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1. Introduction

Let F be a non-archimedean locally compact field and let Gn be the locally profinite group
PGLn(F). In [4], P. Broussous has constructed a projective tower of simplicial complexes fibred
over the Bruhat–Tits building of Gn . The idea (due to P. Schneider) consists of constructing sim-
plicial complexes whose structure is very related to that of the Bruhat–Tits building. The goal
of a such construction is to try to find geometric interpretation of certain classes of irreducible
smooth representations of Gn . Such a geometric interpretation exists for example for the Stein-
berg representation of Gn which can be realized (see [3, Thm. 3]) as the cohomology with com-
pact support in top dimension of the Bruhat–Tits building. In a second work (see [5]), P. Brous-
sous has constructed in the case n = 2 a slightly modified version of his previous construction.
More precisely, he construct a tower of directed graphs (X̃k )kÊ0 fibred over the Bruhat–Tits tree of
G2. Based on the existence of new vectors for irreducible generic representations of G2, he proves
that an irreducible generic representation π of G2 can be realized as a quotient of the compactly
supported cohomology space H 1

c (X̃c(π),C), where c(π) is an integer related to the conductor of
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the representation π. He proves moreover that if π is cuspidal then it can be realized as a subrep-
resentation of the last cohomology space and that a such realization is unique. In a parallel direc-
tion, the author has constructed a simplicial complex fibred over the Bruhat–Tits building of Gn

whose top compactly supported cohomology realize as subquotient all the irreducible cuspidal
level zero representations of Gn , see [9].

In this paper our aim is to generalize the construction of Broussous given in [5] to the case
n Ê 3. More precisely we construct a projective tower (X̃k )kÊ0 of directed graphs fibred over the
1-skeleton of the Bruhat–Tits building of Gn . In our construction, the graphs considered will be
defined in terms of combinatorial geodesic paths of the Bruhat–Tits building of Gn .

Let π be an irreducible smooth generic and non-spherical representation of Gn . We prove that
there exists an injective intertwining operator

Ψ∨
π : V ∨ −→H∞(X̃c(π),C),

where V ∨ is the contragredient representation of π and H∞(X̃c(π),C) is the space of smooth
harmonic forms on the graph X̃c(π). By applying contragredients to this intertwining operator
and then by restriction to H 1

c (X̃c(π),C) we obtain a nonzero intertwining operator

Ψπ : H 1
c (X̃c(π),C) −→V.

That is the representation π is isomorphic to a quotient of H 1
c (X̃c(π),C). In the case when π is

cuspidal, the Gn-equivariant map Ψπ splits so that π injects in H 1
c (X̃c(π),C). We prove that such

an injection is unique, that is :

dimCHomGn (π, H 1
c (X̃c(π),C)) = 1.

2. Notations and preliminaries

In this article, F will be a non-archimedean locally compact field. We write oF for the ring of
integers of F, pF for the maximal ideal of oF, kF := oF/pF for the residue class field of F and qF for
the cardinal of kF. We fix a normalized uniformizer ϖF of oF and we denote by υF the normalized
valuation of F.

2.1. The projective general linear group PGLn(F)

For every integer n Ê 2, the projective general linear group PGLn(F) will be denoted by Gn . If k Ê 1
is an integer, we write Γ̃0(pk

F) for the following subgroup of GLn(F)

Γ̃0(pk
F) =

{(
a b
c d

)
∈ GLn(oF)

∣∣∣∣a ∈ GLn−1(oF), d ∈ o×F , c ≡ 0 mod pk
F

}
(1)

and we write Γ0(pk
F) for its image in Gn . We denote also the image in Gn of the standard maximal

compact subgroup of GLn(F) by Γ0(p0
F).

2.2. The Bruhat–Tits building of Gn

In this section we fix some notations and recall some well-known facts. For more details the
reader may refer to [1], [7] or [10]. Recall that a lattice of the vector space Fn is an open compact
subgroup of the additive group of Fn . A such lattice is an oF-lattice if moreover it is an oF-
submodule of Fn . Equivalently, an oF-lattice of Fn is a free oF-submodule L of Fn of rank n. If
L is an oF-lattice of Fn then L = oF f1 + ·· ·+oF fn for some F-basis of Fn . More generally if L and
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M are two oF-lattices of Fn then there exist an F-basis ( f1, . . . , fn) of Fn and (α1, . . . ,αn) ∈Zn , with
α1 É ·· · Éαn , such that

L = oF f1 +·· ·+oF fn and M = pα1
F f1 +·· ·+pαn

F fn .

For two oF-lattices L and M of Fn , we say that L and M are equivalent if L = λM for some λ ∈ F×,
and we denote the class of L by [L]. The Bruhat–Tits building of Gn , denoted by BTn , can be
defined as the simplicial complex whose vertices are the equivalence classes of oF-lattices in Fn

and in which a collection Λ0,Λ1, . . . ,Λq of pairwise distinct vertices form a q-simplex if we can
choose representatives Li ∈Λi , for i ∈ {0, . . . , q}, such that

ϖFL0 < Lq < Lq−1 < ·· · < L0

A q-simplex as above define the following flag of the kF-vector space L0/ϖFL0

{0} < Lq /ϖFL0 < Lq−1/ϖFL0 < ·· · < L0/ϖFL0

The type of a such q-simplex is defined to be the type of the corresponding flag of the kF-vector
space L0/ϖFL0 ≃ kn

F . Note that the maximal dimension of the flag corresponding to a simplex σ
of BTn is equal to n−2. Thus BTn is a simplicial complex of dimension n−1. The group GLn(F)
acts naturally on BTn by simplicial automorphisms and its center Z(GLn(F)) ≃ F× acts trivially.
So the group Gn acts simplicially on BTn and the action is transitive on vertices (resp. chambers,
q-simplices of a fixed type). Let’s recall that a labelling of BTn is a map from the set BTn

0 of
vertices of BTn to the set {0, . . . ,n − 1} whose restriction to every chamber is injective. We can
construct a labelling λ : BTn

0 −→ {0, . . . ,n −1} of BTn as follows (see [7, 19.3]). Let L0 be a fixed
oF-lattices of Fn . If v is a vertex of BTn , we can choose a representative L such that L0 ⊂ L. Since
oF is a principal ideal domain, the finitely generated torsion oF-module L/L0 is isomorphic to

oF/pk1
F ⊕·· ·⊕oF/pkn

F

for some n-tupe of integers 0 É k1 É k2 É ·· · É kn . Then

λ(v) =
n∑

i=0
ki mod n .

The simplicial complex BTn is the union of a family of subcomplexes, called apartments,
defined as follows. A frame is a set F = {d1, . . . ,dn} of one-dimensional F-vector subspaces of Fn

so that Fn = d1 +·· ·+dn . The apartment corresponding to the frame F is formed by all simplices
σ with verticesΛwhich are equivalence classes of lattices with representatives L ∈Λ such that

L = L1 +·· ·+Ln ,

where Li is a lattice of the F-vector space di . If we fix an F-basis ( f1, . . . , fn) of Fn adapted to the
decomposition Fn = d1+·· ·+dn , then a vertex [L] is in the apartment corresponding to the frame
F if and only if

L = pα1
F f1 +·· ·+pαn

F fn ,

where (α1, . . . ,αn) ∈Zn . Note that the set of frames of Fn can be identified with the set of maximal
F-split torus of Gn . To a frame F = {d1, . . . ,dn} we can associate the maximal F-split torus S ⊂ Gn

acting diagonally with respect the decomposition of Fn as direct sum of vectorial lines. Under
this identification, for every maximal F-split torus S of Gn , we denote by AS the corresponding
apartment of BTn . The apartment corresponding to the diagonal torus T will be called the
standard apartment of BTn and denoted by A0.

