

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Anis Rajhi

Compactly supported cohomology of a tower of graphs and generic representations of PGL_n over a local field

Volume 361 (2023), p. 1133-1149

Published online: 24 October 2023

https://doi.org/10.5802/crmath.485

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Combinatorics, Representation theory / Combinatoire, Théorie des représentations

Compactly supported cohomology of a tower of graphs and generic representations of PGL_n over a local field

Anis Rajhi^{*a*, *b*}

^a Department of quantitative methods, Higher business school of Tunis, Manouba University, Manouba 2010, Tunisia

^b Department of mathematics, Faculty of Sciences and Humanities in Dawadmi, Shaqra University, 11911 Shaqra, Saudi Arabia

E-mail: anis.rajhi.maths@gmail.com

Abstract. Let F be a non-archimedean locally compact field and let G_n be the group $PGL_n(F)$. In this paper we construct a tower $(\tilde{X}_k)_{k\geq 0}$ of graphs fibred over the one-skeleton of the Bruhat–Tits building of G_n . We prove that a non-spherical and irreducible generic complex representation of G_n can be realized as a quotient of the compactly supported cohomology of the graph \tilde{X}_k for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.

2020 Mathematics Subject Classification. 22E50, 20E42.

Manuscript received 31 October 2022, revised 24 February 2023, accepted 28 February 2023.

1. Introduction

Let F be a non-archimedean locally compact field and let G_n be the locally profinite group $PGL_n(F)$. In [4], P. Broussous has constructed a projective tower of simplicial complexes fibred over the Bruhat–Tits building of G_n . The idea (due to P. Schneider) consists of constructing simplicial complexes whose structure is very related to that of the Bruhat–Tits building. The goal of a such construction is to try to find geometric interpretation of certain classes of irreducible smooth representations of G_n . Such a geometric interpretation exists for example for the Steinberg representation of G_n which can be realized (see [3, Thm. 3]) as the cohomology with compact support in top dimension of the Bruhat–Tits building. In a second work (see [5]), P. Broussous has constructed in the case n = 2 a slightly modified version of his previous construction. More precisely, he construct a tower of directed graphs $(\tilde{X}_k)_{k\geq 0}$ fibred over the Bruhat–Tits tree of G_2 . Based on the existence of new vectors for irreducible generic representations of G_2 , he proves that an irreducible generic representation π of G_2 can be realized as a quotient of the compactly supported cohomology space $H_c^1(\tilde{X}_{c(\pi)}, \mathbb{C})$, where $c(\pi)$ is an integer related to the conductor of

the representation π . He proves moreover that if π is cuspidal then it can be realized as a subrepresentation of the last cohomology space and that a such realization is unique. In a parallel direction, the author has constructed a simplicial complex fibred over the Bruhat–Tits building of G_n whose top compactly supported cohomology realize as subquotient all the irreducible cuspidal level zero representations of G_n , see [9].

In this paper our aim is to generalize the construction of Broussous given in [5] to the case $n \ge 3$. More precisely we construct a projective tower $(\tilde{X}_k)_{k\ge 0}$ of directed graphs fibred over the 1-skeleton of the Bruhat–Tits building of G_n . In our construction, the graphs considered will be defined in terms of combinatorial geodesic paths of the Bruhat–Tits building of G_n .

Let π be an irreducible smooth generic and non-spherical representation of G_n . We prove that there exists an injective intertwining operator

$$\Psi_{\pi}^{\vee}: V^{\vee} \longrightarrow \mathscr{H}_{\infty}(\widetilde{\mathbf{X}}_{c(\pi)}, \mathbb{C}),$$

where V^{\vee} is the contragredient representation of π and $\mathscr{H}_{\infty}(\widetilde{X}_{c(\pi)}, \mathbb{C})$ is the space of smooth harmonic forms on the graph $\widetilde{X}_{c(\pi)}$. By applying contragredients to this intertwining operator and then by restriction to $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ we obtain a nonzero intertwining operator

$$\Psi_{\pi}: H^1_c(\widetilde{\mathbf{X}}_{c(\pi)}, \mathbb{C}) \longrightarrow V.$$

That is the representation π is isomorphic to a quotient of $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$. In the case when π is cuspidal, the G_n -equivariant map Ψ_{π} splits so that π injects in $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$. We prove that such an injection is unique, that is :

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G_n}(\pi, H^1_c(X_{c(\pi)}, \mathbb{C})) = 1.$$

2. Notations and preliminaries

In this article, F will be a non-archimedean locally compact field. We write \mathfrak{o}_F for the ring of integers of F, \mathfrak{p}_F for the maximal ideal of \mathfrak{o}_F , $k_F := \mathfrak{o}_F/\mathfrak{p}_F$ for the residue class field of F and q_F for the cardinal of k_F . We fix a normalized uniformizer \mathfrak{O}_F of \mathfrak{o}_F and we denote by v_F the normalized valuation of F.

2.1. The projective general linear group $PGL_n(F)$

For every integer $n \ge 2$, the projective general linear group $PGL_n(F)$ will be denoted by G_n . If $k \ge 1$ is an integer, we write $\widetilde{\Gamma}_0(\mathfrak{p}_{\mathbb{F}}^k)$ for the following subgroup of $GL_n(F)$

$$\widetilde{\Gamma}_{0}(\mathfrak{p}_{\mathrm{F}}^{k}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_{n}(\mathfrak{o}_{\mathrm{F}}) \middle| a \in \mathrm{GL}_{n-1}(\mathfrak{o}_{\mathrm{F}}), \ d \in \mathfrak{o}_{\mathrm{F}}^{\times}, \ c \equiv 0 \mod \mathfrak{p}_{\mathrm{F}}^{k} \right\}$$
(1)

and we write $\Gamma_0(\mathfrak{p}_F^k)$ for its image in G_n . We denote also the image in G_n of the standard maximal compact subgroup of $GL_n(F)$ by $\Gamma_0(\mathfrak{p}_F^0)$.

2.2. The Bruhat–Tits building of G_n

In this section we fix some notations and recall some well-known facts. For more details the reader may refer to [1], [7] or [10]. Recall that a lattice of the vector space F^n is an open compact subgroup of the additive group of F^n . A such lattice is an \mathfrak{o}_F -lattice if moreover it is an \mathfrak{o}_F -submodule of F^n . Equivalently, an \mathfrak{o}_F -lattice of F^n is a free \mathfrak{o}_F -submodule L of F^n of rank *n*. If L is an \mathfrak{o}_F -lattice of F^n then $L = \mathfrak{o}_F f_1 + \cdots + \mathfrak{o}_F f_n$ for some F-basis of F^n . More generally if L and

M are two o_F -lattices of F^n then there exist an F-basis (f_1, \ldots, f_n) of F^n and $(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$, with $\alpha_1 \leq \cdots \leq \alpha_n$, such that

$$L = \mathfrak{o}_F f_1 + \dots + \mathfrak{o}_F f_n$$
 and $M = \mathfrak{p}_F^{\alpha_1} f_1 + \dots + \mathfrak{p}_F^{\alpha_n} f_n$

For two \mathfrak{o}_{F} -lattices L and M of F^{n} , we say that L and M are equivalent if $L = \lambda M$ for some $\lambda \in F^{\times}$, and we denote the class of L by [L]. The Bruhat–Tits building of G_{n} , denoted by \mathscr{BT}_{n} , can be defined as the simplicial complex whose vertices are the equivalence classes of \mathfrak{o}_{F} -lattices in F^{n} and in which a collection $\Lambda_{0}, \Lambda_{1}, \dots, \Lambda_{q}$ of pairwise distinct vertices form a q-simplex if we can choose representatives $L_{i} \in \Lambda_{i}$, for $i \in \{0, \dots, q\}$, such that

$$\varpi_{\mathrm{F}} \mathrm{L}_0 < \mathrm{L}_q < \mathrm{L}_{q-1} < \cdots < \mathrm{L}_0$$

A q-simplex as above define the following flag of the $k_{\rm F}$ -vector space $L_0/\omega_{\rm F}L_0$

$$[0] < L_a / \mathcal{O}_F L_0 < L_{a-1} / \mathcal{O}_F L_0 < \dots < L_0 / \mathcal{O}_F L_0$$

The type of a such *q*-simplex is defined to be the type of the corresponding flag of the $k_{\rm F}$ -vector space $L_0/\partial_{\rm F}L_0 \simeq k_{\rm F}^n$. Note that the maximal dimension of the flag corresponding to a simplex σ of \mathscr{BT}_n is equal to n-2. Thus \mathscr{BT}_n is a simplicial complex of dimension n-1. The group $\operatorname{GL}_n({\rm F})$ acts naturally on \mathscr{BT}_n by simplicial automorphisms and its center $\operatorname{Z}(\operatorname{GL}_n({\rm F})) \simeq {\rm F}^\times$ acts trivially. So the group G_n acts simplicially on \mathscr{BT}_n and the action is transitive on vertices (resp. chambers, *q*-simplices of a fixed type). Let's recall that a labelling of \mathscr{BT}_n is a map from the set \mathscr{BT}_n^0 of vertices of \mathscr{BT}_n to the set $\{0, \ldots, n-1\}$ whose restriction to every chamber is injective. We can construct a labelling $\lambda : \mathscr{BT}_n^0 \longrightarrow \{0, \ldots, n-1\}$ of \mathscr{BT}_n as follows (see [7, 19.3]). Let L_0 be a fixed $\mathfrak{o}_{\rm F}$ -lattices of ${\rm F}^n$. If v is a vertex of \mathscr{BT}_n , we can choose a representative L such that $L_0 \subset L$. Since $\mathfrak{o}_{\rm F}$ is a principal ideal domain, the finitely generated torsion $\mathfrak{o}_{\rm F}$ -module L/L₀ is isomorphic to

$$\mathfrak{p}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}}^{k_1}\oplus\cdots\oplus\mathfrak{o}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}}^{k_n}$$

for some *n*-tupe of integers $0 \le k_1 \le k_2 \le \cdots \le k_n$. Then

$$\lambda(v) = \sum_{i=0}^{n} k_i \mod n \,.$$

The simplicial complex \mathscr{BT}_n is the union of a family of subcomplexes, called apartments, defined as follows. A frame is a set $\mathscr{F} = \{d_1, \ldots, d_n\}$ of one-dimensional F-vector subspaces of \mathbb{F}^n so that $\mathbb{F}^n = d_1 + \cdots + d_n$. The apartment corresponding to the frame \mathscr{F} is formed by all simplices σ with vertices Λ which are equivalence classes of lattices with representatives $L \in \Lambda$ such that

$$\mathbf{L} = \mathbf{L}_1 + \dots + \mathbf{L}_n,$$

where L_i is a lattice of the F-vector space d_i . If we fix an F-basis (f_1, \ldots, f_n) of F^n adapted to the decomposition $F^n = d_1 + \cdots + d_n$, then a vertex [L] is in the apartment corresponding to the frame \mathscr{F} if and only if

$$\mathbf{L} = \mathbf{p}_{\mathbf{F}}^{\alpha_1} f_1 + \dots + \mathbf{p}_{\mathbf{F}}^{\alpha_n} f_n$$

where $(\alpha_1, ..., \alpha_n) \in \mathbb{Z}^n$. Note that the set of frames of F^n can be identified with the set of maximal F-split torus of G_n . To a frame $\mathscr{F} = \{d_1, ..., d_n\}$ we can associate the maximal F-split torus $S \subset G_n$ acting diagonally with respect the decomposition of F^n as direct sum of vectorial lines. Under this identification, for every maximal F-split torus S of G_n , we denote by \mathscr{A}_S the corresponding apartment of \mathscr{BT}_n . The apartment corresponding to the diagonal torus T will be called *the standard apartment* of \mathscr{BT}_n and denoted by \mathscr{A}_0 .

