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Abstract. This article deals with abstract linear time invariant controlled systems of parabolic type. In [9],
with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal
aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial
conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present
article is to push forward the analysis to deal with any admissible control operator. The considered setting
leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.

With such admissible control operator, the characterization of the minimal null control time is obtained
thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the control space)
followed by a constrained optimization procedure of the cost of this resolution. This leads to essentially sharp
estimates on the resolution of the block moment problems which are uniform with respect to the spectrum
of the evolution operator in a certain class. This uniformity allows the study of uniform controllability for
various parameter dependent problems. We also deduce estimates on the cost of controllability when the
final time goes to the minimal null control time.

We illustrate how the method works on a few examples of such abstract controlled systems and then we
deal with actual coupled systems of one dimensional parabolic partial differential equations. Our strategy
enables us to tackle controllability issues that seem out of reach by existing techniques.

Résumé. On étudie dans cet article des systèmes de contrôle paraboliques autonomes linéaires abstraits.
Dans [9], avec A. Benabdallah, nous avons introduit la méthode des moments par blocs dans le cas d’un
opérateur de contrôle scalaire. Le but principal de cette méthode est de permettre de calculer le temps
minimal nécessaire pour amener à zéro une donnée initiale fixée (ou un espace de données initiales), en
particulier dans le cas où des phénomènes de condensation spectrale sont présents. Le but du présent travail
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est d’approfondir cette analyse pour prendre en compte n’importe quel opérateur de contrôle admissible. Le
cadre proposé permet des applications à des équations ou systèmes paraboliques couplés en dimension un
d’espace.

Pour de tels opérateurs de contrôle admissibles, la caractérisation du temps minimal de contrôle est
obtenu à l’aide de la résolution de problèmes de moment vectoriels auxiliaires suivie d’une procédure
d’optimisation sous contrainte du coût de cette résolution. Cela amène à des estimations essentiellement
optimales pour la résolution de ces problèmes de moment par bloc qui, de surcroît, sont uniformes par
rapport au spectre de l’opérateur d’évolution à l’intérieur d’une certaine classe. Ce caractère uniforme
permet de prouver la contrôlabilité uniforme de divers systèmes dépendant de paramètres. Nous déduisons
également des estimations du coût de contrôlabilité quand le temps de contrôle est proche du temps
minimal.

Nous illustrons le fonctionnement de cette méthode sur quelques exemples de tels systèmes abstraits
mais également sur des exemples plus concrets de systèmes d’équations aux dérivées partielles paraboliques
contrôlés en dimension 1. Notre stratégie permet d’étudier des propriétés de contrôlabilité qui semblent hors
de portée par les méthodes existantes de la littérature.
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1. Introduction

1.1. Problem under study and state of the art

In this paper we study the controllability properties of the following linear control system{
y ′(t )+A y(t ) =Bu(t ),

y(0) = y0.
(1)

The assumptions on the operator A (see Section 2.1) will lead to applications to linear parabolic-
type equations or coupled systems of such equations mostly in the one dimensional setting. In all
this article the Hilbert space of control will be denoted by U and the operator B will be a general
admissible operator.

The question we address is the characterization of the minimal null control time (possibly zero
or infinite) from y0 that is: for a given initial condition y0, what is the minimal time T0(y0) such
that, for any T > T0(y0), there exists a control u ∈ L2(0,T ;U ) such that the associated solution
of (1) satisfies y(T ) = 0. A more precise definition of the minimal null control time is given in
Definition 4 in Section 2.1.1.

For a presentation of null controllability of parabolic control problems as well as the possi-
ble existence of a positive minimal null control time for such equations we refer to [4] or [9, Sec-
tion 1.1] and the references therein. Such a positive minimal null control time is due either to
insufficient observation of eigenvectors, or to condensation of eigenvalues or to the geometry of
generalized eigenspaces, or even to a combination of all those phenomena. Let us underline that
this phenomenon is completely unrelated to the minimal control time arising from constraints
on the state or on the control as studied for instance in [31], or to the one arising in hyperbolic
problems due to intrinsic finite speed of propagation in the equation.