The geometric realization |BTn | of the building BTn is equipped by a metric defined, up
to a multiplicative scalar, as follows. The geometric realization of each apartment |A | can be
identified to the euclidian space

Rn
0 := {

(x1, . . . , xn) ∈Rn ∣∣x1 +·· ·+xn = 0
}
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via the map defined by the following way. We fix an F-basis ( f1, . . . , fn) of Fn corresponding to the
apartment A . The set A 0 of vertices of A is then embedded in Rn

0 via the map ϕ : A 0 −→ Rn
0

defined by

ϕ([px1
F f1 +·· ·+pxn

F fn]) = x − 1

n
σ(x)e,

where for x = (x1, . . . , xn) ∈ Zn , σ(x) = x1 + ·· · + xn and where e = (1, . . . ,1). This map extends to
a bijection ϕ : |A | −→ Rn

0 . Via this identification we can then equip |A | by an euclidian metric.
More explicitly, if [L] and [M] are two vertices of A with

L = px1
F f1 +·· ·+pxn

F fn and M = p
y1
F f1 +·· ·+p

yn
F fn ,

then

dA ([L], [M]) = 1√
1− 1

n

d0

(
x − 1

n
σ(x)e, y − 1

n
σ(y)e

)
where d0 is the euclidian metric of Rn

0 . We note that in the above formula the term 1/
p

1−1/n
is just used to normalize the metric of the building. The metric d of |BTn | is then defined as
follows. If x, y ∈BTn then d(x, y) = dA (x, y) for any apartment A containing x and y and this is
independent of the choice of apartment containing them. Finally we recall that the action of the
group Gn on |BTn | is by isometries.

2.3. Smooth representations of a locally profinite group

Let G be a locally profinite group. By a representation of G we mean a pair (π,V ) formed by a C-
vector space V and by a group homomorphism π : G −→ GLC(V ). A such representation is called
smooth if for every v ∈V the stabilizer

StabG (v) := {
g ∈G

∣∣π(g ).v = v
}

is an open subgroup of G . In this paper all the representations will be assumed to be smooth and
complex. A representation (π,V ) of G is called admissible if for every compact open subgroup K
of G the space V K = {v ∈V | ∀ k ∈ K ,π(k)v = v} of K -fixed vectors is finite dimensional. If (π,V ) is
a representation of G , its contragredient π∨ is the representation of G in the subspace V ∨ of the
algebraic dual V ∗ formed by the linear forms whose stabilizers in G is open.

Let H be a closed subgroup of G and (ρ,W ) a representation of H . We recall that the induced
representation from H to G of (ρ,W ), denoted by IndG

H ρ, is the representation of G on the space
IndG

H W formed by the locally constant functions f : G −→ W such that f (hg ) = ρ(h). f (h) for
every g ∈ G and h ∈ H , where the action of G on IndG

H ρ is by left translation. The compactly
induced representation c-indG

Hρ is defined as the subrepresentation of IndG
H ρ formed by the

functions f ∈ IndG
H W whose support is compact modulo H .

2.4. Locally profinite group acting on directed graphs

Throughout this paper, we call graph every one dimensional simplicial complex. If Y is a graph,
the set of vertices (resp. edges) of Y will be denoted by Y0 (resp. Y1). A locally finite graph is a
graph Y for which every vertex belongs to a finite number of edges. All graphs in this paper will be
assumed to be locally finite. A directed graph is a graph Y with a map Y1 −→ Y0×Y0, a 7−→ (a−, a+),
such that for every edge a one has a = {a−, a+}, where for any edge a we denote by a+ and a− its
head and tail respectively. A path in a graph Y is a sequence (s0, . . . , sm) of vertices such that two
consecutive vertices are linked by an edge. The graph Y is called connected if every pair of vertices
are linked by a path. A cover of a graph Y is a family (Yα)α∈∆ of subgraphs such that

Y = ⋃
α∈∆

Yα.
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The nerve of a such cover, denoted N (Y , (Yα)α∈∆) or just N (Y ) if there is no risk of confusion,
is the simplicial complex whose vertex set is ∆ and in which a finite number of vertices α0, . . . ,αr

form a simplex if
r⋂

i=0
Yαi ̸= ;.

In the remainder of this section the notations and definitions are taken from [5]. If Y is a graph,
we denote by C0(Y ,C) (resp. C1(Y ,C)) the C-vector space with basis Y 0 (resp. Y 1). Let C i

c (Y ,C),
i = 1,2, be the C-vector space of 1-cochains with finite support : C i

c (Y ,C) is the subspace of the
algebraic dual of Ci (Y ,C) formed of those linear forms whose restrictions to the basis Y i have
finite support. The coboundary map

d : C 0
c (Y ,C) −→C 1

c (Y ,C)

is defined by d( f )(a) = f (a+)− f (a−). Then the compactly supported cohomology space H 1
c (Y ,C)

of the graph Y is defined by
H 1

c (Y ,C) =C 1
c (Y ,C)/dC 0

c (Y ,C).

Let G be a locally profinite group and Y be a directed graph. We assume that G acts on Y by
automorphisms of directed graphs. For all s ∈ Y 0, a ∈ Y 1, the incidence numbers are defined by
[a : a+] =+1, [a : a−] =−1, and [a : s] = 0 if s ̸∈ {a+, a−}. These incidence numbers are equivariant
in the sense that [g .a : g .s] = [a : s], for all g ∈G . The group G acts on Ci (Y,C) and C i

c (Y,C). If the
action of G on Y is proper, that is for every s ∈ Y 0, the stabilizer StabG (s) := {g ∈G |g .s = s} is open
and compact, then the spaces Ci (Y ,C) and C i

c (Y ,C) are smooth G-modules. The coboundary map
is G-equivariant so that H 1

c (Y ,C) have a structure of a smooth G-module.
The space of harmonic forms of the graph Y is defined as the subspace of C 1(Y ,C) formed by

the elements f ∈C 1(Y ,C) verifying the following harmonicity condition (see [5, §(1.3)]):∑
a∈Y 1

[a : s] f (a) = 0 for all s ∈ Y 0.

This space will be denoted by H (Y ,C). It is naturally provided by a linear action of G . The smooth
part of H (Y ,C) under the action of G , i.e. the space of smooth harmonic forms is denoted by
H∞(Y ,C).

Lemma 1 ([5, (1.3.2)]). The algebraic dual of H 1
c (Y ,C) naturally identifies with H (Y ,C). Under

this isomorphism, the contragredient representation of H 1
c (Y ,C) corresponds to H∞(Y ,C).

3. Combinatorial geodesic paths in BT n

The aim of this section is to define a class of combinatorial paths in BTn and to study the action
of the group Gn on this class of paths. The pointwise stabilisers of such paths will be related to
the new-vectors subgroups of GLn(F) (the subgroups defined in (1)), see [8].

3.1. Geodesic paths of BTn and their prolongations

Definition 2. Let k Ê 0 be an integer. A geodesic path of length k in BTn (or more simply geodesic
k-path) is a path α = (α0,α1, . . . ,αk ) of BTn such that for every i , j ∈ {0, . . . ,k}, d(αi ,α j ) = |i − j |.
We denote the set of geodesic k-paths of BTn by Ck (BTn).