The geometric realization $|\mathscr{BT}_n|$ of the building \mathscr{BT}_n is equipped by a metric defined, up to a multiplicative scalar, as follows. The geometric realization of each apartment $|\mathscr{A}|$ can be identified to the euclidian space

$$\mathbb{R}_{0}^{n} := \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} + \dots + x_{n} = 0\}$$

via the map defined by the following way. We fix an F-basis (f_1, \ldots, f_n) of F^n corresponding to the apartment \mathscr{A} . The set \mathscr{A}^0 of vertices of \mathscr{A} is then embedded in \mathbb{R}^n_0 via the map $\varphi : \mathscr{A}^0 \longrightarrow \mathbb{R}^n_0$ defined by

$$\varphi([\mathfrak{p}_{\mathrm{F}}^{x_1}f_1+\cdots+\mathfrak{p}_{\mathrm{F}}^{x_n}f_n])=x-\frac{1}{n}\sigma(x)e,$$

where for $x = (x_1, ..., x_n) \in \mathbb{Z}^n$, $\sigma(x) = x_1 + \cdots + x_n$ and where e = (1, ..., 1). This map extends to a bijection $\varphi : |\mathcal{A}| \longrightarrow \mathbb{R}_0^n$. Via this identification we can then equip $|\mathcal{A}|$ by an euclidian metric. More explicitly, if [L] and [M] are two vertices of \mathcal{A} with

$$\mathbf{L} = \mathbf{p}_{\mathbf{F}}^{x_1} f_1 + \dots + \mathbf{p}_{\mathbf{F}}^{x_n} f_n \text{ and } \mathbf{M} = \mathbf{p}_{\mathbf{F}}^{y_1} f_1 + \dots + \mathbf{p}_{\mathbf{F}}^{y_n} f_n,$$

then

$$d_{\mathcal{A}}([\mathrm{L}],[\mathrm{M}]) = \frac{1}{\sqrt{1 - \frac{1}{n}}} d_0 \left(x - \frac{1}{n} \sigma(x)e, y - \frac{1}{n} \sigma(y)e \right)$$

where d_0 is the euclidian metric of \mathbb{R}_0^n . We note that in the above formula the term $1/\sqrt{1-1/n}$ is just used to normalize the metric of the building. The metric d of $|\mathscr{BT}_n|$ is then defined as follows. If $x, y \in \mathscr{BT}_n$ then $d(x, y) = d_{\mathscr{A}}(x, y)$ for any apartment \mathscr{A} containing x and y and this is independent of the choice of apartment containing them. Finally we recall that the action of the group G_n on $|\mathscr{BT}_n|$ is by isometries.

2.3. Smooth representations of a locally profinite group

Let *G* be a locally profinite group. By a representation of *G* we mean a pair (π, V) formed by a \mathbb{C} -vector space *V* and by a group homomorphism $\pi : G \longrightarrow \operatorname{GL}_{\mathbb{C}}(V)$. A such representation is called smooth if for every $v \in V$ the stabilizer

$$\operatorname{Stab}_G(v) := \left\{ g \in \mathscr{G} \, | \, \pi(g) . \, v = v \right\}$$

is an open subgroup of *G*. In this paper all the representations will be assumed to be smooth and complex. A representation (π, V) of *G* is called admissible if for every compact open subgroup *K* of *G* the space $V^K = \{v \in V \mid \forall k \in K, \pi(k)v = v\}$ of *K*-fixed vectors is finite dimensional. If (π, V) is a representation of *G*, its contragredient π^{\vee} is the representation of *G* in the subspace V^{\vee} of the algebraic dual V^* formed by the linear forms whose stabilizers in *G* is open.

Let *H* be a closed subgroup of *G* and (ρ, W) a representation of *H*. We recall that the induced representation from *H* to *G* of (ρ, W) , denoted by $\operatorname{Ind}_H^G \rho$, is the representation of *G* on the space $\operatorname{Ind}_H^G W$ formed by the locally constant functions $f : G \longrightarrow W$ such that $f(hg) = \rho(h).f(h)$ for every $g \in G$ and $h \in H$, where the action of *G* on $\operatorname{Ind}_H^G \rho$ is by left translation. The compactly induced representation c-ind_H^G \rho is defined as the subrepresentation of $\operatorname{Ind}_H^G \rho$ formed by the functions $f \in \operatorname{Ind}_H^G W$ whose support is compact modulo *H*.

2.4. Locally profinite group acting on directed graphs

Throughout this paper, we call graph every one dimensional simplicial complex. If Y is a graph, the set of vertices (resp. edges) of Y will be denoted by Y^0 (resp. Y^1). A locally finite graph is a graph Y for which every vertex belongs to a finite number of edges. All graphs in this paper will be assumed to be locally finite. A directed graph is a graph Y with a map $Y^1 \longrightarrow Y^0 \times Y^0$, $a \longmapsto (a^-, a^+)$, such that for every edge *a* one has $a = \{a^-, a^+\}$, where for any edge *a* we denote by a^+ and a^- its head and tail respectively. A path in a graph Y is a sequence (s_0, \ldots, s_m) of vertices such that two consecutive vertices are linked by an edge. The graph Y is called connected if every pair of vertices are linked by a path. A cover of a graph Y is a family $(Y_{\alpha})_{\alpha \in \Delta}$ of subgraphs such that

$$Y = \bigcup_{\alpha \in \Delta} Y_{\alpha}.$$

1

The nerve of a such cover, denoted $\mathcal{N}(Y, (Y_{\alpha})_{\alpha \in \Delta})$ or just $\mathcal{N}(Y)$ if there is no risk of confusion, is the simplicial complex whose vertex set is Δ and in which a finite number of vertices $\alpha_0, \ldots, \alpha_r$ form a simplex if

$$\bigcap_{i=0}^{r} \mathbf{Y}_{\alpha_{i}} \neq \emptyset.$$

In the remainder of this section the notations and definitions are taken from [5]. If *Y* is a graph, we denote by $C_0(Y, \mathbb{C})$ (resp. $C_1(Y, \mathbb{C})$) the \mathbb{C} -vector space with basis Y^0 (resp. Y^1). Let $C_c^i(Y, \mathbb{C})$, i = 1, 2, be the \mathbb{C} -vector space of 1-cochains with finite support : $C_c^i(Y, \mathbb{C})$ is the subspace of the algebraic dual of $C_i(Y, \mathbb{C})$ formed of those linear forms whose restrictions to the basis Y^i have finite support. The coboundary map

$$d: C^0_c(Y,\mathbb{C}) \longrightarrow C^1_c(Y,\mathbb{C})$$

is defined by $d(f)(a) = f(a^+) - f(a^-)$. Then the compactly supported cohomology space $H^1_c(Y, \mathbb{C})$ of the graph *Y* is defined by

$$H^1_c(Y,\mathbb{C}) = C^1_c(Y,\mathbb{C})/dC^0_c(Y,\mathbb{C}).$$

Let *G* be a locally profinite group and *Y* be a directed graph. We assume that *G* acts on *Y* by automorphisms of directed graphs. For all $s \in Y^0$, $a \in Y^1$, the incidence numbers are defined by $[a:a^+] = +1$, $[a:a^-] = -1$, and [a:s] = 0 if $s \notin \{a^+, a^-\}$. These incidence numbers are equivariant in the sense that [g.a:g.s] = [a:s], for all $g \in G$. The group *G* acts on $C_i(Y, \mathbb{C})$ and $C_c^i(Y, \mathbb{C})$. If the action of *G* on *Y* is proper, that is for every $s \in Y^0$, the stabilizer $\operatorname{Stab}_G(s) := \{g \in G \mid g.s = s\}$ is open and compact, then the spaces $C_i(Y, \mathbb{C})$ and $C_c^i(Y, \mathbb{C})$ are smooth *G*-modules. The coboundary map is *G*-equivariant so that $H_c^1(Y, \mathbb{C})$ have a structure of a smooth *G*-module.

The space of harmonic forms of the graph *Y* is defined as the subspace of $C^1(Y, \mathbb{C})$ formed by the elements $f \in C^1(Y, \mathbb{C})$ verifying the following harmonicity condition (see [5, §(1.3)]):

$$\sum_{a \in Y^1} [a:s] f(a) = 0 \quad \text{for all } s \in Y^0$$

This space will be denoted by $\mathscr{H}(Y,\mathbb{C})$. It is naturally provided by a linear action of *G*. The smooth part of $\mathscr{H}(Y,\mathbb{C})$ under the action of *G*, i.e. the space of *smooth harmonic forms* is denoted by $\mathscr{H}_{\infty}(Y,\mathbb{C})$.

Lemma 1 ([5, (1.3.2)]). The algebraic dual of $H^1_c(Y, \mathbb{C})$ naturally identifies with $\mathcal{H}(Y, \mathbb{C})$. Under this isomorphism, the contragredient representation of $H^1_c(Y, \mathbb{C})$ corresponds to $\mathcal{H}_{\infty}(Y, \mathbb{C})$.

3. Combinatorial geodesic paths in \mathscr{BT}_n

The aim of this section is to define a class of combinatorial paths in \mathscr{BT}_n and to study the action of the group G_n on this class of paths. The pointwise stabilisers of such paths will be related to the new-vectors subgroups of $GL_n(F)$ (the subgroups defined in (1)), see [8].

3.1. Geodesic paths of \mathscr{BT}_n and their prolongations

Definition 2. Let $k \ge 0$ be an integer. A geodesic path of length k in \mathscr{BT}_n (or more simply geodesic k-path) is a path $\alpha = (\alpha_0, \alpha_1, ..., \alpha_k)$ of \mathscr{BT}_n such that for every $i, j \in \{0, ..., k\}$, $d(\alpha_i, \alpha_j) = |i - j|$. We denote the set of geodesic k-paths of \mathscr{BT}_n by $\mathscr{C}_k(\mathscr{BT}_n)$.

Remark 3. We notice that when $n \ge 4$ the edges of \mathscr{BT}_n are not all of length one, but in the particular cases n = 2 and n = 3 all the edges of \mathscr{BT}_n are of length one. We also note that every geodesic *k*-path of \mathscr{BT}_n lies in a same apartment. In fact if $\alpha \in \mathscr{C}_k(\mathscr{BT}_n)$ is a geodesic *k*-path as previously, then the geometric realization of any apartment containing the vertices α_0 and α_k contain the segment $[\alpha_0, \alpha_k]$ and then all the vertices of α are contained in the apartment \mathscr{A} .