Under the considered assumptions on A , the problem of characterizing the minimal null
control time has been solved for scalar controls (dimU = 1) in [9] where the block moment method
has been introduced in that purpose. The aim of the present article is to push forward the analysis
of [9] to extend it to any admissible control operator. The new difficulties come from the interplay
between spectral condensation phenomena and the particular geometry of the control operator.
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To present the general ideas, let us assume for simplicity that the operator A ∗ has a sequence
of real and positive eigenvalues Λ and that the associated eigenvectors φλ, for λ ∈ Λ, form a
complete family of the state space (the precise functional setting is detailed in Section 2.1). Then,
the solution of system (1) satisfies y(T ) = 0 if and only if the control u ∈ L2(0,T ;U ) solves the
following moment problem∫ T

0
e−λt 〈

u(T − t ),B∗φλ
〉

U dt =−e−λT 〈
y0,φλ

〉
, ∀λ ∈Λ. (2)

Solving moment problems associated with a scalar control operator. In the scalar case (U =R),
provided that B∗φλ ̸= 0, the moment problem reduces to∫ T

0
e−λt u(T − t )dt =−e−λT

〈
y0,

φλ

B∗φλ

〉
, ∀λ ∈Λ. (3)

This problem is usually solved by the construction of a biorthogonal family (qλ)λ∈Λ to the
exponentials {

t ∈ (0,T ) 7→ e−λt ; λ ∈Λ
}

in L2(0,T ;U ), i.e., a family (qλ)λ∈Λ such that∫ T

0
qλ(t )e−µt dt = δλ,µ, ∀λ,µ ∈Λ.

From [36], the existence of such biorthogonal family is equivalent to the summability condition∑
λ∈Λ

1

λ
<+∞. (4)

Remark 1. This condition (which will be assumed in the present article) is the main restriction
to apply the moment method. Indeed, due to Weyl’s law it imposes on many examples of
partial differential equations of parabolic-type a restriction to the one dimensional setting.
However, in some particular multi-dimensional geometries, the controllability problem can be
transformed into a family of parameter dependent moment problems, each of them satisfying
such assumption (see for instance [3, 8, 14] among others).

With such a biorthogonal family, a formal solution of the moment problem (3) is given by

u(T − t ) =− ∑
λ∈Λ

e−λT
〈

y0,
φλ

B∗φλ

〉
qλ(t ), t ∈ (0,T ).

Thus if, for any y0, the series defining u converges in L2(0,T ;U ) one obtains null controllability
of system (1) in time T . To do so, it is crucial to prove upper bounds on ∥qλ∥L2(0,T ).

Suitable bounds on such biorthogonal families were provided in the pioneering work of
Fattorini and Russell [21] in the case where the eigenvalues of A ∗ are well separated i.e. satisfy
the classical gap condition: inf

{|λ−µ| ; λ,µ ∈Λ, λ ̸=µ} > 0. When the eigenvalues are allowed to
condensate we refer to the work [5] for almost sharp estimates implying the condensation index
of the sequenceΛ. A discussion on other references providing estimates on biorthogonal families
is detailed below. These results have provided an optimal characterization of the minimal null
control time when the eigenvectors of A ∗ form a Riesz basis of the state space (and thus do not
condensate).

However, as analyzed in [9], there are situations in which the eigenvectors also condensate
and for which providing estimates on biorthogonal families is not sufficient to characterize the
minimal null control time. In [9], it is assumed that the spectrum Λ can be decomposed as a
union G of well separated groups of bounded cardinality. Then, the control u is seeked in the
form

u(T − t ) = ∑
G∈G

vG (t ),
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where, for any G ∈G , the function vG ∈ L2(0,T ;U ) solves the block moment problem
∫ T

0
e−λt vG (t )dt = e−λT

〈
y0,

φλ

B∗φλ

〉
, ∀λ ∈G ,∫ T

0
e−λt vG (t )dt = 0, ∀λ ̸∈G .

(5)

This enables to deal with the condensation of eigenvectors: the eigenvectors (φλ)λ∈Λ are only
assumed to form a complete family of the state space.