Remark 3. We notice that when n Ê 4 the edges of BTn are not all of length one, but in the
particular cases n = 2 and n = 3 all the edges of BTn are of length one. We also note that every
geodesic k-path of BTn lies in a same apartment. In fact if α ∈ Ck (BTn) is a geodesic k-path
as previously, then the geometric realization of any apartment containing the vertices α0 and αk

contain the segment [α0,αk ] and then all the vertices of α are contained in the apartment A .
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In the following, if s is a vertex of BTn we write V (s) for its combinatorial neighborhood. That
is V (s) is the set of vertices of BTn which are linked to s by an edge.

Definition 4. Let α = (α0, . . . ,αk ) ∈ Ck (BTn). A vertex s of BTn is called a right (resp. left)
prolongation of α if s ∈ V (αk ) (resp. s ∈ V (α0)) and the sequence (α0, . . . ,αk , s) (resp. (s,α0, . . . ,αk ))
is a geodesic (k +1)-path. We denote the set of right and left prolongation of a geodesic k-path α

respectively by P +(α) and P −(α).

Proposition 5. Let k Ê 1 be an integer and let α= (α0, . . . ,αk ) be a geodesic k-path of BTn . Then
for every apartment A containing α, there exists a unique right (resp. left) prolongation of α in the
apartment A .

Proof. Let A be an apartment containing the pathα. Assume thatαhave two right prolongations
x and y in A , that is x, y ∈ V (αk ) and the two sequences (α0, . . . ,αk , x) and (α0, . . . ,αk , y) are
geodesic (k + 1)-paths of A . So in the geometric realization |A | of the apartment A we have
αk ∈ [α0, x] ∩ [α0, y]. Therefore we have αk = t x + (1 − t )α0 and αk = s y + (1 − s)α0 for same
t and s in ]0,1[. Moreover the two vertices x and y are of the same distance from αk , that is
d(x,αk ) = d(y,αk ). So we have ∥x −αk∥ = ∥y −αk∥ (here ∥·∥ is the euclidian norm of |A | ≃ Rn

0 ).
From this we obtain (1− t )∥x −α0∥ = (1− s)∥y −α0∥. But ∥x −α0∥ = ∥y −α0∥ so we get t = s and
then x = y . □

Let α= (α0, . . . ,αk ) be a geodesic path of BTn . The inverse of α, denoted by α−1, is defined by
α−1 := (αk , . . . ,α0). It is clear that α−1 is a geodesic path of BTn . If k Ê 1, the tail and the head of
α are the two geodesic paths defined respectively by

α− := (α0, . . . ,αk−1) and α+ := (α1, . . . ,αk ).

We define also the initial and terminal directed edge of α respectively by e−(α) := (α0,α1) and
e+(α) := (αk−1,αk ).

Proposition 6. Let k Ê 1 be an integer and let α,β ∈Ck (BTn). If α and β are contained in a same
apartment and if e−(α) = e−(β) (resp. e+(α) = e+(β)), then α=β.

Proof. By induction on k, let α = (α0, . . . ,αk+1) and β = (β0, . . . ,βk+1) two geodesic (k +1)-paths
such that e−(α) = e−(β). Assume that α and β are contained in a same apartment A . Since the
two geodesic k-paths α− and β− are contained in the same apartment A and as they have the
same initial directed edges then by induction hypothesis we haveα− =β−, that isαi =βi for each
i ∈ {0, . . . ,k}. So the two verticesαk+1 and βk+1 are two right prolongation of the geodesic k-paths
α− which are contained in the same apartment A . Then by the previous proposition we obtain
αk+1 =βk+1 and then α=β as required. □

3.2. Action of Gn on the sets Ck (BTn)

The group Gn acts on its building BTn by isometries, so Gn acts naturally on the sets Ck (BTn)
for each integer k Ê 0. The action is given by

g .(α0, . . . ,αk ) = (g .α0, . . . , g .αk )

for every g ∈ Gn and for every (α0, . . . ,αk ) ∈ Ck (BTn). Note that since the set C0(BTn) may be
identified with the set of vertices of BTn , then the action of Gn on C0(BTn) is transitive. In the
particular case n = 2, the action of G2 on the sets Ck (BT 2) is transitive for every integer k Ê 0,
see [5]. The situation is slightly different when n Ê 3. We are going to prove that in this last case,
the sets Ck (BTn) (for k Ê 1) have exactly two Gn-orbits. We first define the type of a directed edge
of BTn and we will prove in the lemma bellow that two geodesic 1-paths are in the same Gn-orbit
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if and only if they have the same type. Let e = ([L0], [L1]) be a directed edge of BTn , where L0 and
L1 are two oF-lattices such that

ϖFL0 < L1 < L0.

The type of the directed edge e, denoted ξ(e), is defined by

ξ(e) = dimkF

(
L1/ϖFL0

)
.

This definition is clearly independent of the choice of representatives. For every directed edge e
of BTn , we write e−1 for the inverse of e which is obtained from e by interchanging its vertices.

Lemma 7.

(i) For every directed edge e of BTn , ξ(e−1) = n −ξ(e),
(ii) For every e ∈C1(BTn), ξ(e) ∈ {1,n −1},

(iii) Two elements e,e
′ ∈ C1(BTn) are in the same Gn-orbit if and only if they have the

same type.

Proof. In the proof of the three statements we use the following notations. For each integer n Ê 1,
we write ∆n for the set of integers {1, . . . ,n}. If e = ([L0], [L1]) is a directed edge of BTn with
ϖFL0 < L1 < L0 and if ( f1, . . . , fn) is a basis of Fn for which

L0 = oF f1 +·· ·+oF fn and L1 = pk1
F f1 +·· ·+pkn

F fn ,

where (k1, . . . ,kn) ∈ Zn and k1 É ·· · É kn , we put A0 = {i ∈ ∆n |ki = 0} and A1 = {i ∈ ∆n |ki = 1}
and we write p and q respectively for their cardinality. The condition ϖFL0 < L1 < L0 implies that
ki ∈ {0,1} for each i ∈∆n and that p, q ∈ {1, . . . ,n −1} and p +q = n.

(i). Let e = ([L0], [L1]) be a directed edge with ϖFL0 < L1 < L0. The inverse of e is then given by
e−1 = ([ϖ−1

F L1], [L0]) with L1 < L0 <ϖ−1
F L1. Let ( f1, . . . , fn) be a basis of Fn for which

L0 = oF f1 +·· ·+oF fn and L1 = pk1
F f1 +·· ·+pkn

F fn ,

where (k1, . . . ,kn) ∈Zn with k1 É ·· · É kn . With the previous notations we have the identifications
of kF-vector spaces

L1/ϖFL0 ≃
n⊕

i=1
pki

F /pF ≃ ⊕
i∈A0

oF/pF ⊕
⊕

i∈A1

pF/pF ≃ kp
F (2)

and similarly

L0/L1 ≃
n⊕

i=1
oF/pki

F ≃ ⊕
i∈A0

oF/oF ⊕
⊕

i∈A1

oF/pF ≃ kq
F . (3)

So we obtain dimkF

(
L0/L1

)= n −dimkF

(
L1/ϖFL0

)
, and then ξ(e−1) = n −ξ(e).