In the following, if *s* is a vertex of \mathscr{BT}_n we write $\mathcal{V}(s)$ for its combinatorial neighborhood. That is $\mathcal{V}(s)$ is the set of vertices of \mathscr{BT}_n which are linked to *s* by an edge.

Definition 4. Let $\alpha = (\alpha_0, ..., \alpha_k) \in \mathcal{C}_k(\mathcal{BT}_n)$. A vertex *s* of \mathcal{BT}_n is called a right (resp. left) prolongation of α if $s \in \mathcal{V}(\alpha_k)$ (resp. $s \in \mathcal{V}(\alpha_0)$) and the sequence $(\alpha_0, ..., \alpha_k, s)$ (resp. $(s, \alpha_0, ..., \alpha_k)$) is a geodesic (k + 1)-path. We denote the set of right and left prolongation of a geodesic *k*-path α respectively by $\mathcal{P}^+(\alpha)$ and $\mathcal{P}^-(\alpha)$.

Proposition 5. Let $k \ge 1$ be an integer and let $\alpha = (\alpha_0, ..., \alpha_k)$ be a geodesic k-path of \mathscr{BT}_n . Then for every apartment \mathscr{A} containing α , there exists a unique right (resp. left) prolongation of α in the apartment \mathscr{A} .

Proof. Let \mathscr{A} be an apartment containing the path α . Assume that α have two right prolongations x and y in \mathscr{A} , that is $x, y \in \mathcal{V}(\alpha_k)$ and the two sequences $(\alpha_0, ..., \alpha_k, x)$ and $(\alpha_0, ..., \alpha_k, y)$ are geodesic (k + 1)-paths of \mathscr{A} . So in the geometric realization $|\mathscr{A}|$ of the apartment \mathscr{A} we have $\alpha_k \in [\alpha_0, x] \cap [\alpha_0, y]$. Therefore we have $\alpha_k = tx + (1 - t)\alpha_0$ and $\alpha_k = sy + (1 - s)\alpha_0$ for same t and s in]0,1[. Moreover the two vertices x and y are of the same distance from α_k , that is $d(x, \alpha_k) = d(y, \alpha_k)$. So we have $||x - \alpha_k|| = ||y - \alpha_k||$ (here $|| \cdot ||$ is the euclidian norm of $|\mathscr{A}| \simeq \mathbb{R}_0^n$). From this we obtain $(1 - t)||x - \alpha_0|| = (1 - s)||y - \alpha_0||$. But $||x - \alpha_0|| = ||y - \alpha_0||$ so we get t = s and then x = y.

Let $\alpha = (\alpha_0, ..., \alpha_k)$ be a geodesic path of \mathscr{BT}_n . The inverse of α , denoted by α^{-1} , is defined by $\alpha^{-1} := (\alpha_k, ..., \alpha_0)$. It is clear that α^{-1} is a geodesic path of \mathscr{BT}_n . If $k \ge 1$, the tail and the head of α are the two geodesic paths defined respectively by

$$\alpha^{-} := (\alpha_0, ..., \alpha_{k-1})$$
 and $\alpha^{+} := (\alpha_1, ..., \alpha_k).$

We define also the initial and terminal directed edge of α respectively by $e^{-}(\alpha) := (\alpha_0, \alpha_1)$ and $e^{+}(\alpha) := (\alpha_{k-1}, \alpha_k)$.

Proposition 6. Let $k \ge 1$ be an integer and let $\alpha, \beta \in \mathcal{C}_k(\mathcal{BT}_n)$. If α and β are contained in a same apartment and if $e^-(\alpha) = e^-(\beta)$ (resp. $e^+(\alpha) = e^+(\beta)$), then $\alpha = \beta$.

Proof. By induction on k, let $\alpha = (\alpha_0, ..., \alpha_{k+1})$ and $\beta = (\beta_0, ..., \beta_{k+1})$ two geodesic (k+1)-paths such that $e^-(\alpha) = e^-(\beta)$. Assume that α and β are contained in a same apartment \mathscr{A} . Since the two geodesic k-paths α^- and β^- are contained in the same apartment \mathscr{A} and as they have the same initial directed edges then by induction hypothesis we have $\alpha^- = \beta^-$, that is $\alpha_i = \beta_i$ for each $i \in \{0, ..., k\}$. So the two vertices α_{k+1} and β_{k+1} are two right prolongation of the geodesic k-paths α^- which are contained in the same apartment \mathscr{A} . Then by the previous proposition we obtain $\alpha_{k+1} = \beta_{k+1}$ and then $\alpha = \beta$ as required.

3.2. Action of G_n on the sets $\mathscr{C}_k(\mathscr{BT}_n)$

The group G_n acts on its building \mathscr{BT}_n by isometries, so G_n acts naturally on the sets $\mathscr{C}_k(\mathscr{BT}_n)$ for each integer $k \ge 0$. The action is given by

$$g.(\alpha_0,\ldots,\alpha_k) = (g.\alpha_0,\ldots,g.\alpha_k)$$

for every $g \in G_n$ and for every $(\alpha_0, ..., \alpha_k) \in \mathscr{C}_k(\mathscr{BT}_n)$. Note that since the set $\mathscr{C}_0(\mathscr{BT}_n)$ may be identified with the set of vertices of \mathscr{BT}_n , then the action of G_n on $\mathscr{C}_0(\mathscr{BT}_n)$ is transitive. In the particular case n = 2, the action of G_2 on the sets $\mathscr{C}_k(\mathscr{BT}_2)$ is transitive for every integer $k \ge 0$, see [5]. The situation is slightly different when $n \ge 3$. We are going to prove that in this last case, the sets $\mathscr{C}_k(\mathscr{BT}_n)$ (for $k \ge 1$) have exactly two G_n -orbits. We first define the type of a directed edge of \mathscr{BT}_n and we will prove in the lemma bellow that two geodesic 1-paths are in the same G_n -orbit

if and only if they have the same type. Let $e = ([L_0], [L_1])$ be a directed edge of \mathscr{BT}_n , where L_0 and L_1 are two \mathfrak{o}_F -lattices such that

$$\varpi_{\rm F} L_0 < L_1 < L_0.$$

The type of the directed edge *e*, denoted $\xi(e)$, is defined by

$$\xi(e) = \dim_{k_{\rm F}} (L_1 / \varpi_{\rm F} L_0).$$

This definition is clearly independent of the choice of representatives. For every directed edge e of \mathscr{BT}_n , we write e^{-1} for the inverse of e which is obtained from e by interchanging its vertices.

Lemma 7.

- (i) For every directed edge e of \mathscr{BT}_n , $\xi(e^{-1}) = n \xi(e)$,
- (ii) For every $e \in \mathscr{C}_1(\mathscr{BT}_n), \xi(e) \in \{1, n-1\},$
- (iii) Two elements $e, e' \in C_1(\mathscr{BT}_n)$ are in the same G_n -orbit if and only if they have the same type.

Proof. In the proof of the three statements we use the following notations. For each integer $n \ge 1$, we write Δ_n for the set of integers $\{1, ..., n\}$. If $e = ([L_0], [L_1])$ is a directed edge of \mathscr{BT}_n with $\varpi_F L_0 < L_1 < L_0$ and if $(f_1, ..., f_n)$ is a basis of \mathbb{F}^n for which

$$L_0 = \mathfrak{o}_F f_1 + \dots + \mathfrak{o}_F f_n$$
 and $L_1 = \mathfrak{p}_F^{k_1} f_1 + \dots + \mathfrak{p}_F^{k_n} f_n$,

where $(k_1, ..., k_n) \in \mathbb{Z}^n$ and $k_1 \le \cdots \le k_n$, we put $A_0 = \{i \in \Delta_n | k_i = 0\}$ and $A_1 = \{i \in \Delta_n | k_i = 1\}$ and we write p and q respectively for their cardinality. The condition $\mathcal{O}_F L_0 < L_1 < L_0$ implies that $k_i \in \{0, 1\}$ for each $i \in \Delta_n$ and that $p, q \in \{1, ..., n-1\}$ and p + q = n.

(i). Let $e = ([L_0], [L_1])$ be a directed edge with $\varpi_F L_0 < L_1 < L_0$. The inverse of e is then given by $e^{-1} = ([\varpi_F^{-1}L_1], [L_0])$ with $L_1 < L_0 < \varpi_F^{-1}L_1$. Let (f_1, \dots, f_n) be a basis of F^n for which

$$L_0 = \mathfrak{o}_F f_1 + \dots + \mathfrak{o}_F f_n$$
 and $L_1 = \mathfrak{p}_F^{k_1} f_1 + \dots + \mathfrak{p}_F^{k_n} f_n$,

where $(k_1, ..., k_n) \in \mathbb{Z}^n$ with $k_1 \le \cdots \le k_n$. With the previous notations we have the identifications of k_F -vector spaces

$$L_1/\varpi_F L_0 \simeq \bigoplus_{i=1}^n \mathfrak{p}_F^{k_i}/\mathfrak{p}_F \simeq \bigoplus_{i \in A_0} \mathfrak{o}_F/\mathfrak{p}_F \oplus \bigoplus_{i \in A_1} \mathfrak{p}_F/\mathfrak{p}_F \simeq k_F^p$$
(2)

and similarly

$$L_0/L_1 \simeq \bigoplus_{i=1}^n \mathfrak{o}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}}^{k_i} \simeq \bigoplus_{i \in A_0} \mathfrak{o}_{\mathrm{F}}/\mathfrak{o}_{\mathrm{F}} \oplus \bigoplus_{i \in A_1} \mathfrak{o}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^q.$$
(3)

So we obtain $\dim_{k_{\mathrm{F}}} (L_0/L_1) = n - \dim_{k_{\mathrm{F}}} (L_1/\varpi_{\mathrm{F}}L_0)$, and then $\xi(e^{-1}) = n - \xi(e)$.

(ii). Let $e = ([L_0], [L_1])$ be a directed edge of \mathscr{BT}_n with $\mathscr{D}_F L_0 < L_1 < L_0$ and let \mathscr{A} be an apartment containing e. To simplify, we can assume that in a some F-basis (f_1, \ldots, f_n) of F^n we have $L_0 = \mathfrak{o}_F f_1 + \cdots + \mathfrak{o}_F f_n$ and $L_1 = \mathfrak{p}_F^{x_1} f_1 + \cdots + \mathfrak{p}_F^{x_n} f_n$, where $x = (x_1, \ldots, x_n)$ is in \mathbb{Z}^n . As previously, the x'_i 's are in $\{0, 1\}$.

Now if we assume that $e \in \mathscr{C}_1(\mathscr{BT}_n)$ then $d([L_0], [L_1]) = 1$. We have then

$d_0\left(0,x-\frac{1}{n}\sigma(x)e\right)$	$=\frac{\sqrt{n-1}}{\sqrt{n}}$
---	--------------------------------

that is

$$\sum_{i=1}^{n} \left(x_i - \frac{1}{n} \sigma(x) \right)^2 = \frac{n-1}{n}$$

and then

$$\left(\sum_{i=1}^n x_i^2\right) - \frac{1}{n}\sigma(x)^2 = \frac{n-1}{n}.$$

But since $x_i \in \{0, 1\}$ then $\sigma(x) - \sigma(x)^2/n = (n-1)/n$ which implies that the values of $\sigma(x)$ are 1 or n-1. Moreover, from the isomorphisms (2) and (3) we deduce that $\sigma(x) = n - \xi(e)$, so as desired we have $\xi(e) \in \{1, n-1\}$.