Solving moment problems associated with a non scalar control operator. When the control
is not scalar there are less available results in the literature. Here again, these results rely on the
existence of a biorthogonal family to the exponentials with suitable bounds. For instance, in [6],
null controllability in optimal time is proved using a subtle decomposition of the moment prob-
lem into two families of moment problems. In a more systematic way, one can take advantage
of the biorthogonality in the time variable to seek for a solution u of the moment problem (2) in
the form

u(T − t ) =− ∑
λ∈Λ

e−λT 〈
y0,φλ

〉
qλ(t )

B∗φλ∥∥B∗φλ
∥∥2

U

.

This strategy was introduced by Lagnese in [25] for a one dimensional wave equation and used in
the parabolic context for instance in [2, 3, 17, 18].

In the present article we deal with such general admissible control operators. As the eigenvec-
tors will only be assumed to form a complete family, for each initial condition y0, we study its null
control time for system (1) by solving block moment problems of the following form

∫ T

0

〈
VG (t ),e−λt B∗φλ

〉
U

dt =
〈

y0,e−λTφλ

〉
, ∀λ ∈G ,∫ T

0

〈
VG (t ),e−λt B∗φλ

〉
U

dt = 0, ∀λ ̸∈G .

(6)

Let us recall that, for pedagogical purposes, we have restricted this first introductory subsection
to the case of real simple eigenvalues. The general form of block moment problems under study
in this article is detailed in Section 2.2.

The strategy to solve such block moment problem and estimate its solution is presented on an
example in Section 1.3. Let us already notice that the geometry of the finite dimensional space
Span{B∗φλ ; λ ∈G} is crucial.

For instance, if this space is one dimensional, say generated by some b ∈ U , the strategy of
Lagnese can be adapted if one seeks for VG solution of the block moment problem (6) in the form

VG (t ) = vG (t )b,

where vG ∈ L2(0,T ;R) solves a scalar block moment problem of the same form as (5).
If, instead, the family (B∗φλ)λ∈G is composed of linearly independent vectors then it admits a

biorthogonal family in U denoted by (b∗
λ

)λ∈G . Then, one can for instance seek for VG solution of
the block moment problem (6) in the form

VG (t ) = vG (t )

( ∑
λ∈G

b∗
λ

)
.

where vG solves a scalar block moment problem of the form (5). An upper bound of the minimal
control time can then be obtained thanks to an estimate of the family (b∗

λ
)λ∈G , but without

guarantee of optimality.
In the general setting, taking into account the geometry of the observations of eigenvectors to

solve block moment problems of the form (6) is a more intricate question that we solve in this
article, still under the summability condition (4).
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Let us mention that we not only solve block moment problems of the form (6) but we also
provide estimates on their solutions to ensure that the series defining the control converges.
These estimates will lead to an optimal characterization of the minimal null control time for each
given problem.

We pay particular attention to these estimates so that they do not directly depend on the
sequence Λ but are uniform for classes of such sequences. This is an important step to tackle
uniform controllability for parameter dependent control problems. Estimates of this kind have
already proved their efficiency in various contexts such as: numerical analysis of semi-discrete
control problems [2], oscillating coefficients [32], analysis of degenerate control problems with
respect to the degeneracy parameter [17, 18], analysis of higher dimensional controllability
problems by reduction to families of one dimensional control problems [1, 3, 8, 14] or analysis
of convergence of Robin-type controls to Dirichlet controls [11].

Another important feature of the estimates we obtain is to track the dependency with respect
to the final time T when T goes to the minimal null control time. As presented in Remark 23,
this allows applications in higher dimensions (with a cylindrical geometry) or applications to
nonlinear control problems.

An overview of some estimates on biorthogonal families.
Finally, let us recall some classical results providing estimates for biorthogonal families to a

sequence of exponentials.
Under the classical gap condition, uniform estimates for biorthogonal families were already

obtained in [22] and sharp short-time estimates were obtained in [8]. In this setting, bounds with
a detailed dependency with respect to parameters were given in [19]. In this work, the obtained
bounds take into account the fact that the gap property between eigenvalues may be better in
high frequencies. Similar results were also obtained in [26].