(ii). Let e = ([L0], [L1]) be a directed edge of BTn withϖFL0 < L1 < L0 and let A be an apartment
containing e. To simplify, we can assume that in a some F-basis ( f1, . . . , fn) of Fn we have L0 =
oF f1 +·· ·+oF fn and L1 = px1

F f1 +·· ·+pxn
F fn , where x = (x1, . . . , xn) is in Zn . As previously, the x

′
i s

are in {0,1}.
Now if we assume that e ∈C1(BTn) then d([L0], [L1]) = 1. We have then

d0

(
0, x − 1

n
σ(x)e

)
=

p
n −1p

n

that is
n∑

i=1

(
xi − 1

n
σ(x)

)2

= n −1

n

and then (
n∑

i=1
x2

i

)
− 1

n
σ(x)2 = n −1

n
.
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But since xi ∈ {0,1} then σ(x)−σ(x)2/n = (n −1)/n which implies that the values of σ(x) are 1 or
n −1. Moreover, from the isomorphisms (2) and (3) we deduce that σ(x) = n −ξ(e), so as desired
we have ξ(e) ∈ {1,n −1}.

(iii). Let e ∈ C1(BTn) with e = ([L0], [L1]) and ϖFL0 < L1 < L0. Let’s prove firstly that if ξ(e) = 1
then there exist an F-basis ( f1, . . . , fn) of Fn such that L0 = p−1

F f1 + ·· · + p−1
F fn−1 + oF fn and

L1 = oF f1 + ·· · + oF fn and if ξ(e) = n − 1 then there exist an F-basis (h1, . . . ,hn) of Fn such that
L0 = oFh1 +·· ·+oFhn and L1 = oFh1 +·· ·+oFhn−1 +pFhn . Assume that ξ(e) = n −1 (the proof of
the case ξ(e) = 1 is similar). For a some F-basis (h1, . . . ,hn) of Fn we have L0 = oFh1 + ·· · +oFhn

and L1 = pk1
F h1 +·· ·+pkn

F hn where (k1, . . . ,kn) ∈Zn with k1 É ·· · É kn .
As mentioned previously, for each i ∈ ∆n the integer ki is in {0,1}. The fact that k1 É ·· · É kn

implies that (k1, . . . ,kn) = (0, . . . ,0,1, . . . ,1), where 0 appear p-times and 1 appear q-times.
So we have

L1/ϖFL0 ≃
p⊕

i=1
oF/pF ⊕

q⊕
i=p+1

pF/pF ≃ kp
F .

But since ξ(e) = n−1, that is dimkF (L1/ϖFL0) = n−1, then we have L1 = oFh1+·· ·+oFhn−1+pFhn .
So as desired we have an F-basis (h1, . . . ,hn) of Fn for which L0 = oFh1+·· ·+oFhn and L1 = oFh1+
·· ·+oFhn−1 +pFhn . Let’s prove now that two elements e,e ′ ∈ C1(BTn) are in the same Gn-orbit
if and only if they have the same type. Assume that e = ([L0], [L1]) (resp. e ′ = ([L′

0], [L′
1])) where

L0 and L1 (resp. L′
0 and L′

1) are two oF-lattices such that ϖFL0 < L1 < L0 (resp. ϖFL′
0 < L′

1 < L′
0).

If e and e ′ have the same type, say for example ξ(e) = ξ(e ′) = 1, then by the previous point we
can find two F-basis ( f1, . . . , fn) and ( f ′

1, . . . , f ′
n) for which L0 = p−1

F f1 + ·· · + p−1
F fn−1 + oF fn and

L1 = oF f1 +·· ·+oF fn and likewise L′
0 = p−1

F f ′
1 +·· ·+p−1

F f ′
n−1 +oF f ′

n and L′
1 = oF f ′

1 +·· ·+oF f ′
n . So if

g ∈ Gn is the unique element sending the F-basis ( f1, . . . , fn) on ( f ′
1, . . . , f ′

n) we have g L0 = L′
0 and

g L1 = L′
1, thus g .e = e ′ and then e and e ′ are in the same Gn-orbit. The converse is obvious. □

Proposition 8. Let n Ê 3 be an integer. For every k Ê 1, the set Ck (BTn) have two Gn-orbits.

Proof. Let us prove firstly that two elements α and β of Ck (BTn) are in the same Gn-orbit if and
only if their initial directed edges e−(α) and e−(β) are likewise. If α and β are in the same Gn-
orbit then clearly e−(α) and e−(β) are also in the same Gn-orbit. Conversely, assume that e−(α)
and e−(β) are in the same Gn-orbit, that is for same g ∈ Gn one has e−(α) = g .e−(β). So we have
e−(α) = e−(g .β).

Let A and B two apartments containing α and g .β respectively. Since the pointwise sta-
biliser H0 of the edge e−(α) acts transitively on the set of apartments containing e−(α) (see [6,
Cor. (7.4.9)]), then there exist h ∈ H0 such that h.B = A . So the two geodesic k-paths α and
hg .β are contained in the same apartment A and have the same initial directed edge (that is
e−(α) = e−(hg .β)). Thus the Proposition 6 implies thatα= hg .β and thenα and β are in the same
Gn-orbit. Consequently, two elements α and β of Ck (BTn) are in the same Gn-orbit if and only
if e−(α) and e−(β) are likewise. The result follows then from Lemma 7. □

One can prove that if α ∈ Ck (BTn) then all the directed edges of α have the same type. So
we can define the type of a geodesic k-path α, denoted by ξ(α), as the type of any of its directed
edges. The Gn-orbit of Ck (BTn) corresponding to the type n−1 (resp. type 1) will be denoted by
C +

k (BTn) (resp. C −
k (BTn)). The Lemma 7 implies that if α ∈C +

k (BTn) then its inverse α−1 is in
C −

k (BTn). So for every α ∈ Ck (BTn) the pair {α,α−1} constitute a system of representatives of
Ck (BTn) for the action of the group Gn . The path γ= ([L0], [L1], . . . , [Lk ]), where for i ∈ {0, . . . ,k}

Li = oFe1 +·· ·+oFen−1 +pi
Fen (4)

is an element of C +
k (BTn) contained in the standard apartment of BTn , this k-path will be called

the standard geodesic k-path.
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Lemma 9. For everyα ∈Ck (BTn) the stabilizer StabGn (α) acts transitively on P +(α) and P −(α).

Proof. Let α= (α0, . . . ,αk ) ∈Ck (BTn). We will prove that the action of StabGn (α) is transitive on
P +(α). By a similar way we get the same thing for P −(α). Let s, t ∈P +(α), that isβ= (α0, . . . ,αk , s)
and γ = (α0, . . . ,αk , t ) are two geodesic (k + 1)-paths. Since every geodesic path of BTn is
contained in a some apartment, then there are two apartments A and B containing β and γ

respectively. The stabilizer StabGn (α) is also the pointwise stabilizer in Gn of the segment [α0,αk ].
So StabGn (α) acts transitively on the set of apartments containing α (see [6, Cor. (7.4.9)]). Then
there exist g ∈ StabGn (α) such that g .A =B. So g .s is a right prolongation of the geodesic path α
contained in the apartment B. Hence, the two vertices t and g .s are two right prolongations of α
contained in the apartment B. Then by the Proposition 5, we obtain g .s = t and then as desired
the action of StabGn (α) on P +(α) is transitive. □

Corollary 10. For every α ∈Ck (BTn) we have :

P +(α) =P +(e+(α)) and P −(α) =P −(e−(α)),

that is the right (resp. left) prolongation of the geodesic path α are exactly the right (resp. left)
prolongation of the directed edge e+(α) (resp. e−(α)).

