldots, m\}$, let v_{i} be any vertex of the non-empty graph $\widetilde{\mathrm{X}}_{k+1}\left(p_{i-1}\right) \cap \widetilde{\mathrm{X}}_{k+1}\left(p_{i}\right)$. Let's also put $v_{0}=u$ and $v_{\ell+1}=v$. By the previous lemma the graphs $\widetilde{\mathrm{X}}_{k+1}\left(p_{i}\right)$ are connected. So for $i \in\{0, \ldots, \ell\}$, since p_{i} and p_{i+1} are two vertices of the graph $\widetilde{\mathrm{X}}_{k+1}\left(p_{i}\right)$ then there exist a path in $\widetilde{\mathrm{X}}_{k+1}$ from p_{i} to p_{i+1}. Consequently there exist a path in $\widetilde{\mathrm{X}}_{k+1}$ connecting the two vertices u and v and then the graph $\widetilde{\mathrm{X}}_{k+1}$ is connected. We have then the connectedness of the graphs $\widetilde{\mathrm{X}}_{k}$ for every integer $k \geqslant 0$ which implies the connectedness of their geometric realization.

5. Realization of the generic representations of G_{n} in the cohomology of the tower of graphs

5.1. Generic representations of G_{n}

Let us firstly recall some basic facts and introduce some notations. Let ψ be a fixed additive smooth character of F trivial on $\mathfrak{p}_{\mathrm{F}}$ and nontrivial on $\mathfrak{o}_{\mathrm{F}}$. We define a character θ_{ψ} of the group U_{n} of upper unipotent matrices as follows

$$
\theta_{\psi}\left(\left(\begin{array}{ccccc}
1 & u_{1,2} & \ldots & \ldots & u_{1, n} \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & u_{n-1, n} \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right)\right)=\psi\left(u_{1,2}+\cdots+u_{n-1, n}\right)
$$

Let (π, V) be an irreducible admissible representation of G_{n} considered as an irreducible admissible representation of $\mathrm{GL}_{n}(\mathrm{~F})$ with trivial central character. The representation (π, V) is called generic if

$$
\operatorname{Hom}_{\mathrm{GL}_{n}(\mathrm{~F})}\left(\pi, \operatorname{Ind}_{\mathrm{U}_{n}}^{\mathrm{GL}_{n}(\mathrm{~F})} \theta_{\psi}\right) \neq 0
$$

By Frobenius reciprocity, this is equivalent to the existence of a nonzero linear form $\ell: \mathrm{V} \longrightarrow \mathbb{C}$ such that $\ell(\pi(u) . v)=\theta_{\psi}(u) \ell(\nu)$ for every $v \in \mathrm{~V}$ and $u \in \mathrm{U}_{n}$. Thus a generic representation (π, V) of G_{n} can be realized on a same space of functions f with the property $f(u g)=\theta_{\psi}(u) f(g)$ for every $u \in \mathrm{U}_{n}$ and $g \in \mathrm{GL}_{n}(\mathrm{~F})$ and for which the action of $\mathrm{GL}_{n}(\mathrm{~F})$ on the space of π is by right translation. Such a realization is called the Whittaker model of π. The following theorem, due to Bernstein and Zelevinski, shows that generic representations have a unique Whittaker model.

Theorem $20([2, \mathrm{~V} .16])$. Let (π, V) be an irreducible admissible representation of G_{n}. Then the dimension of the space $\operatorname{Hom}_{\mathrm{GL}_{n}(\mathrm{~F})}\left(\pi, \operatorname{Ind}_{\mathrm{U}_{n}}^{\mathrm{GL}_{n}(\mathrm{~F})} \theta_{\psi}\right)$ is at most one, that is

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathrm{GL}_{n}(\mathrm{~F})}\left(\pi, \operatorname{Ind}_{\mathrm{U}_{n}}^{\mathrm{GL}_{n}(\mathrm{~F})} \theta_{\psi}\right) \leqslant 1 .
$$

In particular, if π is generic then π has a unique Whittaker model.
We have the following result which is due to H. Jacquet, J. L. Piatetski-Shapiro and J. Shalika, see [8, Thm. (5.1)]:

Theorem 21. Let (π, V) be an irreducible generic representation of G_{n}.
(i) For klarge enough, the space of fixed vectors $V^{\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k}\right)}$ is non-zero.
(ii) Let $c(\pi)$ the smallest integer such that $V^{\Gamma_{0}\left(p_{F}^{c(\pi)+1}\right)} \neq 0$, then for every integer $k \geqslant c(\pi)$, we have :

$$
\operatorname{dim}_{\mathbb{C}} V^{\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{k+1}\right)}=k-c(\pi)+1 .
$$

5.2. Realization of the Generic representations of G_{n}

In this section, we fix an irreducible generic representation (π, V) of G_{n} and we make the following assumption:

Assumption 22. π is non-spherical, that is the space of $\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{0}\right)$-fixed vectors

$$
V^{\Gamma_{0}\left(p_{\mathrm{F}}^{0}\right)}:=\left\{v \in V \mid \forall g \in \Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{0}\right), \pi(g) v=v\right\}
$$

is zero.