(iii). Let $e \in \mathscr{C}_1(\mathscr{BT}_n)$ with $e = ([L_0], [L_1])$ and $\mathscr{D}_F L_0 < L_1 < L_0$. Let's prove firstly that if $\xi(e) = 1$ then there exist an F-basis (f_1, \ldots, f_n) of F^n such that $L_0 = \mathfrak{p}_F^{-1}f_1 + \cdots + \mathfrak{p}_F^{-1}f_{n-1} + \mathfrak{o}_F f_n$ and $L_1 = \mathfrak{o}_F f_1 + \cdots + \mathfrak{o}_F f_n$ and if $\xi(e) = n - 1$ then there exist an F-basis (h_1, \ldots, h_n) of F^n such that $L_0 = \mathfrak{o}_F h_1 + \cdots + \mathfrak{o}_F h_n$ and $L_1 = \mathfrak{o}_F h_1 + \cdots + \mathfrak{o}_F h_n$ and $L_1 = \mathfrak{o}_F h_1 + \cdots + \mathfrak{o}_F h_n$. Assume that $\xi(e) = n - 1$ (the proof of the case $\xi(e) = 1$ is similar). For a some F-basis (h_1, \ldots, h_n) of F^n we have $L_0 = \mathfrak{o}_F h_1 + \cdots + \mathfrak{o}_F h_n$ and $L_1 = \mathfrak{p}_F^{k_1} h_1 + \cdots + \mathfrak{p}_F^{k_n} h_n$ where $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ with $k_1 \leq \cdots \leq k_n$.

As mentioned previously, for each $i \in \Delta_n$ the integer k_i is in $\{0, 1\}$. The fact that $k_1 \leq \cdots \leq k_n$ implies that $(k_1, \dots, k_n) = (0, \dots, 0, 1, \dots, 1)$, where 0 appear *p*-times and 1 appear *q*-times.

So we have

$$L_1/\varpi_{\mathrm{F}}L_0 \simeq \bigoplus_{i=1}^p \mathfrak{o}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}} \oplus \bigoplus_{i=p+1}^q \mathfrak{p}_{\mathrm{F}}/\mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^p.$$

But since $\xi(e) = n - 1$, that is $\dim_{k_F}(L_1/\mathcal{O}_F L_0) = n - 1$, then we have $L_1 = \mathfrak{o}_F h_1 + \dots + \mathfrak{o}_F h_{n-1} + \mathfrak{p}_F h_n$. So as desired we have an F-basis (h_1, \dots, h_n) of F^n for which $L_0 = \mathfrak{o}_F h_1 + \dots + \mathfrak{o}_F h_n$ and $L_1 = \mathfrak{o}_F h_1 + \dots + \mathfrak{o}_F h_{n-1} + \mathfrak{p}_F h_n$. Let's prove now that two elements $e, e' \in \mathscr{C}_1(\mathscr{BT}_n)$ are in the same G_n -orbit if and only if they have the same type. Assume that $e = ([L_0], [L_1])$ (resp. $e' = ([L'_0], [L'_1])$) where L_0 and L_1 (resp. L'_0 and L'_1) are two \mathfrak{o}_F -lattices such that $\mathfrak{O}_F L_0 < L_1 < L_0$ (resp. $\mathfrak{O}_F L'_0 < L'_1 < L'_0$). If e and e' have the same type, say for example $\xi(e) = \xi(e') = 1$, then by the previous point we can find two F-basis (f_1, \dots, f_n) and (f'_1, \dots, f'_n) for which $L_0 = \mathfrak{p}_F^{-1}f_1 + \dots + \mathfrak{p}_F^{-1}f_{n-1} + \mathfrak{o}_F f_n$ and $L_1 = \mathfrak{o}_F f_1 + \dots + \mathfrak{o}_F f_n$ and likewise $L'_0 = \mathfrak{p}_F^{-1}f'_1 + \dots + \mathfrak{p}_F^{-1}f'_n$ and $L'_1 = \mathfrak{o}_F f'_1 + \dots + \mathfrak{o}_F f'_n$. So if $g \in G_n$ is the unique element sending the F-basis (f_1, \dots, f_n) on (f'_1, \dots, f'_n) we have $gL_0 = L'_0$ and $gL_1 = L'_1$, thus g.e = e' and then e and e' are in the same G_n -orbit. The converse is obvious.

Proposition 8. Let $n \ge 3$ be an integer. For every $k \ge 1$, the set $\mathcal{C}_k(\mathcal{BT}_n)$ have two G_n -orbits.

Proof. Let us prove firstly that two elements α and β of $\mathscr{C}_k(\mathscr{BT}_n)$ are in the same G_n -orbit if and only if their initial directed edges $e^-(\alpha)$ and $e^-(\beta)$ are likewise. If α and β are in the same G_n -orbit then clearly $e^-(\alpha)$ and $e^-(\beta)$ are also in the same G_n -orbit. Conversely, assume that $e^-(\alpha)$ and $e^-(\beta)$ are in the same G_n -orbit, that is for same $g \in G_n$ one has $e^-(\alpha) = g.e^-(\beta)$. So we have $e^-(\alpha) = e^-(g.\beta)$.

Let \mathscr{A} and \mathscr{B} two apartments containing α and $g.\beta$ respectively. Since the pointwise stabiliser H_0 of the edge $e^-(\alpha)$ acts transitively on the set of apartments containing $e^-(\alpha)$ (see [6, Cor. (7.4.9)]), then there exist $h \in H_0$ such that $h.\mathscr{B} = \mathscr{A}$. So the two geodesic *k*-paths α and $hg.\beta$ are contained in the same apartment \mathscr{A} and have the same initial directed edge (that is $e^-(\alpha) = e^-(hg.\beta)$). Thus the Proposition 6 implies that $\alpha = hg.\beta$ and then α and β are in the same G_n -orbit. Consequently, two elements α and β of $\mathscr{C}_k(\mathscr{BT}_n)$ are in the same G_n -orbit if and only if $e^-(\alpha)$ and $e^-(\beta)$ are likewise. The result follows then from Lemma 7.

One can prove that if $\alpha \in \mathscr{C}_k(\mathscr{BT}_n)$ then all the directed edges of α have the same type. So we can define the type of a geodesic *k*-path α , denoted by $\xi(\alpha)$, as the type of any of its directed edges. The G_n -orbit of $\mathscr{C}_k(\mathscr{BT}_n)$ corresponding to the type n-1 (resp. type 1) will be denoted by $\mathscr{C}_k^+(\mathscr{BT}_n)$ (resp. $\mathscr{C}_k^-(\mathscr{BT}_n)$). The Lemma 7 implies that if $\alpha \in \mathscr{C}_k^+(\mathscr{BT}_n)$ then its inverse α^{-1} is in $\mathscr{C}_k^-(\mathscr{BT}_n)$. So for every $\alpha \in \mathscr{C}_k(\mathscr{BT}_n)$ the pair $\{\alpha, \alpha^{-1}\}$ constitute a system of representatives of $\mathscr{C}_k(\mathscr{BT}_n)$ for the action of the group G_n . The path $\gamma = ([L_0], [L_1], \dots, [L_k])$, where for $i \in \{0, \dots, k\}$

$$L_i = \mathfrak{o}_{\mathrm{F}} e_1 + \dots + \mathfrak{o}_{\mathrm{F}} e_{n-1} + \mathfrak{p}_{\mathrm{F}}^l e_n \tag{4}$$

is an element of $\mathscr{C}_k^+(\mathscr{BT}_n)$ contained in the standard apartment of \mathscr{BT}_n , this *k*-path will be called *the standard geodesic k-path*.

Lemma 9. For every $\alpha \in \mathscr{C}_k(\mathscr{BT}_n)$ the stabilizer $\operatorname{Stab}_{G_n}(\alpha)$ acts transitively on $\mathscr{P}^+(\alpha)$ and $\mathscr{P}^-(\alpha)$.

Proof. Let $\alpha = (\alpha_0, ..., \alpha_k) \in \mathscr{C}_k(\mathscr{BT}_n)$. We will prove that the action of $\operatorname{Stab}_{G_n}(\alpha)$ is transitive on $\mathscr{P}^+(\alpha)$. By a similar way we get the same thing for $\mathscr{P}^-(\alpha)$. Let $s, t \in \mathscr{P}^+(\alpha)$, that is $\beta = (\alpha_0, ..., \alpha_k, s)$ and $\gamma = (\alpha_0, ..., \alpha_k, t)$ are two geodesic (k + 1)-paths. Since every geodesic path of \mathscr{BT}_n is contained in a some apartment, then there are two apartments \mathscr{A} and \mathscr{B} containing β and γ respectively. The stabilizer $\operatorname{Stab}_{G_n}(\alpha)$ is also the pointwise stabilizer in G_n of the segment $[\alpha_0, \alpha_k]$. So $\operatorname{Stab}_{G_n}(\alpha)$ acts transitively on the set of apartments containing α (see [6, Cor. (7.4.9)]). Then there exist $g \in \operatorname{Stab}_{G_n}(\alpha)$ such that $g.\mathscr{A} = \mathscr{B}$. So g.s is a right prolongation of the geodesic path α contained in the apartment \mathscr{B} . Hence, the two vertices t and g.s are two right prolongations of α contained in the apartment \mathscr{B} . Then by the Proposition 5, we obtain g.s = t and then as desired the action of $\operatorname{Stab}_{G_n}(\alpha)$ on $\mathscr{P}^+(\alpha)$ is transitive.

Corollary 10. For every $\alpha \in \mathscr{C}_k(\mathscr{BT}_n)$ we have :

$$\mathcal{P}^+(\alpha) = \mathcal{P}^+(e^+(\alpha)) \quad and \quad \mathcal{P}^-(\alpha) = \mathcal{P}^-(e^-(\alpha)),$$

that is the right (resp. left) prolongation of the geodesic path α are exactly the right (resp. left) prolongation of the directed edge $e^+(\alpha)$ (resp. $e^-(\alpha)$).