Proof. Let’s prove the first equality, the proof of the second is similar. It is clear that P +(α) ⊂
P +(e+(α)). Since the two sets P +(α) and P +(e+(α)) are finite it suffice to prove that they have
the same cardinality. If Γα denoted the subgroup StabGn (α), then by the previous lemma Γα acts
transitively on P +(α). So for any s ∈ P +(α) we can identify the set P +(α) with the quotient
set Γα/StabΓα (s). Similarly, the set P +(e+(α)) identifies with the quotient set Γe+(α)/StabΓe+(α)

(t )
for any t ∈ P +(e+(α)). Now since the action of Gn on Ck (BTn) have two orbits and since an
element β ∈ Ck (BTn) and its inverse β−1 have the same stabilizers in Gn then we can assume
that α is the standard geodesic k-path defined as previously by ([L0], [L1], . . . , [Lk ]), where Li =
oFe1 +·· ·+oFen−1 +pi

Fen for i ∈ {0, . . . ,k}. If s is the vertex [Lk+1], it is clearly that s ∈P +(α). By an
easy computation we obtain that Γα = Γ0(pk

F) and StabΓα (s) = Γ0(pk+1
F ). Moreover, we can check

that Γ0(pk
F)/Γ0(pk+1

F ) have cardinality qn−1
F . Similarly, we can check easily that the vertex s whose

equivalence class of oF-lattice is represented by Lk+1 is in P +(e+(α)) and that Γe+(α) = Γ0(pF) and
StabΓe+(α)

(s) = Γ0(p2
F). Furthermore, we can check that Γ0(pF)/Γ0(p2

F) have also cardinality qn−1
F .

So as desired we have the equality between the two sets P +(α) and P +(e+(α)). □

Corollary 11. For every α,β ∈Ck+1(BTn), if α+ = β+ (resp. α− = β−) then P +(α) =P +(β) (resp.
P −(α) =P −(β)).

Proof. If α+ = β+ (resp. α− = β−) then e+(α) = e+(β) (resp. e+(α) = e+(β)) and then the equality
P +(α) =P +(β) (resp. P −(α) =P −(β)) follows from the previous corollary. □

Lemma 12. Let s0 be a vertex of BTn . If L0 ∈ s0 then for every vertex x ∈ V (s0) there is a unique
representative L ∈ x such that

ϖFL0 < L < L0.

Proof. Let us fix a representative L0 ∈ s0. Let L and L′ two representatives of x such that ϖFL0 <
L < L0 and ϖFL0 < L′ < L0. Since L and L′ are equivalent then L′ = λL for some λ ∈ F×. Put
λ=ϖm

F u for some m ∈Z and u ∈ o×F . We have ϖFL0 < L < L0 which implies ϖm+1
F L0 <λL <ϖm

F L0,
that is ϖm+1

F L0 < L′ <ϖm
F L0. The two inclusions ϖFL0 < L′ < L0 and ϖm+1

F L0 < L′ <ϖm
F L0 implies

then that m = 0. Indeed, if we assume to the contrary that m ̸= 0, say for example m > 0, then
we have ϖm

F L0 É ϖFL0. So from the two inclusions ϖFL0 < L′ < L0 and ϖm+1
F L0 < L′ < ϖm

F L0 we
obtain L′ <ϖm

F L0 ÉϖFL0 < L′ which is a contradiction. We deduce then that L′ = uL = L. □

Let s0 be a vertex of BTn and L0 ∈ s0 be a fixed representative. By the previous lemma to any
vertex x ∈ V (s0) we can associate a non-trivial subspace of the kF-vector space Ṽ s0 := L0/ϖFL0.
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Indeed, if x ∈ V (s0) and Lx ∈ x is the unique representative such that ϖFL0 < Lx < L0, then Vx is
defined as Lx /ϖFL0. For every subspaces X and Y of Ṽ s0 , we put

δ(X ,Y ) = dimkF (X +Y )−dimkF (X ∩Y ).

In the following proposition, we give two formulas for the metric of BTn on the set of vertices in
the neighborhood a fixed vertex s0 of BTn in terms of the corresponding kF-vector spaces.

Proposition 13. For every vertex s0 of BTn we have :

(i) If x ∈ V (s0), then

d(s0, x) = 1p
n −1

(
n dimVx − (dimVx )2

) 1
2

.

(ii) If x, y ∈ V (s0), then

d(x, y) = 1p
n −1

(
nδ(Vx ,Vy )− (dimVx −dimVy )2

) 1
2

.

Proof. (i). Let us fix an oF-lattice L0 representing the vertex s0. Let x ∈ V (s0). We can choose
an apartment A containing s0 and x. Without loss of generality we can assume that A is the
standard apartment and that L0 = oFe1 +·· ·+oFen , where (e1, . . . ,en) is the standard basis of Fn .
Let Lx be the unique representative of the vertex x such that ϖFL0 < Lx < L0. Since the vertex
x lies in A then for some a = (a1, . . . , an) ∈ Zn we can write Lx = pa1

F e1 + ·· · + pan
F en . As in the

proof of Lemma 7, the coordinates ai ∈ {0,1} and not all the a′
i s are zero or one. Moreover, if

A0 = {i ∈∆n |ai = 0} and A1 = {i ∈∆n |ai = 1}, then clearly A0 ⊔ A1 =∆n . So we have

Lx = ⊕
i∈A0

oF ⊕
⊕

i∈A1

pF

and then
Vx = Lx /ϖFL0 ≃

⊕
i∈A0

oF/pF ⊕
⊕

i∈A1

pF/pF ≃ k |A0|
F .

Consequently dim(Vx ) = |A0|. We have

d(s0, x) =
√

n

n −1
d0(0, a − 1

n
σ(a)e) =

√
n

n −1

∥∥∥∥a − σ(a)

n
e

∥∥∥∥
=

√
n

n −1

(
n∑

i=1

(
ai − σ(a)

n

)2
) 1

2

=
√

n

n −1

(
n∑

i=1
a2

i −
2σ(a)

n
ai + σ(a)2

n2

) 1
2

=
√

n

n −1

(
n∑

i=1
a2

i −
2σ(a)2

n
+ σ(a)2

n

) 1
2

But as ai ∈ {0,1} for every i ∈∆n , then

d(s0, x) =
√

n

n −1

(
σ(a)− σ(a)2

n

) 1
2

.

On the other hand

σ(a) =
n∑

i=1
ai =

∑
i∈A1

1 = |A1| = n −dimVx .

So we get

d(s0, x) =
√

n

n −1

(
n −dimVx − (n −dimVx )2

n

) 1
2

,

and then

d(s0, x) = 1p
n −1

(
n dimVx − (dimVx )2

) 1
2

.

(ii). The proof of the second formula is obtained by a similar way. □
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If x and y are two vertices of BTn we write [x, y]0 for the combinatorial segment between x
and y . That is [x, y]0 is the set of vertices z of BTn such that d(x, z)+d(z, y) = d(x, y).

Corollary 14. If x, y ∈ V (s0), then s0 ∈ [x, y]0 if and only if Vx ⊕Vy = Ṽ s0 .

Proof. Follows from the previous proposition by an easy computation. □

If α= (α0, . . . ,αk ) is a k-path of BTn (where k Ê 1), the initial (resp. terminal) vertex of α, that
is α0 (resp. αk ), will be denoted by s−(α) (resp. s+(α)). If α and β are respectively a k-path and an
ℓ-path with s+(α) = s−(β), then their concatenation αβ is the (k +ℓ)-path of BTn defined by

αβ := (α0, . . . ,αk ,β1, . . . ,βℓ).