In the following, our aim is to prove that the representation π can be realized as a quotient of the cohomology space $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ and if moreover π is cuspidal then in fact it can be realized as a subrepresentation of this cohomology space. Furthermore, as in Theorem (5.3.2) of [5], we obtain a multiplicity one result for cuspidals but in a more simpler way. The proofs of the results below are similar to those given in [5, §(3.2)]. Let us recall that for every vertex s (resp. edge a) of $\widetilde{\mathrm{X}}_{c(\pi)}, \Gamma_{s}\left(\operatorname{resp} . \Gamma_{a}\right)$ denotes the stabilizer in G_{n} of s (resp. a). We recall that

$$
\Gamma_{s_{0}}=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{c(\pi)}\right) \quad \text { and } \quad \Gamma_{a_{0}}=\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{c(\pi)+1}\right),
$$

where s_{0} (resp. a_{0}) is the standard vertex (resp. edge) of $\widetilde{\mathrm{X}}_{c(\pi)}$.

Lemma 23.

(i) For every edge a of $\widetilde{\mathrm{X}}_{c(\pi)}, V^{\Gamma_{a}}$ is of dimension one.
(ii) Let a be an edge of $\widetilde{\mathrm{X}}_{c(\pi)}$ and s be a vertex of a. Then for every $v \in V^{\Gamma}$ we have

$$
\sum_{g \in \Gamma_{s} / \Gamma_{a}} \pi(g) v=0 .
$$

Proof. (i). Since G_{n} acts transitively on the set of edges of $\widetilde{\mathrm{X}}_{c(\pi)}$ then the subgroup Γ_{a} is conjugate to $\Gamma_{a_{0}}$ which gives the result.
(ii). Clearly the vector

$$
v_{0}:=\sum_{g \in \Gamma_{s} / \Gamma_{a}} \pi(g) v
$$

is fixed by Γ_{s}. But by transitivity of the action of G_{n} on the set of vertices of $\widetilde{\mathrm{X}}_{c(\pi)}$, the subgroup Γ_{s} is conjugate to $\Gamma_{s_{0}}$. So Theorem 21 implies that $v_{0}=0$.

We define a map

$$
\Psi_{\pi}^{\vee}: V^{\vee} \longrightarrow C^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)
$$

as follows. Let us fix a non-zero vector $v_{0} \in V^{\Gamma} a_{0}$. For every edge a of $\widetilde{\mathrm{X}}_{c(\pi)}$, we put

$$
\begin{equation*}
v_{a}=\pi(g) \cdot v_{0}, \quad \text { where } a=g \cdot a_{0} \tag{6}
\end{equation*}
$$

This definition is well defined since G_{n} acts transitively on $\widetilde{\mathrm{X}}_{c(\pi)}^{1}$ and it does not depend on the choice of $g \in \mathrm{G}_{n}$ such that $v_{a}=g . v_{0}$ as v_{0} is fixed by $\Gamma_{a_{0}}$. The map Ψ^{\vee} is then defined by

$$
\Psi^{\vee}(\varphi)(a)=\varphi\left(v_{a}\right)
$$

for every $\varphi \in V^{\vee}$ and $a \in \widetilde{X}_{c(\pi)}^{1}$. From (6) the map Ψ^{\vee} is G_{n}-equivariant.
Lemma 24. The map Ψ^{\vee} is injective and its image is contained in $\mathscr{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$.
Proof. The G_{n}-equivariant map Ψ^{\vee} is injective as it is nonzero and as the representation π is irreducible. Let $\varphi \in V^{\vee}$. Let us prove that for every vertex s of $\widetilde{\mathrm{X}}_{c(\pi)}^{1}$,

$$
\sum_{a \in \tilde{\mathrm{X}}_{c(\pi)}^{1}}[a: s] \varphi\left(v_{a}\right)=0
$$

Let s be a vertex of $\widetilde{\mathrm{X}}_{c(\pi)}^{1}$. By Proposition 17, the stabilizer Γ_{s} acts transitively on the two sets

$$
\mathcal{V}^{-}(s)=\left\{a \in \widetilde{\mathrm{X}}_{c(\pi)}^{1} \mid a^{-}=s\right\} \quad \text { and } \quad V^{+}(s)=\left\{a \in \widetilde{\mathrm{X}}_{c(\pi)}^{1} \mid a^{+}=s\right\}
$$