Proof. Let's prove the first equality, the proof of the second is similar. It is clear that $\mathscr{P}^+(\alpha) \subset \mathscr{P}^+(e^+(\alpha))$. Since the two sets $\mathscr{P}^+(\alpha)$ and $\mathscr{P}^+(e^+(\alpha))$ are finite it suffice to prove that they have the same cardinality. If Γ_α denoted the subgroup $\operatorname{Stab}_{G_n}(\alpha)$, then by the previous lemma Γ_α acts transitively on $\mathscr{P}^+(\alpha)$. So for any $s \in \mathscr{P}^+(\alpha)$ we can identify the set $\mathscr{P}^+(\alpha)$ with the quotient set $\Gamma_{\alpha'}/\operatorname{Stab}_{\Gamma_{\alpha'}}(s)$. Similarly, the set $\mathscr{P}^+(e^+(\alpha))$ identifies with the quotient set $\Gamma_{e^+(\alpha)}/\operatorname{Stab}_{\Gamma_{e^+(\alpha)}}(t)$ for any $t \in \mathscr{P}^+(e^+(\alpha))$. Now since the action of G_n on $\mathscr{C}_k(\mathscr{BT}_n)$ have two orbits and since an element $\beta \in \mathscr{C}_k(\mathscr{BT}_n)$ and its inverse β^{-1} have the same stabilizers in G_n then we can assume that α is the standard geodesic k-path defined as previously by $([L_0], [L_1], \dots, [L_k])$, where $L_i = \mathfrak{o}_F e_1 + \dots + \mathfrak{o}_F e_{n-1} + \mathfrak{p}_F^i e_n$ for $i \in \{0, \dots, k\}$. If s is the vertex $[L_{k+1}]$, it is clearly that $s \in \mathscr{P}^+(\alpha)$. By an easy computation we obtain that $\Gamma_\alpha = \Gamma_0(\mathfrak{p}_F^k)$ and $\operatorname{Stab}_{\Gamma_\alpha}(s) = \Gamma_0(\mathfrak{p}_F^{k+1})$. Moreover, we can check that $\Gamma_0(\mathfrak{p}_F^k)/\Gamma_0(\mathfrak{p}_F^{k+1})$ have cardinality q_F^{n-1} . Similarly, we can check easily that the vertex s whose equivalence class of \mathfrak{o}_F -lattice is represented by L_{k+1} is in $\mathscr{P}^+(e^+(\alpha))$ and that $\Gamma_{e^+(\alpha)} = \Gamma_0(\mathfrak{p}_F)$ and $\operatorname{Stab}_{\Gamma_{e^+(\alpha)}}(s) = \Gamma_0(\mathfrak{p}_F^2)$. Furthermore, we can check that $\Gamma_0(\mathfrak{p}_F)/\Gamma_0(\mathfrak{p}_F^2)$ have also cardinality q_F^{n-1} . So as desired we have the equality between the two sets $\mathscr{P}^+(\alpha)$ and $\mathscr{P}^+(e^+(\alpha))$.

Corollary 11. For every $\alpha, \beta \in \mathcal{C}_{k+1}(\mathcal{BT}_n)$, if $\alpha^+ = \beta^+$ (resp. $\alpha^- = \beta^-$) then $\mathcal{P}^+(\alpha) = \mathcal{P}^+(\beta)$ (resp. $\mathcal{P}^-(\alpha) = \mathcal{P}^-(\beta)$).

Proof. If $\alpha^+ = \beta^+$ (resp. $\alpha^- = \beta^-$) then $e^+(\alpha) = e^+(\beta)$ (resp. $e^+(\alpha) = e^+(\beta)$) and then the equality $\mathcal{P}^+(\alpha) = \mathcal{P}^+(\beta)$ (resp. $\mathcal{P}^-(\alpha) = \mathcal{P}^-(\beta)$) follows from the previous corollary.

Lemma 12. Let s_0 be a vertex of \mathscr{BT}_n . If $L_0 \in s_0$ then for every vertex $x \in \mathcal{V}(s_0)$ there is a unique representative $L \in x$ such that

$$\varpi_{\rm F} L_0 < L < L_0.$$

Proof. Let us fix a representative $L_0 \in s_0$. Let L and L' two representatives of x such that $\partial_F L_0 < L < L_0$ and $\partial_F L_0 < L' < L_0$. Since L and L' are equivalent then $L' = \lambda L$ for some $\lambda \in F^*$. Put $\lambda = \partial_F^m u$ for some $m \in \mathbb{Z}$ and $u \in \mathfrak{o}_F^*$. We have $\partial_F L_0 < L < L_0$ which implies $\partial_F^{m+1} L_0 < \lambda L < \partial_F^m L_0$, that is $\partial_F^{m+1} L_0 < L' < \partial_F^m L_0$. The two inclusions $\partial_F L_0 < L' < L_0$ and $\partial_F^{m+1} L_0 < L' < \partial_F^m L_0$ implies then that m = 0. Indeed, if we assume to the contrary that $m \neq 0$, say for example m > 0, then we have $\partial_F^m L_0 \le \partial_F L_0$. So from the two inclusions $\partial_F L_0 < L' < L_0$ and $\partial_F^{m+1} L_0 < L' < \partial_F^m L_0$ we obtain $L' < \partial_F^m L_0 \le \partial_F L_0 < L'$ which is a contradiction. We deduce then that L' = uL = L.

Let s_0 be a vertex of \mathscr{BT}_n and $L_0 \in s_0$ be a fixed representative. By the previous lemma to any vertex $x \in \mathcal{V}(s_0)$ we can associate a non-trivial subspace of the $k_{\rm F}$ -vector space $\widetilde{V}_{s_0} := L_0/\varpi_{\rm F}L_0$.

Indeed, if $x \in \mathcal{V}(s_0)$ and $L_x \in x$ is the unique representative such that $\omega_F L_0 < L_x < L_0$, then V_x is defined as $L_x/\omega_F L_0$. For every subspaces *X* and *Y* of \tilde{V}_{s_0} , we put

$$\delta(X, Y) = \dim_{k_{\mathrm{F}}}(X + Y) - \dim_{k_{\mathrm{F}}}(X \cap Y).$$

In the following proposition, we give two formulas for the metric of \mathscr{BT}_n on the set of vertices in the neighborhood a fixed vertex s_0 of \mathscr{BT}_n in terms of the corresponding $k_{\rm F}$ -vector spaces.

Proposition 13. For every vertex s_0 of \mathscr{BT}_n we have :

(i) If $x \in \mathcal{V}(s_0)$, then

$$d(s_0, x) = \frac{1}{\sqrt{n-1}} \left(n \dim V_x - (\dim V_x)^2 \right)^{\frac{1}{2}}.$$

(ii) If $x, y \in \mathcal{V}(s_0)$, then

$$d(x, y) = \frac{1}{\sqrt{n-1}} \left(n\delta(V_x, V_y) - (\dim V_x - \dim V_y)^2 \right)^{\frac{1}{2}}.$$

Proof. (i). Let us fix an \mathfrak{o}_{F} -lattice L_{0} representing the vertex s_{0} . Let $x \in \mathcal{V}(s_{0})$. We can choose an apartment \mathscr{A} containing s_{0} and x. Without loss of generality we can assume that \mathscr{A} is the standard apartment and that $L_{0} = \mathfrak{o}_{F}e_{1} + \cdots + \mathfrak{o}_{F}e_{n}$, where (e_{1}, \ldots, e_{n}) is the standard basis of F^{n} . Let L_{x} be the unique representative of the vertex x such that $\mathfrak{D}_{F}L_{0} < L_{x} < L_{0}$. Since the vertex x lies in \mathscr{A} then for some $a = (a_{1}, \ldots, a_{n}) \in \mathbb{Z}^{n}$ we can write $L_{x} = \mathfrak{p}_{F}^{a_{1}}e_{1} + \cdots + \mathfrak{p}_{F}^{a_{n}}e_{n}$. As in the proof of Lemma 7, the coordinates $a_{i} \in \{0, 1\}$ and not all the a'_{i} s are zero or one. Moreover, if $A_{0} = \{i \in \Delta_{n} | a_{i} = 0\}$ and $A_{1} = \{i \in \Delta_{n} | a_{i} = 1\}$, then clearly $A_{0} \sqcup A_{1} = \Delta_{n}$. So we have

$$L_{x} = \bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{p}_{\mathrm{F}}$$

and then

$$V_{x} = L_{x} / \varpi_{\mathrm{F}} L_{0} \simeq \bigoplus_{i \in A_{0}} \mathfrak{o}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \oplus \bigoplus_{i \in A_{1}} \mathfrak{p}_{\mathrm{F}} / \mathfrak{p}_{\mathrm{F}} \simeq k_{\mathrm{F}}^{|A_{0}|}$$

Consequently $\dim(V_x) = |A_0|$. We have

$$d(s_0, x) = \sqrt{\frac{n}{n-1}} d_0(0, a - \frac{1}{n}\sigma(a)e) = \sqrt{\frac{n}{n-1}} \left\| a - \frac{\sigma(a)}{n}e \right\|$$
$$= \sqrt{\frac{n}{n-1}} \left(\sum_{i=1}^n \left(a_i - \frac{\sigma(a)}{n} \right)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{n}{n-1}} \left(\sum_{i=1}^n a_i^2 - \frac{2\sigma(a)}{n}a_i + \frac{\sigma(a)^2}{n^2} \right)^{\frac{1}{2}}$$
$$= \sqrt{\frac{n}{n-1}} \left(\sum_{i=1}^n a_i^2 - \frac{2\sigma(a)^2}{n} + \frac{\sigma(a)^2}{n} \right)^{\frac{1}{2}}$$

But as $a_i \in \{0, 1\}$ for every $i \in \Delta_n$, then

$$d(s_0, x) = \sqrt{\frac{n}{n-1}} \left(\sigma(a) - \frac{\sigma(a)^2}{n}\right)^{\frac{1}{2}}.$$

On the other hand

$$\sigma(a) = \sum_{i=1}^{n} a_i = \sum_{i \in A_1} 1 = |A_1| = n - \dim V_x.$$

So we get

$$d(s_0, x) = \sqrt{\frac{n}{n-1}} \left(n - \dim V_x - \frac{(n - \dim V_x)^2}{n} \right)^{\frac{1}{2}}$$

and then

$$d(s_0, x) = \frac{1}{\sqrt{n-1}} \left(n \dim V_x - (\dim V_x)^2 \right)^{\frac{1}{2}}.$$

(ii). The proof of the second formula is obtained by a similar way.

If *x* and *y* are two vertices of \mathscr{BT}_n we write $[x, y]^0$ for the combinatorial segment between *x* and *y*. That is $[x, y]^0$ is the set of vertices *z* of \mathscr{BT}_n such that d(x, z) + d(z, y) = d(x, y).

Corollary 14. If $x, y \in \mathcal{V}(s_0)$, then $s_0 \in [x, y]^0$ if and only if $V_x \oplus V_y = \widetilde{V}_{s_0}$.

Proof. Follows from the previous proposition by an easy computation.

If $\alpha = (\alpha_0, ..., \alpha_k)$ is a *k*-path of \mathscr{BT}_n (where $k \ge 1$), the initial (resp. terminal) vertex of α , that is α_0 (resp. α_k), will be denoted by $s^-(\alpha)$ (resp. $s^+(\alpha)$). If α and β are respectively a *k*-path and an ℓ -path with $s^+(\alpha) = s^-(\beta)$, then their concatenation $\alpha\beta$ is the $(k + \ell)$ -path of \mathscr{BT}_n defined by

$$\alpha\beta := (\alpha_0, \ldots, \alpha_k, \beta_1, \ldots, \beta_\ell).$$

It is not true in general that the concatenation of two geodesic paths of \mathscr{BT}_n is a geodesic path. But we have the following result :

Lemma 15. Let $\alpha = (\alpha_0, ..., \alpha_k)$ and $\beta = (\beta_0, ..., \beta_\ell)$ two geodesic paths of \mathscr{BT}_n of length k and ℓ respectively and with $s^+(\alpha) = s^-(\beta)$. Then $\alpha\beta$ is a geodesic $(k+\ell)$ -path if and only if $\beta_1 \in \mathscr{P}^+(e^+(\alpha))$ (resp. $\alpha_{k-1} \in \mathscr{P}^-(e^-(\beta))$).