It is not true in general that the concatenation of two geodesic paths of BTn is a geodesic path.
But we have the following result :

Lemma 15. Let α= (α0, . . . ,αk ) and β= (β0, . . . ,βℓ) two geodesic paths of BTn of length k and ℓ
respectively and with s+(α) = s−(β). Thenαβ is a geodesic (k+ℓ)-path if and only ifβ1 ∈P +(e+(α))
(resp. αk−1 ∈P −(e−(β))).

Proof. If αβ is geodesic then it is clear that β1 ∈ P +(e+(α)) (resp. αk−1 ∈ P −(e−(β))). For the
converse, we will prove by induction on ℓ Ê 1 that for every geodesic path β = (β0, . . . ,βℓ) of
length ℓ such that s+(α) = s−(β), if β1 ∈P +(e+(α)) (resp. αk−1 ∈P −(e−(β))) then the (k +ℓ)-path
αβ is geodesic. For ℓ= 1 the property follows from Corollary 10. Assume that the property is true
for the order ℓ. Let β = (β0, . . . ,βℓ+1) be a geodesic (ℓ+1)-path of BTn such that s+(α) = s−(β)
and with β1 ∈ P +(e+(α)) (in the case when αk−1 ∈ P −(e−(β)) the proof is similar). From the
induction hypothesis, the (k + ℓ)-path αβ−, that is the path (α0, . . . ,αk ,β1, . . . ,βℓ), is geodesic.
Since moreover the vertex βℓ+1 is a right prolongation of the directed edge e+(αβ−) then by
Corollary 10 the path

αβ= (α0, . . . ,αk ,β1, . . . ,βℓ,βℓ+1)

is also geodesic. □

Corollary 16. Letα ∈Ck (BTn) andβ ∈Cℓ(BTn), where k,ℓÊ 1. Ifα is joined toβ by a nontrivial
geodesic path, that is there exists an integer 0 < m É min(k,ℓ) such that

αi =βi−k+m , for every i ∈ {k −m, . . . ,k},

then the sequence α∪ β := (α0, . . . ,αk ,βm+1, . . . ,βℓ) is a geodesic path. In particular if α,β ∈
Ck+1(BTn) such that α+ =β− (resp. α− =β+) then α∪β is a geodesic (k +2)-path.

Proof. The case when m = min(k,ℓ) is obvious since in this case α is a subpath of β or β is a
subpath of α. Assume then that m < min(k,ℓ). Since α̃ = (α0, . . . ,αk−m) is a subpath of α then α̃

is geodesic. Moreover it is clear that s+(α̃) = s−(β) (since from the hypothesis αk−m = β0). So the
concatenation α̃β is a path of BTn . But α̃β is nothing other than α∪β. The vertex β1 is clearly a
right prolongation of the directed edge e+(α̃) as β1 =αk−m+1. So by the previous lemma α∪β is
geodesic. □

4. The projective tower of graphs over BTn
(1)

In this section, our purpose is to give the construction of the tower of directed graphs lying
equivariantly over the 1-skeleton of the building BTn and to give some basic properties of these
tower of directed graphs. We note that our construction generalizes the construction of Broussous
given in [5] for the case n = 2. In the sequel, we will be interested then by the case n Ê 3.
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4.1. The construction

For every integer k Ê 0, we define the graph X̃k as the directed graph whose vertex (resp. edges)
set is the set C +

k (BTn) (resp. C +
k+1(BTn)). The structure of directed graph of X̃k is given by :

a− = (α0, . . . ,αk ), a+ = (α1, . . . ,αk+1), if a = (α0, . . . ,αk+1) .

Let’s notice firstly that the graph X̃0 is nothing other than the directed graph whose vertices are
those of BTn and for which the edges set is C +

1 (BTn). The action of Gn on the sets C +
k (BTn)

induce an action on the graph X̃k by automorphisms of directed graphs. Moreover, since the
stabilizers of the vertices of X̃k are open and compact then the action is proper. From the previous
section, the action of Gn on the graph X̃k is transitive on vertices and edges. For every vertex s
(resp. edge a) of X̃k , we write Γs (resp. Γa) for the stabilizer in Gn of s (resp. a). The stabilizer in Gn

of the standard vertex (resp. edge) of X̃k , that is the standard geodesic k-path (resp. (k +1)-path)
given in (4), is the subgroup Γ0(pk

F) (resp. Γ0(pk+1
F )).

Proposition 17. For every vertex s of X̃k the stabilizer Γs acts transitively on the two sets of
neighborhoods :

V −(s) = {
a ∈ X̃1

k

∣∣a− = s
}

and V +(s) = {
a ∈ X̃1

k

∣∣a+ = s
}

Proof. Follows immediately from Lemma 9. □

Recall that the 1-skeleton of the building BTn , denoted by BTn
(1), is the subcomplex of BTn

formed by the faces of dimension at most one. When k = 2m is even, there is a natural simplicial
projection pk : X̃k −→BTn

(1) defined on vertices by

pk (s−m , . . . , s0, . . . , sm) = s0.

Similarly, When k = 2m + 1 is odd, there is a natural simplicial projection pk : X̃sd
k −→ �BT

(1)
n ,

where X̃sd
k and �BT

(1)
n are respectively the barycentric subdivision of the graphs X̃k and BTn

(1).
The family of graphs (X̃k )kÊ0 constitute a tower of graphs over the graph BTn

(1) in the sense that
we have the following diagram of simplicial maps

· · · −→ X̃k+1
ϕεk−→ X̃k −→ ·· · −→ X̃0

p0−→BTn
(1)

where for ε=± and for k Ê 0, the map ϕεk : X̃k+1 −→ X̃k is the simplicial map defined on vertices
by ϕεk (s) = sε.

4.2. Connectivity of the graphs

The aim of this section is the study of the connectivity of the graphs X̃k . We begin by defining a
cover of X̃k+1 by finite subgraphs whose nerve is a graph isomorphic to X̃k . Assume that k Ê 0 is an
integer. For every vertex s of X̃k we define the subgraph X̃k+1(s) of the graph X̃k+1 as the subgraph
whose edges are the geodesic (k +2)-paths α ∈C +

k+2(BTn) of the form α= (x, s0, . . . , sk , y), where
x (resp. y) is a left (resp. right) prolongation of the path s. The vertices of X̃k+1(s) are exactly those
v ∈ X̃0

k+1 such that v− = s or v+ = s. Obviously the subgraphs X̃k+1(s), when s range over the set of
vertices of X̃k , form a cover the graph X̃k+1. That is

X̃k+1 =
⋃

s∈X̃0
k

X̃k+1(s). (5)

For every vertex s0 of X̃0 (considered as a vertex of BTn) the subgraph X̃1(s0) of X̃1 has two types
of vertices : the directed edges (x, s0) ∈ C +

1 (BTn) and the directed edges (s0, y) ∈ C +
1 (BTn). Let

us denote the kF-vector space kn
F by V . The Lemma 7 implies that the vertex set of X̃1(s0) may be

identified with the set P1(V )⊔P1(V ∗), where P1(V ) is the set of one dimensional subspaces and
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P1(V ∗) is the set of one codimensional subspaces of V . By the Corollary 14 we deduce that the
graph X̃1(s0) is isomorphic to the graph ∆(V ) whose vertex set is P1(V )⊔P1(V ∗) and in which
a vertex D ∈ P1(V ) is linked to a vertex H ∈ P1(V ∗) if and only if D ⊕ H = V and there is no
edges between two distinct vertices of P1(V ) (resp. P1(V ∗)). One can prove easily that ∆(V ) is
a connected bipartite graph so that X̃1(s0) is connected and bipartite for every vertex s0 of X̃0.