Let us fix $a_{s}^{+} \in V^{+}(s)$ and $a_{s}^{-} \in V^{-}(s)$. We have then

$$
\begin{aligned}
\sum_{a \in \tilde{\mathrm{X}}_{c(\pi)}^{1}}[a: s] \varphi\left(v_{a}\right) & =\varphi\left(\sum_{a \in \mathcal{V}^{+}(s)} v_{a}-\sum_{a \in \mathcal{V}^{-}(s)} v_{a}\right) \\
& =\varphi\left(\sum_{g \in \Gamma_{s} / \Gamma_{a_{s}^{+}}} \pi(g) \cdot v_{a_{s}^{+}}-\sum_{g \in \Gamma_{s} / \Gamma_{a_{s}^{-}}} \pi(g) \cdot v_{a_{s}^{-}}\right)=0
\end{aligned}
$$

by Lemma 23. Consequently, $\operatorname{Im}\left(\Psi^{\vee}\right)$ is contained in $\mathscr{H}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ which implies that it is contained in $\left.\mathscr{H}_{\infty} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$.

By Lemma 1 we have the isomorphism of smooth G_{n}-module

$$
\mathscr{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right) \simeq H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)^{v} .
$$

So applying contragredients to the operator $\Psi_{\pi}^{\vee}: V^{\vee} \longrightarrow \mathscr{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ we obtain an intertwining operator

$$
\Psi_{\pi}^{\vee \vee}: H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)^{\vee \vee} \longrightarrow V^{\vee \vee}
$$

It is well known that a smooth G_{n}-module W have a canonical injection in the contragredient of its contragredient $W^{\vee \vee}$. So the smooth G_{n}-module $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ canonically injects in $H_{c}^{1}\left(\widetilde{X}_{c(\pi)}, \mathbb{C}\right)^{\vee \vee}$. Moreover the representation π is irreducible and hence admissible then V and $V^{\vee \vee}$ are canonically isomorphic. In the following, if $\omega \in C_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ we write $\bar{\omega}$ for its image in $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$.
Theorem 25. The restriction of $\Psi_{\pi}^{\vee \vee}$ to the space $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ define a nonzero intertwining operator

$$
\Psi_{\pi}: H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right) \longrightarrow V
$$

given by

$$
\Psi_{\pi}(\bar{\omega})=\sum_{a \in \tilde{X}_{c(\pi)}^{1}} \omega(a) v_{a}
$$

In particular, (π, V) is isomorphic to a quotient of $H_{c}^{1}\left(\widetilde{X}_{c(\pi)}, \mathbb{C}\right)$. Moreover, if (π, V) is cuspidal then it is isomorphic to a subrepresentation of $H_{c}^{1}\left(\widetilde{X}_{c(\pi)}, \mathbb{C}\right)$.
Proof. The fact that the restriction of the map $\Psi_{\pi}^{\vee \vee}$ to the space $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ is given exactly by the map Ψ_{π} follows by a straightforward computation. Let $\left.\omega_{0} \in C_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ defined on the basis $\widetilde{\mathrm{X}}_{c(\pi)}^{1}$ of $C_{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ as follows : for every edge a of $\widetilde{\mathrm{X}}_{c(\pi)}, \omega_{0}(a)=1$ if $a=a_{0}$ and $\omega_{0}(a)=0$ otherwise. We have

$$
\Psi_{\pi}\left(\bar{\omega}_{0}\right)=\sum_{a \in \tilde{X}_{c(\pi)}^{1}} \omega_{0}(a) v_{a}=v_{0} \neq 0
$$

So the map Ψ_{π} is nonzero. Hence by irreducibility of π the map Ψ_{π} is surjective and then as desired (π, V) is isomorphic to a quotient of $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$. If the representation (π, V) is cuspidal, so in particular generic, then it is isomorphic to a quotient of $H_{c}^{1}\left(\widetilde{X}_{c(\pi)}, \mathbb{C}\right)$. But (π, V) is cuspidal and then it is projective in the category of smooth complex representation of G_{n}. So we have in fact an embedding of (π, V) in $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$.