Proof. If $\alpha\beta$ is geodesic then it is clear that $\beta_1 \in \mathscr{P}^+(e^+(\alpha))$ (resp. $\alpha_{k-1} \in \mathscr{P}^-(e^-(\beta))$). For the converse, we will prove by induction on $\ell \ge 1$ that for every geodesic path $\beta = (\beta_0, ..., \beta_\ell)$ of length ℓ such that $s^+(\alpha) = s^-(\beta)$, if $\beta_1 \in \mathscr{P}^+(e^+(\alpha))$ (resp. $\alpha_{k-1} \in \mathscr{P}^-(e^-(\beta))$) then the $(k + \ell)$ -path $\alpha\beta$ is geodesic. For $\ell = 1$ the property follows from Corollary 10. Assume that the property is true for the order ℓ . Let $\beta = (\beta_0, ..., \beta_{\ell+1})$ be a geodesic $(\ell + 1)$ -path of \mathscr{BT}_n such that $s^+(\alpha) = s^-(\beta)$ and with $\beta_1 \in \mathscr{P}^+(e^+(\alpha))$ (in the case when $\alpha_{k-1} \in \mathscr{P}^-(e^-(\beta))$) the proof is similar). From the induction hypothesis, the $(k + \ell)$ -path $\alpha\beta^-$, that is the path $(\alpha_0, ..., \alpha_k, \beta_1, ..., \beta_\ell)$, is geodesic. Since moreover the vertex $\beta_{\ell+1}$ is a right prolongation of the directed edge $e^+(\alpha\beta^-)$ then by Corollary 10 the path

$$\alpha\beta = (\alpha_0, \dots, \alpha_k, \beta_1, \dots, \beta_\ell, \beta_{\ell+1})$$

is also geodesic.

Corollary 16. Let $\alpha \in \mathcal{C}_k(\mathcal{BT}_n)$ and $\beta \in \mathcal{C}_\ell(\mathcal{BT}_n)$, where $k, \ell \ge 1$. If α is joined to β by a nontrivial geodesic path, that is there exists an integer $0 < m \le \min(k, \ell)$ such that

$$\alpha_i = \beta_{i-k+m}$$
, for every $i \in \{k-m, \dots, k\}$,

then the sequence $\alpha \cup \beta := (\alpha_0, ..., \alpha_k, \beta_{m+1}, ..., \beta_\ell)$ is a geodesic path. In particular if $\alpha, \beta \in \mathcal{C}_{k+1}(\mathscr{BT}_n)$ such that $\alpha^+ = \beta^-$ (resp. $\alpha^- = \beta^+$) then $\alpha \cup \beta$ is a geodesic (k+2)-path.

Proof. The case when $m = \min(k, \ell)$ is obvious since in this case α is a subpath of β or β is a subpath of α . Assume then that $m < \min(k, \ell)$. Since $\tilde{\alpha} = (\alpha_0, ..., \alpha_{k-m})$ is a subpath of α then $\tilde{\alpha}$ is geodesic. Moreover it is clear that $s^+(\tilde{\alpha}) = s^-(\beta)$ (since from the hypothesis $\alpha_{k-m} = \beta_0$). So the concatenation $\tilde{\alpha}\beta$ is a path of \mathscr{BT}_n . But $\tilde{\alpha}\beta$ is nothing other than $\alpha \cup \beta$. The vertex β_1 is clearly a right prolongation of the directed edge $e^+(\tilde{\alpha})$ as $\beta_1 = \alpha_{k-m+1}$. So by the previous lemma $\alpha \cup \beta$ is geodesic.

4. The projective tower of graphs over $\mathscr{BT}_n^{(1)}$

In this section, our purpose is to give the construction of the tower of directed graphs lying equivariantly over the 1-skeleton of the building \mathscr{BT}_n and to give some basic properties of these tower of directed graphs. We note that our construction generalizes the construction of Broussous given in [5] for the case n = 2. In the sequel, we will be interested then by the case $n \ge 3$.

 \square

4.1. The construction

For every integer $k \ge 0$, we define the graph \widetilde{X}_k as the directed graph whose vertex (resp. edges) set is the set $\mathscr{C}_k^+(\mathscr{BT}_n)$ (resp. $\mathscr{C}_{k+1}^+(\mathscr{BT}_n)$). The structure of directed graph of \widetilde{X}_k is given by :

$$a^- = (\alpha_0, \dots, \alpha_k), a^+ = (\alpha_1, \dots, \alpha_{k+1}), \text{ if } a = (\alpha_0, \dots, \alpha_{k+1})$$

Let's notice firstly that the graph \widetilde{X}_0 is nothing other than the directed graph whose vertices are those of \mathscr{BT}_n and for which the edges set is $\mathscr{C}_1^+(\mathscr{BT}_n)$. The action of G_n on the sets $\mathscr{C}_k^+(\mathscr{BT}_n)$ induce an action on the graph \widetilde{X}_k by automorphisms of directed graphs. Moreover, since the stabilizers of the vertices of \widetilde{X}_k are open and compact then the action is proper. From the previous section, the action of G_n on the graph \widetilde{X}_k is transitive on vertices and edges. For every vertex *s* (resp. edge *a*) of \widetilde{X}_k , we write Γ_s (resp. Γ_a) for the stabilizer in G_n of *s* (resp. *a*). The stabilizer in G_n of the standard vertex (resp. edge) of \widetilde{X}_k , that is the standard geodesic *k*-path (resp. (k+1)-path) given in (4), is the subgroup $\Gamma_0(\mathfrak{p}_E^k)$ (resp. $\Gamma_0(\mathfrak{p}_E^{k+1})$).

Proposition 17. For every vertex s of \tilde{X}_k the stabilizer Γ_s acts transitively on the two sets of neighborhoods :

$$\mathcal{V}^{-}(s) = \{a \in \widetilde{X}_{k}^{1} \mid a^{-} = s\} \text{ and } \mathcal{V}^{+}(s) = \{a \in \widetilde{X}_{k}^{1} \mid a^{+} = s\}$$

Proof. Follows immediately from Lemma 9.

Recall that the 1-skeleton of the building \mathscr{BT}_n , denoted by $\mathscr{BT}_n^{(1)}$, is the subcomplex of \mathscr{BT}_n formed by the faces of dimension at most one. When k = 2m is even, there is a natural simplicial projection $p_k : \tilde{X}_k \longrightarrow \mathscr{BT}_n^{(1)}$ defined on vertices by

$$p_k(s_{-m},\ldots,s_0,\ldots,s_m)=s_0.$$

Similarly, When k = 2m + 1 is odd, there is a natural simplicial projection $p_k : \widetilde{X}_k^{sd} \longrightarrow \widetilde{\mathscr{BT}}_n^{(1)}$, where \widetilde{X}_k^{sd} and $\widetilde{\mathscr{BT}}_n^{(1)}$ are respectively the barycentric subdivision of the graphs \widetilde{X}_k and $\mathscr{BT}_n^{(1)}$. The family of graphs $(\widetilde{X}_k)_{k\geq 0}$ constitute a tower of graphs over the graph $\mathscr{BT}_n^{(1)}$ in the sense that we have the following diagram of simplicial maps

$$\cdots \longrightarrow \widetilde{\mathbf{X}}_{k+1} \xrightarrow{\varphi_k^{\varepsilon}} \widetilde{\mathbf{X}}_k \longrightarrow \cdots \longrightarrow \widetilde{\mathbf{X}}_0 \xrightarrow{p_0} \mathscr{BT}_n^{(1)}$$

where for $\varepsilon = \pm$ and for $k \ge 0$, the map $\varphi_k^{\varepsilon} : \widetilde{X}_{k+1} \longrightarrow \widetilde{X}_k$ is the simplicial map defined on vertices by $\varphi_k^{\varepsilon}(s) = s^{\varepsilon}$.

4.2. Connectivity of the graphs

The aim of this section is the study of the connectivity of the graphs \tilde{X}_k . We begin by defining a cover of \tilde{X}_{k+1} by finite subgraphs whose nerve is a graph isomorphic to \tilde{X}_k . Assume that $k \ge 0$ is an integer. For every vertex *s* of \tilde{X}_k we define the subgraph $\tilde{X}_{k+1}(s)$ of the graph \tilde{X}_{k+1} as the subgraph whose edges are the geodesic (k + 2)-paths $\alpha \in \mathscr{C}^+_{k+2}(\mathscr{BT}_n)$ of the form $\alpha = (x, s_0, \dots, s_k, y)$, where *x* (resp. *y*) is a left (resp. right) prolongation of the path *s*. The vertices of $\tilde{X}_{k+1}(s)$ are exactly those $v \in \tilde{X}^0_{k+1}$ such that $v^- = s$ or $v^+ = s$. Obviously the subgraphs $\tilde{X}_{k+1}(s)$, when *s* range over the set of vertices of \tilde{X}_k , form a cover the graph \tilde{X}_{k+1} . That is

$$\widetilde{\mathbf{X}}_{k+1} = \bigcup_{s \in \widetilde{\mathbf{X}}_k^0} \widetilde{\mathbf{X}}_{k+1}(s).$$
(5)

For every vertex s_0 of \widetilde{X}_0 (considered as a vertex of \mathscr{BT}_n) the subgraph $\widetilde{X}_1(s_0)$ of \widetilde{X}_1 has two types of vertices : the directed edges $(x, s_0) \in \mathscr{C}_1^+(\mathscr{BT}_n)$ and the directed edges $(s_0, y) \in \mathscr{C}_1^+(\mathscr{BT}_n)$. Let us denote the $k_{\rm F}$ -vector space $k_{\rm F}^n$ by \overline{V} . The Lemma 7 implies that the vertex set of $\widetilde{X}_1(s_0)$ may be identified with the set $\mathbb{P}^1(\overline{V}) \sqcup \mathbb{P}^1(\overline{V}^*)$, where $\mathbb{P}^1(\overline{V})$ is the set of one dimensional subspaces and

 $\mathbb{P}^1(\overline{V}^*)$ is the set of one codimensional subspaces of \overline{V} . By the Corollary 14 we deduce that the graph $\widetilde{X}_1(s_0)$ is isomorphic to the graph $\Delta(\overline{V})$ whose vertex set is $\mathbb{P}^1(\overline{V}) \sqcup \mathbb{P}^1(\overline{V}^*)$ and in which a vertex $D \in \mathbb{P}^1(\overline{V})$ is linked to a vertex $H \in \mathbb{P}^1(\overline{V}^*)$ if and only if $D \oplus H = \overline{V}$ and there is no edges between two distinct vertices of $\mathbb{P}^1(\overline{V})$ (resp. $\mathbb{P}^1(\overline{V}^*)$). One can prove easily that $\Delta(\overline{V})$ is a connected bipartite graph so that $\widetilde{X}_1(s_0)$ is connected and bipartite for every vertex s_0 of \widetilde{X}_0 .

Lemma 18. Let $k \ge 1$ be an integer. Then we have :

- (i) For every s ∈ X⁰_k, the graph X_{k+1}(s) is a complete bipartite graph and hence connected,
 (ii) The nerve N(X_{k+1}) of the cover of X_{k+1} given in (5) is isomorphic to the graph X_k.