Lemma 18. Let k Ê 1 be an integer. Then we have :

(i) For every s ∈ X̃0
k , the graph X̃k+1(s) is a complete bipartite graph and hence connected,

(ii) The nerve N (X̃k+1) of the cover of X̃k+1 given in (5) is isomorphic to the graph X̃k .

Proof. (i). Let s ∈ X̃0
k . The set of vertices of X̃k+1(s) is clearly partitioned into two subsets. The

set U of vertices v ∈ X̃0
k+1 such that v− = s and the set V of vertices v ∈ X̃0

k+1 such that v+ = s.
By Corollary 16 we deduce that every vertex in U is linked to every vertex in V . So as desired the
graph X̃k+1(s) is a complete bipartite graph and then connected.

(ii). Let s and t two distinct vertices of X̃k . If s and t are linked by an edge then by Corollary 16
the two subgraphs X̃k+1(s) and X̃k+1(t ) have at least a common vertex, namely the vertex s ∪ t .
Conversely, if the two subgraphs X̃k+1(s) and X̃k+1(t ) have at least a common vertex, say v , then
we have v− = s or v+ = s and v− = t or v+ = t . As s and t are distinct then we deduce that v− = s
and v+ = t or v− = t and v+ = s. The Corollary 16 implies then that s and t are linked by an edge.
So the nerve of the cover of X̃k+1 by the subgraphs X̃k+1(s), for s ∈ X̃0

k , is the graph X̃k . □

Theorem 19. For every integer k Ê 0, the geometric realization of X̃k is connected and locally
compact.

Proof. The locally compactness of |X̃k | follows from the fact that the graphs X̃k are locally finite.
For the connectedness, we will prove firstly that X̃0 is connected. Let s = [L] and t = [M ] be two
distinct vertices of X̃0, where L and M are two oF-lattices. Let us choose an F-basis (v1, . . . , vn)
of Fn for which L = oFv1 + ·· · + oFvn and M = pk1

F v1 + ·· · + pkn
F vn , where (k1, . . . ,kn) ∈ Zn with

k1 É ·· · É kn . By changing the representative M ∈ [M ] we can assume that 0 < k1. Now let us
consider the sequence (L0, . . . ,Lm) of oF-lattices, where m = k1 + ·· ·+kn , defined as follows. For
every integer 0 É i É m, if k1 +·· ·+k j−1 +1 É i É k1 +·· ·+k j , where 1 É j É n, then

Li =
j−1⊕
ℓ=1

p
kℓ
F vℓ⊕p

i−(k1+···+k j−1)
F v j ⊕

n⊕
ℓ= j+1

oFvℓ.

By a straightforward computation, we can check easily that the sequence ([L0], . . . , [Lm]) is a path
of the graph X̃0 linking the vertex s to the vertex t . So as desired X̃0 is connected. Now we will
prove by induction that the graphs X̃k are connected for every non-negative integer k. Let k Ê 0
be an integer. Assume that the graph X̃k is connected and let’s prove that X̃k+1 is also connected.
Let u and v be two distinct vertices of X̃k+1. Since X̃k+1 is covered by the subgraph X̃k+1(s), when
s range over the set of vertices of X̃k , then there exist two vertices s, t ∈ X̃0

k such that u ∈ X̃0
k+1(s)

and v ∈ X̃0
k+1(t ). As X̃k is connected then there exist a path p = (p0, . . . , pm) in X̃k linking the two

vertices s and t (say p0 = s and pm = t ). For every integer i ∈ {1, . . . ,m}, let vi be any vertex of
the non-empty graph X̃k+1(pi−1)∩ X̃k+1(pi ). Let’s also put v0 = u and vℓ+1 = v . By the previous
lemma the graphs X̃k+1(pi ) are connected. So for i ∈ {0, . . . ,ℓ}, since pi and pi+1 are two vertices
of the graph X̃k+1(pi ) then there exist a path in X̃k+1 from pi to pi+1. Consequently there exist a
path in X̃k+1 connecting the two vertices u and v and then the graph X̃k+1 is connected. We have
then the connectedness of the graphs X̃k for every integer k Ê 0 which implies the connectedness
of their geometric realization. □
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5. Realization of the generic representations of Gn in the cohomology of the tower of
graphs

5.1. Generic representations of Gn

Let us firstly recall some basic facts and introduce some notations. Let ψ be a fixed additive
smooth character of F trivial on pF and nontrivial on oF. We define a character θψ of the group Un

of upper unipotent matrices as follows

θψ





1 u1,2 . . . . . . u1,n

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . . 1 un−1,n

0 . . . . . . 0 1




=ψ(u1,2 +·· ·+un−1,n).

Let (π,V) be an irreducible admissible representation of Gn considered as an irreducible admis-
sible representation of GLn(F) with trivial central character. The representation (π,V) is called
generic if

HomGLn (F)(π, IndGLn (F)
Un

θψ) ̸= 0.

By Frobenius reciprocity, this is equivalent to the existence of a nonzero linear form ℓ : V −→ C

such that ℓ(π(u).v) = θψ(u)ℓ(v) for every v ∈ V and u ∈ Un . Thus a generic representation (π,V ) of
Gn can be realized on a same space of functions f with the property f (ug ) = θψ(u) f (g ) for every
u ∈ Un and g ∈ GLn(F) and for which the action of GLn(F) on the space of π is by right translation.
Such a realization is called the Whittaker model of π. The following theorem, due to Bernstein
and Zelevinski, shows that generic representations have a unique Whittaker model.

Theorem 20 ([2, V.16]). Let (π,V ) be an irreducible admissible representation of Gn . Then the
dimension of the space HomGLn (F)(π, IndGLn (F)

Un
θψ) is at most one, that is

dimCHomGLn (F)

(
π, IndGLn (F)

Un
θψ

)
É 1.

In particular, if π is generic then π has a unique Whittaker model.

We have the following result which is due to H. Jacquet, J. L. Piatetski-Shapiro and J. Shalika,
see [8, Thm. (5.1)]:

Theorem 21. Let (π,V) be an irreducible generic representation of Gn .

(i) For k large enough, the space of fixed vectors V Γ0(pk
F ) is non-zero.

(ii) Let c(π) the smallest integer such that V Γ0(pc(π)+1
F ) ̸= 0, then for every integer k Ê c(π), we

have :
dimCV Γ0(pk+1

F ) = k − c(π)+1.

5.2. Realization of the Generic representations of Gn

In this section, we fix an irreducible generic representation (π,V ) of Gn and we make the following
assumption:

Assumption 22. π is non-spherical, that is the space of Γ0(p0
F)-fixed vectors

V Γ0(p0
F) := {

v ∈V
∣∣∀ g ∈ Γ0(p0

F), π(g )v = v
}

is zero.
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In the following, our aim is to prove that the representation π can be realized as a quotient of
the cohomology space H 1

c (X̃c(π),C) and if moreover π is cuspidal then in fact it can be realized
as a subrepresentation of this cohomology space. Furthermore, as in Theorem (5.3.2) of [5], we
obtain a multiplicity one result for cuspidals but in a more simpler way. The proofs of the results
below are similar to those given in [5, §(3.2)]. Let us recall that for every vertex s (resp. edge a) of
X̃c(π), Γs (resp. Γa) denotes the stabilizer in Gn of s (resp. a). We recall that

Γs0 = Γ0(pc(π)
F ) and Γa0 = Γ0(pc(π)+1

F ),

where s0 (resp. a0) is the standard vertex (resp. edge) of X̃c(π).