Theorem 26. If the representation (π, V) is cuspidal then it have a unique realization in the cohomology space $\left.H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$, that is

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G_{n}}\left(\pi, H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)\right)=1 .
$$

Proof. Since G_{n} acts transitively on the set of vertices and edges of $\widetilde{\mathrm{X}}_{c(\pi)}$ then the two G_{n} modules $\left.C_{c}^{0} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ and $\left.C_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ are respectively isomorphic to the following compactly induced representation

$$
\mathrm{c}-\mathrm{ind}_{\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{c(\pi)}\right)}^{\mathrm{G}_{n}} 1 \quad \text { and } \quad \mathrm{c}-\mathrm{ind}_{\Gamma_{0}\left(p_{\mathrm{F}}^{p(\pi)+1}\right)}^{\mathrm{G}_{n}} 1
$$

(where 1 denotes the trivial character). The space $H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ is by definition the cokernel of the coboundary map

$$
C_{c}^{0}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right) \xrightarrow{d} C_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)
$$

Then we have a surjective map

$$
\varphi: \operatorname{c-ind}{\left.\underset{\Gamma_{0}\left(p_{\mathrm{F}}^{c}\right.}{\mathrm{G}_{n}(\pi)+1}\right)} \longrightarrow \mathrm{H}_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)
$$

and so we obtain an injective map

$$
\widetilde{\varphi}: \operatorname{Hom}_{\mathrm{G}_{n}}\left(H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right), \pi\right) \longrightarrow \operatorname{Hom}_{\mathrm{G}_{n}}\left({\left.\mathrm{c}-\mathrm{ind}_{\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}\right.}^{\mathrm{G}_{n}(\pi)+1}\right)}_{\mathrm{G}_{n}} 1, \pi\right)
$$

On the other hand, by Frobenius reciprocity we have

$$
\operatorname{Hom}_{\mathrm{G}_{n}}\left(\mathrm{c}-\operatorname{ind}_{\Gamma_{0}\left(\mathfrak{p}_{\mathrm{F}}^{c(\pi)+1}\right)} 1, \pi\right) \simeq V^{\Gamma_{n}\left(\mathfrak{p}_{\mathrm{F}}^{(\tau \pi)+1}\right)}
$$

But by the Theorem 21, the space of fixed vectors $V^{\Gamma_{n}\left(p_{\mathrm{F}}^{(\tau)+1}\right)}$ is of dimension one. Thus we obtain

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{G}_{n}}\left(H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right), \pi\right) \leqslant 1 .
$$

On the other hand, since the representation (π, V) is cuspidal then it is a projective object of the category of smooth representations of G_{n}. So the two spaces $\operatorname{Hom}_{\mathrm{G}_{n}}\left(H_{c}^{1}\left(\widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right), \pi\right)$ and $\operatorname{Hom}_{\mathrm{G}_{n}}\left(\pi, H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)$ are in fact isomorphic. But by the previous theorem $\left.\operatorname{Hom}_{\mathrm{G}_{n}}\left(H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right), \pi\right)$ is nonzero. So as desired the space $\left.\operatorname{Hom}_{\mathrm{G}_{n}}\left(\pi, H_{c}^{1} \widetilde{\mathrm{X}}_{c(\pi)}, \mathbb{C}\right)\right)$ is one dimensional.

Acknowledgements

The author would like to thank the anonymous referee for their careful reading and helpful suggestions which improved an earlier draft.

References

[1] P. Abramenko, K. S. Brown, Buildings. Theory and applications, Graduate Texts in Mathematics, vol. 248, Springer, 2008.
[2] I. N. Bernstein, A. V. Zelevinskii, "Representations of the group GL($n, F)$, where F is a local non-Archimedean field", Usp. Mat. Nauk 31 (1976), no. 3(189), p. 5-70.
[3] A. Borel, J.-P. Serre, "Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes S-arithmétiques", C. R. Math. Acad. Sci. Paris 272 (1971), p. Al10-A113.
[4] P. Broussous, "Simplicial complexes lying equivariantly over the affine building of GL(N)", Math. Ann. 329 (2004), no. 3, p. 495-511.
[5] , "Representations of PGL(2) of a local field and harmonic cochains on graphs", Ann. Fac. Sci. Toulouse, Math. 18 (2009), no. 3, p. 495-513.
[6] F. Bruhat, J. Tits, "Groupes réductifs sur un corps local : I. Données radicielles valuées", Publ. Math., Inst. Hautes Étud. Sci. 41 (1972), p. 5-251.
[7] P. B. Garett, Buildings and Classical Groups, Chapman \& Hall/CRC, 1997.
[8] H. Jacquet, I. I. Piatetski-Shapiro, J. Shalika, "Conducteur des représentations du groupe linéaire", Math. Ann. 256 (1981), p. 199-214.
[9] A. Rajhi, "Cohomologie à support compact d'un espace au-dessus de l'immeuble de Bruhat-Tits de GL n sur un corps local. Représentations cuspidales de niveau zéro", Confluentes Math. 10 (2018), no. 1, p. 95-124.
[10] M. Ronan, Lectures on buildings, University of Chicago Press, 2009.