Proof. (i). Let $s \in \widetilde{X}_{k-1}^{0}$. The set of vertices of $\widetilde{X}_{k+1}(s)$ is clearly partitioned into two subsets. The set \mathscr{U} of vertices $v \in \widetilde{X}_{k+1}^0$ such that $v^- = s$ and the set \mathscr{V} of vertices $v \in \widetilde{X}_{k+1}^0$ such that $v^+ = s$. By Corollary 16 we deduce that every vertex in \mathcal{U} is linked to every vertex in \overline{V} . So as desired the graph $\tilde{X}_{k+1}(s)$ is a complete bipartite graph and then connected.

(ii). Let s and t two distinct vertices of \tilde{X}_k . If s and t are linked by an edge then by Corollary 16 the two subgraphs $\widetilde{X}_{k+1}(s)$ and $\widetilde{X}_{k+1}(t)$ have at least a common vertex, namely the vertex $s \cup t$. Conversely, if the two subgraphs $\widetilde{X}_{k+1}(s)$ and $\widetilde{X}_{k+1}(t)$ have at least a common vertex, say v, then we have $v^- = s$ or $v^+ = s$ and $v^- = t$ or $v^+ = t$. As s and t are distinct then we deduce that $v^- = s$ and $v^+ = t$ or $v^- = t$ and $v^+ = s$. The Corollary 16 implies then that s and t are linked by an edge. So the nerve of the cover of \widetilde{X}_{k+1} by the subgraphs $\widetilde{X}_{k+1}(s)$, for $s \in \widetilde{X}_{k}^{0}$, is the graph \widetilde{X}_{k} .

Theorem 19. For every integer $k \ge 0$, the geometric realization of \tilde{X}_k is connected and locally compact.

Proof. The locally compactness of $|\tilde{X}_k|$ follows from the fact that the graphs \tilde{X}_k are locally finite. For the connectedness, we will prove firstly that \tilde{X}_0 is connected. Let s = [L] and t = [M] be two distinct vertices of \widetilde{X}_0 , where *L* and *M* are two \mathfrak{o}_F -lattices. Let us choose an F-basis (v_1, \ldots, v_n) of F^n for which $L = \mathfrak{o}_F v_1 + \cdots + \mathfrak{o}_F v_n$ and $M = \mathfrak{p}_F^{k_1} v_1 + \cdots + \mathfrak{p}_F^{k_n} v_n$, where $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ with $k_1 \leq \cdots \leq k_n$. By changing the representative $M \in [M]$ we can assume that $0 < k_1$. Now let us consider the sequence $(L_0, ..., L_m)$ of \mathfrak{o}_F -lattices, where $m = k_1 + \cdots + k_n$, defined as follows. For every integer $0 \le i \le m$, if $k_1 + \dots + k_{j-1} + 1 \le i \le k_1 + \dots + k_j$, where $1 \le j \le n$, then

$$L_{i} = \bigoplus_{\ell=1}^{j-1} \mathfrak{p}_{\mathrm{F}}^{k_{\ell}} \nu_{\ell} \oplus \mathfrak{p}_{\mathrm{F}}^{i-(k_{1}+\cdots+k_{j-1})} \nu_{j} \oplus \bigoplus_{\ell=j+1}^{n} \mathfrak{o}_{\mathrm{F}} \nu_{\ell}.$$

By a straightforward computation, we can check easily that the sequence $([L_0], \ldots, [L_m])$ is a path of the graph \widetilde{X}_0 linking the vertex *s* to the vertex *t*. So as desired \widetilde{X}_0 is connected. Now we will prove by induction that the graphs \tilde{X}_k are connected for every non-negative integer k. Let $k \ge 0$ be an integer. Assume that the graph \tilde{X}_k is connected and let's prove that \tilde{X}_{k+1} is also connected. Let *u* and *v* be two distinct vertices of \tilde{X}_{k+1} . Since \tilde{X}_{k+1} is covered by the subgraph $\tilde{X}_{k+1}(s)$, when *s* range over the set of vertices of \widetilde{X}_k , then there exist two vertices $s, t \in \widetilde{X}_k^0$ such that $u \in \widetilde{X}_{k+1}^0(s)$ and $v \in \widetilde{X}_{k+1}^0(t)$. As \widetilde{X}_k is connected then there exist a path $p = (p_0, \dots, p_m)$ in \widetilde{X}_k linking the two vertices *s* and *t* (say $p_0 = s$ and $p_m = t$). For every integer $i \in \{1, ..., m\}$, let v_i be any vertex of the non-empty graph $\widetilde{X}_{k+1}(p_{i-1}) \cap \widetilde{X}_{k+1}(p_i)$. Let's also put $v_0 = u$ and $v_{\ell+1} = v$. By the previous lemma the graphs $X_{k+1}(p_i)$ are connected. So for $i \in \{0, ..., \ell\}$, since p_i and p_{i+1} are two vertices of the graph $\tilde{X}_{k+1}(p_i)$ then there exist a path in \tilde{X}_{k+1} from p_i to p_{i+1} . Consequently there exist a path in \tilde{X}_{k+1} connecting the two vertices u and v and then the graph \tilde{X}_{k+1} is connected. We have then the connectedness of the graphs \tilde{X}_k for every integer $k \ge 0$ which implies the connectedness of their geometric realization.

5. Realization of the generic representations of G_n in the cohomology of the tower of graphs

5.1. Generic representations of G_n

Let us firstly recall some basic facts and introduce some notations. Let ψ be a fixed additive smooth character of F trivial on \mathfrak{p}_F and nontrivial on \mathfrak{o}_F . We define a character θ_{ψ} of the group U_n of upper unipotent matrices as follows

$$\theta_{\psi} \begin{pmatrix} 1 & u_{1,2} & \dots & u_{1,n} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & u_{n-1,n} \\ 0 & \dots & 0 & 1 \end{pmatrix} = \psi(u_{1,2} + \dots + u_{n-1,n}).$$

Let (π, V) be an irreducible admissible representation of G_n considered as an irreducible admissible representation of $GL_n(F)$ with trivial central character. The representation (π, V) is called generic if

$$\operatorname{Hom}_{\operatorname{GL}_n(\operatorname{F})}(\pi,\operatorname{Ind}_{\operatorname{U}_n}^{\operatorname{GL}_n(\operatorname{F})}\theta_{\psi})\neq 0.$$

By Frobenius reciprocity, this is equivalent to the existence of a nonzero linear form $\ell : V \longrightarrow \mathbb{C}$ such that $\ell(\pi(u).v) = \theta_{\psi}(u)\ell(v)$ for every $v \in V$ and $u \in U_n$. Thus a generic representation (π, V) of G_n can be realized on a same space of functions f with the property $f(ug) = \theta_{\psi}(u)f(g)$ for every $u \in U_n$ and $g \in GL_n(F)$ and for which the action of $GL_n(F)$ on the space of π is by right translation. Such a realization is called the Whittaker model of π . The following theorem, due to Bernstein and Zelevinski, shows that generic representations have a unique Whittaker model.

Theorem 20 ([2, V.16]). Let (π, V) be an irreducible admissible representation of G_n . Then the dimension of the space $\operatorname{Hom}_{\operatorname{GL}_n(F)}(\pi, \operatorname{Ind}_{U_n}^{\operatorname{GL}_n(F)} \theta_{\psi})$ is at most one, that is

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\operatorname{GL}_{n}(\mathrm{F})}\left(\pi, \operatorname{Ind}_{\operatorname{U}_{n}}^{\operatorname{GL}_{n}(\mathrm{F})} \theta_{\psi}\right) \leq 1.$$

In particular, if π is generic then π has a unique Whittaker model.

We have the following result which is due to H. Jacquet, J. L. Piatetski-Shapiro and J. Shalika, see [8, Thm. (5.1)]:

Theorem 21. Let (π, V) be an irreducible generic representation of G_n .

- (i) For k large enough, the space of fixed vectors $V^{\Gamma_0(\mathfrak{p}_F^k)}$ is non-zero.
- (ii) Let $c(\pi)$ the smallest integer such that $V^{\Gamma_0(\mathfrak{P}_F^{c(\pi)+1})} \neq 0$, then for every integer $k \ge c(\pi)$, we have :

$$\dim_{\mathbb{C}} V^{\Gamma_0(\mathfrak{p}_{\mathrm{F}}^{k+1})} = k - c(\pi) + 1.$$

5.2. Realization of the Generic representations of G_n

In this section, we fix an irreducible generic representation (π, V) of G_n and we make the following assumption:

Assumption 22. π is non-spherical, that is the space of $\Gamma_0(\mathfrak{p}_F^0)$ -fixed vectors

$$V^{\Gamma_0(\mathfrak{p}_F^0)} := \left\{ v \in V \, \middle| \, \forall \, g \in \Gamma_0(\mathfrak{p}_F^0), \, \pi(g) \, v = v \right\}$$

is zero.

In the following, our aim is to prove that the representation π can be realized as a quotient of the cohomology space $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ and if moreover π is cuspidal then in fact it can be realized as a subrepresentation of this cohomology space. Furthermore, as in Theorem (5.3.2) of [5], we obtain a multiplicity one result for cuspidals but in a more simpler way. The proofs of the results below are similar to those given in [5, §(3.2)]. Let us recall that for every vertex *s* (resp. edge *a*) of $\widetilde{X}_{c(\pi)}$, Γ_s (resp. Γ_a) denotes the stabilizer in G_n of *s* (resp. *a*). We recall that

$$\Gamma_{s_0} = \Gamma_0(\mathfrak{p}_{\mathrm{F}}^{c(\pi)}) \text{ and } \Gamma_{a_0} = \Gamma_0(\mathfrak{p}_{\mathrm{F}}^{c(\pi)+1}),$$

where s_0 (resp. a_0) is the standard vertex (resp. edge) of $\widetilde{X}_{c(\pi)}$.

Lemma 23.

- (i) For every edge a of $\widetilde{X}_{c(\pi)}$, V^{Γ_a} is of dimension one.
- (ii) Let a be an edge of $\widetilde{X}_{c(\pi)}$ and s be a vertex of a. Then for every $v \in V^{\Gamma_a}$ we have

$$\sum_{g\in\Gamma_s/\Gamma_a}\pi(g)\nu=0.$$

Proof. (i). Since G_n acts transitively on the set of edges of $\widetilde{X}_{c(\pi)}$ then the subgroup Γ_a is conjugate to Γ_{a_0} which gives the result.

(ii). Clearly the vector

$$v_0 := \sum_{g \in \Gamma_s / \Gamma_a} \pi(g) v$$

is fixed by Γ_s . But by transitivity of the action of G_n on the set of vertices of $\tilde{X}_{c(\pi)}$, the subgroup Γ_s is conjugate to Γ_{s_0} . So Theorem 21 implies that $v_0 = 0$.