Lemma 23.

(i) For every edge a of X̃c(π), V Γa is of dimension one.
(ii) Let a be an edge of X̃c(π) and s be a vertex of a. Then for every v ∈V Γa we have∑

g∈Γs /Γa

π(g )v = 0.

Proof. (i). Since Gn acts transitively on the set of edges of X̃c(π) then the subgroupΓa is conjugate
to Γa0 which gives the result.

(ii). Clearly the vector
v0 := ∑

g∈Γs /Γa

π(g )v

is fixed by Γs . But by transitivity of the action of Gn on the set of vertices of X̃c(π), the subgroup Γs

is conjugate to Γs0 . So Theorem 21 implies that v0 = 0. □

We define a map
Ψ∨
π : V ∨ −→C 1 (

X̃c(π),C
)

as follows. Let us fix a non-zero vector v0 ∈V Γa0 . For every edge a of X̃c(π), we put

va =π(g ).v0, where a = g .a0 (6)

This definition is well defined since Gn acts transitively on X̃1
c(π) and it does not depend on the

choice of g ∈ Gn such that va = g .v0 as v0 is fixed by Γa0 . The mapΨ∨ is then defined by

Ψ∨(ϕ)(a) =ϕ(va)

for every ϕ ∈V ∨ and a ∈ X̃1
c(π). From (6) the mapΨ∨ is Gn-equivariant.

Lemma 24. The mapΨ∨ is injective and its image is contained in H∞(X̃c(π),C).

Proof. The Gn-equivariant map Ψ∨ is injective as it is nonzero and as the representation π is
irreducible. Let ϕ ∈V ∨. Let us prove that for every vertex s of X̃1

c(π),∑
a∈X̃1

c(π)

[a : s]ϕ(va) = 0.

Let s be a vertex of X̃1
c(π). By Proposition 17, the stabilizer Γs acts transitively on the two sets

V −(s) = {
a ∈ X̃1

c(π)

∣∣a− = s
}

and V +(s) = {
a ∈ X̃1

c(π)

∣∣a+ = s
}

.

Let us fix a+
s ∈ V +(s) and a−

s ∈ V −(s). We have then∑
a∈X̃1

c(π)

[a : s]ϕ(va) =ϕ
( ∑

a∈V +(s)

va −
∑

a∈V −(s)
va

)

=ϕ
 ∑

g∈Γs /Γa+s

π(g ).va+
s
− ∑

g∈Γs /Γa−s

π(g ).va−
s

= 0
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by Lemma 23. Consequently, Im(Ψ∨) is contained in H (X̃c(π),C) which implies that it is con-
tained in H∞(X̃c(π),C). □

By Lemma 1 we have the isomorphism of smooth Gn-module

H∞
(
X̃c(π),C

)≃ H 1
c

(
X̃c(π),C

)∨
.

So applying contragredients to the operator Ψ∨
π : V ∨ −→H∞(X̃c(π),C) we obtain an intertwining

operator
Ψ∨∨
π : H 1

c

(
X̃c(π),C

)∨∨ −→V ∨∨.

It is well known that a smooth Gn-module W have a canonical injection in the contragredi-
ent of its contragredient W ∨∨. So the smooth Gn-module H 1

c (X̃c(π),C) canonically injects in
H 1

c (X̃c(π),C)∨∨. Moreover the representation π is irreducible and hence admissible then V and
V ∨∨ are canonically isomorphic. In the following, if ω ∈ C 1

c (X̃c(π),C) we write ω for its image in
H 1

c (X̃c(π),C).

Theorem 25. The restriction of Ψ∨∨
π to the space H 1

c (X̃c(π),C) define a nonzero intertwining
operator

Ψπ : H 1
c

(
X̃c(π),C

)−→V

given by
Ψπ(ω) = ∑

a∈X̃1
c(π)

ω(a)va

In particular, (π,V ) is isomorphic to a quotient of H 1
c (X̃c(π),C). Moreover, if (π,V ) is cuspidal then

it is isomorphic to a subrepresentation of H 1
c (X̃c(π),C).

Proof. The fact that the restriction of the mapΨ∨∨
π to the space H 1

c (X̃c(π),C) is given exactly by the
mapΨπ follows by a straightforward computation. Letω0 ∈C 1

c (X̃c(π),C) defined on the basis X̃1
c(π)

of C1(X̃c(π),C) as follows : for every edge a of X̃c(π),ω0(a) = 1 if a = a0 andω0(a) = 0 otherwise. We
have

Ψπ(ω0) = ∑
a∈X̃1

c(π)

ω0(a)va = v0 ̸= 0.

So the map Ψπ is nonzero. Hence by irreducibility of π the map Ψπ is surjective and then as
desired (π,V ) is isomorphic to a quotient of H 1

c (X̃c(π),C). If the representation (π,V ) is cuspidal,
so in particular generic, then it is isomorphic to a quotient of H 1

c (X̃c(π),C). But (π,V ) is cuspidal
and then it is projective in the category of smooth complex representation of Gn . So we have in
fact an embedding of (π,V ) in H 1

c (X̃c(π),C). □

Theorem 26. If the representation (π,V ) is cuspidal then it have a unique realization in the
cohomology space H 1

c (X̃c(π),C), that is

dimCHomGn

(
π, H 1

c

(
X̃c(π),C

))= 1.

Proof. Since Gn acts transitively on the set of vertices and edges of X̃c(π) then the two Gn-
modules C0

c (X̃c(π),C) and C1
c (X̃c(π),C) are respectively isomorphic to the following compactly

induced representation
c-indGn

Γ0(pc(π)
F )

1 and c-indGn

Γ0(pc(π)+1
F )

1

(where 1 denotes the trivial character). The space H 1
c (X̃c(π),C) is by definition the cokernel of the

coboundary map

C 0
c

(
X̃c(π),C

) d−→C 1
c

(
X̃c(π),C

)
Then we have a surjective map

ϕ : c-indGn

Γ0(pc(π)+1
F )

1 −→ H1
c

(
X̃c(π),C

)
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and so we obtain an injective map

ϕ̃ : HomGn

(
H 1

c

(
X̃c(π),C

)
,π

)−→ HomGn

(
c-indGn

Γ0(pc(π)+1
F )

1,π

)
On the other hand, by Frobenius reciprocity we have

HomGn

(
c-ind

Γ0(pc(π)+1
F )1,π

)
≃V Γn (pc(π)+1

F )

But by the Theorem 21, the space of fixed vectors V Γn (pc(π)+1
F ) is of dimension one. Thus we obtain

dimCHomGn

(
H 1

c

(
X̃c(π),C

)
,π

)É 1.

On the other hand, since the representation (π,V ) is cuspidal then it is a projective object of
the category of smooth representations of Gn . So the two spaces HomGn (H 1

c (X̃c(π),C),π) and
HomGn (π, H 1

c (X̃c(π),C) are in fact isomorphic. But by the previous theorem HomGn (H 1
c (X̃c(π),C),π)

is nonzero. So as desired the space HomGn (π, H 1
c (X̃c(π),C)) is one dimensional. □
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