We define a map

$$\Psi_{\pi}^{\vee}: V^{\vee} \longrightarrow C^1(\widetilde{\mathbf{X}}_{c(\pi)}, \mathbb{C})$$

as follows. Let us fix a non-zero vector $v_0 \in V^{\Gamma_{a_0}}$. For every edge a of $\widetilde{X}_{c(\pi)}$, we put

$$v_a = \pi(g).v_0$$
, where $a = g.a_0$ (6)

This definition is well defined since G_n acts transitively on $\widetilde{X}_{c(\pi)}^1$ and it does not depend on the choice of $g \in G_n$ such that $v_a = g.v_0$ as v_0 is fixed by Γ_{a_0} . The map Ψ^{\vee} is then defined by

$$\Psi^{\vee}(\varphi)(a) = \varphi(v_a)$$

for every $\varphi \in V^{\vee}$ and $a \in \widetilde{X}_{c(\pi)}^1$. From (6) the map Ψ^{\vee} is G_n -equivariant.

Lemma 24. The map Ψ^{\vee} is injective and its image is contained in $\mathcal{H}_{\infty}(\widetilde{X}_{c(\pi)}, \mathbb{C})$.

Proof. The G_n -equivariant map Ψ^{\vee} is injective as it is nonzero and as the representation π is irreducible. Let $\varphi \in V^{\vee}$. Let us prove that for every vertex *s* of $\widetilde{X}^1_{c(\pi)}$,

$$\sum_{a\in \tilde{X}^1_{c(\pi)}} [a:s]\varphi(v_a) = 0$$

Let s be a vertex of $\widetilde{X}^1_{c(\pi)}$. By Proposition 17, the stabilizer Γ_s acts transitively on the two sets

$$\mathcal{V}^-(s) = \left\{ a \in \widetilde{X}^1_{c(\pi)} \mid a^- = s \right\} \quad \text{and} \quad \mathcal{V}^+(s) = \left\{ a \in \widetilde{X}^1_{c(\pi)} \mid a^+ = s \right\}.$$

Let us fix $a_s^+ \in \mathcal{V}^+(s)$ and $a_s^- \in \mathcal{V}^-(s)$. We have then

$$\sum_{a \in \bar{X}_{c(\pi)}^{1}} [a:s]\varphi(v_{a}) = \varphi\left(\sum_{a \in \mathcal{V}^{+}(s)} v_{a} - \sum_{a \in \mathcal{V}^{-}(s)} v_{a}\right)$$
$$= \varphi\left(\sum_{g \in \Gamma_{s}/\Gamma_{a_{s}^{+}}} \pi(g) \cdot v_{a_{s}^{+}} - \sum_{g \in \Gamma_{s}/\Gamma_{a_{s}^{-}}} \pi(g) \cdot v_{a_{s}^{-}}\right) = 0$$

Anis Rajhi

by Lemma 23. Consequently, $\operatorname{Im}(\Psi^{\vee})$ is contained in $\mathscr{H}(\widetilde{X}_{c(\pi)}, \mathbb{C})$ which implies that it is contained in $\mathscr{H}_{\infty}(\widetilde{X}_{c(\pi)}, \mathbb{C})$.

By Lemma 1 we have the isomorphism of smooth G_n -module

$$\mathcal{H}_{\infty}\left(\widetilde{\mathrm{X}}_{c(\pi)},\mathbb{C}\right)\simeq H^{1}_{c}\left(\widetilde{\mathrm{X}}_{c(\pi)},\mathbb{C}\right)^{\vee}.$$

So applying contragredients to the operator $\Psi_{\pi}^{\vee} : V^{\vee} \longrightarrow \mathscr{H}_{\infty}(\widetilde{X}_{c(\pi)}, \mathbb{C})$ we obtain an intertwining operator

$$\Psi_{\pi}^{\vee\vee}: H^1_c(\widetilde{\mathbf{X}}_{c(\pi)}, \mathbb{C})^{\vee\vee} \longrightarrow V^{\vee\vee}.$$

It is well known that a smooth G_n -module W have a canonical injection in the contragredient of its contragredient $W^{\vee\vee}$. So the smooth G_n -module $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$ canonically injects in $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})^{\vee\vee}$. Moreover the representation π is irreducible and hence admissible then V and $V^{\vee\vee}$ are canonically isomorphic. In the following, if $\omega \in C^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$ we write $\overline{\omega}$ for its image in $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$.

Theorem 25. The restriction of $\Psi_{\pi}^{\vee\vee}$ to the space $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ define a nonzero intertwining operator

$$\Psi_{\pi}: H^{1}_{c}\left(\widetilde{\mathbf{X}}_{c(\pi)}, \mathbb{C}\right) \longrightarrow V$$

given by

$$\Psi_{\pi}(\overline{\omega}) = \sum_{a \in \tilde{X}^{1}_{c(\pi)}} \omega(a) v_{a}$$

In particular, (π, V) is isomorphic to a quotient of $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$. Moreover, if (π, V) is cuspidal then it is isomorphic to a subrepresentation of $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$.

Proof. The fact that the restriction of the map $\Psi_{\pi}^{\vee\vee}$ to the space $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ is given exactly by the map Ψ_{π} follows by a straightforward computation. Let $\omega_0 \in C_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ defined on the basis $\widetilde{X}_{c(\pi)}^1$ of $C_1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ as follows : for every edge a of $\widetilde{X}_{c(\pi)}, \omega_0(a) = 1$ if $a = a_0$ and $\omega_0(a) = 0$ otherwise. We have

$$\Psi_{\pi}(\overline{\omega}_0) = \sum_{a \in \tilde{X}^1_{c(\pi)}} \omega_0(a) v_a = v_0 \neq 0.$$

So the map Ψ_{π} is nonzero. Hence by irreducibility of π the map Ψ_{π} is surjective and then as desired (π, V) is isomorphic to a quotient of $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$. If the representation (π, V) is cuspidal, so in particular generic, then it is isomorphic to a quotient of $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$. But (π, V) is cuspidal and then it is projective in the category of smooth complex representation of G_n . So we have in fact an embedding of (π, V) in $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$.

Theorem 26. If the representation (π, V) is cuspidal then it have a unique realization in the cohomology space $H_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$, that is

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G_n} \left(\pi, H_c^1 \left(\widetilde{X}_{c(\pi)}, \mathbb{C} \right) \right) = 1.$$

Proof. Since G_n acts transitively on the set of vertices and edges of $\widetilde{X}_{c(\pi)}$ then the two G_n -modules $C_c^0(\widetilde{X}_{c(\pi)}, \mathbb{C})$ and $C_c^1(\widetilde{X}_{c(\pi)}, \mathbb{C})$ are respectively isomorphic to the following compactly induced representation

$$\operatorname{c-ind}_{\Gamma_0(\mathfrak{p}_{\mathrm{F}}^{c(\pi)})}^{\mathbf{G}_n} 1 \text{ and } \operatorname{c-ind}_{\Gamma_0(\mathfrak{p}_{\mathrm{F}}^{c(\pi)+1})}^{\mathbf{G}_n} 1$$

(where 1 denotes the trivial character). The space $H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C})$ is by definition the cokernel of the coboundary map

$$C^0_c\left(\widetilde{\mathrm{X}}_{c(\pi)},\mathbb{C}\right) \overset{d}{\longrightarrow} C^1_c\left(\widetilde{\mathrm{X}}_{c(\pi)},\mathbb{C}\right)$$

Then we have a surjective map

$$\varphi: \operatorname{c-ind}_{\Gamma_0(\mathfrak{p}_F^{c(\pi)+1})}^{G_n} 1 \longrightarrow \operatorname{H}^1_c(\widetilde{\operatorname{X}}_{c(\pi)}, \mathbb{C})$$

and so we obtain an injective map

$$\widetilde{\varphi}: \operatorname{Hom}_{\operatorname{G}_{n}}\left(H^{1}_{c}\left(\widetilde{\operatorname{X}}_{c(\pi)}, \mathbb{C}\right), \pi\right) \longrightarrow \operatorname{Hom}_{\operatorname{G}_{n}}\left(\operatorname{c-ind}_{\operatorname{\Gamma}_{0}\left(\mathfrak{p}_{\operatorname{F}}^{c(\pi)+1}\right)}^{\operatorname{G}_{n}}1, \pi\right)$$

On the other hand, by Frobenius reciprocity we have

$$\operatorname{Hom}_{\operatorname{G}_n}\left(\operatorname{c-ind}_{\Gamma_0(\mathfrak{p}_{\operatorname{F}}^{c(\pi)+1})}\mathbf{1},\pi\right) \simeq V^{\Gamma_n(\mathfrak{p}_{\operatorname{F}}^{c(\pi)+1})}$$

But by the Theorem 21, the space of fixed vectors $V^{\Gamma_n(\mathfrak{p}_F^{c(\pi)+1})}$ is of dimension one. Thus we obtain

 $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathcal{G}_n} \left(H^1_c \left(\widetilde{\mathcal{X}}_{c(\pi)}, \mathbb{C} \right), \pi \right) \leq 1.$

On the other hand, since the representation (π, V) is cuspidal then it is a projective object of the category of smooth representations of G_n . So the two spaces $\operatorname{Hom}_{G_n}(H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C}), \pi)$ and $\operatorname{Hom}_{G_n}(\pi, H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C}))$ are in fact isomorphic. But by the previous theorem $\operatorname{Hom}_{G_n}(H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C}), \pi)$ is nonzero. So as desired the space $\operatorname{Hom}_{G_n}(\pi, H^1_c(\widetilde{X}_{c(\pi)}, \mathbb{C}))$ is one dimensional.

Acknowledgements

The author would like to thank the anonymous referee for their careful reading and helpful suggestions which improved an earlier draft.

References

- [1] P. Abramenko, K. S. Brown, *Buildings. Theory and applications*, Graduate Texts in Mathematics, vol. 248, Springer, 2008.
- [2] I. N. Bernstein, A. V. Zelevinskii, "Representations of the group GL(n, F), where F is a local non-Archimedean field", Usp. Mat. Nauk 31 (1976), no. 3(189), p. 5-70.
- [3] A. Borel, J.-P. Serre, "Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes S-arithmétiques", C. R. Math. Acad. Sci. Paris 272 (1971), p. A110-A113.
- [4] P. Broussous, "Simplicial complexes lying equivariantly over the affine building of GL(*N*)", *Math. Ann.* **329** (2004), no. 3, p. 495-511.
- [5] , "Representations of PGL(2) of a local field and harmonic cochains on graphs", *Ann. Fac. Sci. Toulouse, Math.* **18** (2009), no. 3, p. 495-513.
- [6] F. Bruhat, J. Tits, "Groupes réductifs sur un corps local : I. Données radicielles valuées", Publ. Math., Inst. Hautes Étud. Sci. 41 (1972), p. 5-251.
- [7] P. B. Garett, Buildings and Classical Groups, Chapman & Hall/CRC, 1997.
- [8] H. Jacquet, I. I. Piatetski-Shapiro, J. Shalika, "Conducteur des représentations du groupe linéaire", Math. Ann. 256 (1981), p. 199-214.
- [9] A. Rajhi, "Cohomologie à support compact d'un espace au-dessus de l'immeuble de Bruhat-Tits de GL_n sur un corps local. Représentations cuspidales de niveau zéro", *Confluentes Math.* 10 (2018), no. 1, p. 95-124.
- [10] M. Ronan, Lectures on buildings, University of Chicago Press, 2009.