Under a weak-gap condition of the form (23), that is when the eigenvalues can be gathered
in blocks of bounded cardinality with a gap between blocks (which is the setting of the present
article), uniform estimates on biorthogonal sequences follow from the uniform estimates for
the resolution of block moment problems proved in [9]. Similar estimates, but where the sharp
dependency with respect to T of the different constants is tracked, were obtained in [23]. Using
the strategy detailed in [12], the estimates of [9] can also be supplemented with such dependency
with respect to T (see Theorem 46). Let us mention that similar results were also obtained in [16]
with stronger assumptions, namely with a weak-gap assumption on the square roots of the
eigenvalues.

In the absence of any gap-type condition, estimates on biorthogonal families were first proved
in [5] involving the condensation index and then later in [3] involving a local measure of the gap.

1.2. Structure of the article

To ease the reading, let us give here the detailed outline of this article.
In Section 1.3 we detail, for a simple example, the obtained results as well as our strategy of

proof. This allows to explain the contents of this article without introducing too many notations.
In Section 2.1, we detail the framework, assumptions and notations that will be used through-

out this article. The main results concerning the resolution of block moment problems with a non
scalar control are stated in Section 2.2. The application of these results to the characterization of
the minimal null control time is stated in Section 2.3. We provide in Section 2.4 more explicit for-
mulas to compute the minimal null control time. We also deduce from our study some estimates
on the cost of controllability that are given in Section 2.5.

The results concerning the resolution of block moment problems are proved in Section 3. The
application of these results to the characterization of the minimal null control time and the study
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of the cost of null controllability are then proved in Section 4. More explicit formulas for the
computation of the minimal null control time are proved in Section 5.

Finally we apply these results to different examples. First we deal in Section 6 with academic
examples. For these examples the computations are rather simple and this allows to highlight the
different phenomena at stake in this minimal null control time study. We end this article with
the analysis of null controllability for systems of coupled linear partial differential equations of
parabolic type in Section 7.

1.3. Our analysis on a toy system

To highlight the ideas we develop in this article (without drowning them in technicalities or
notations), let us present our strategy of analysis of null controllability on an abstract simple
example.

We consider X = L2(0,1;R)2 and ω⊂ (0,1) a non empty open set. For a given a > 0 we define

Λ=
{
λk,1 := k2, λk,2 := k2 +e−ak2

; k ≥ 1
}

,

and take (ϕk )k≥1 a Hilbert basis of L2(0,1;R) such that

inf
k≥1

∥ϕk∥L2(ω) > 0.

Let φk,1 := (ϕk
ϕk

)
and φk,2 := ( 0

ϕk

)
. We define the operator A ∗ in X by

A ∗φk,1 =λk,1φk,1, A ∗φk,2 =λk,2φk,2,

with

D(A ∗) =
{∑

k≥1
ak,1φk,1 +ak,2φk,2 ;

∑
k≥1

λ2
k,1a2

k,1 +λ2
k,2a2

k,2 <+∞
}

.

The control operator B is defined by U = L2(0,1;R) and

B : u ∈U 7→
(

0
1ωu

)
∈ X .

The condition infk≥1 ∥ϕk∥L2(ω) > 0 yields

B∗φk,1 =B∗φk,2 =1ωϕk ̸= 0, ∀ k ≥ 1. (7)

This ensures approximate controllability of system (1).
We insist on the fact that the goal of this article is not to deal with this particular example but

to develop a general methodology to analyze the null controllability of system (1). The general
assumptions that will be considered in this article are detailed in Section 2.1.

Let y0 ∈ X . From Proposition 2 and the fact that {φk,1, φk,2 ; k ≥ 1} forms a complete family of
X , system (1) is null controllable from y0 at time T if and only if there exists u ∈ L2(0,T ;U ) such
that for any k ≥ 1 and any j ∈ {1,2},∫ T

0
e−λk, j t 〈

u(T − t ),B∗φk, j
〉

U dt =−e−λk, j T 〈
y0,φk, j

〉
X .

Following the idea developed in [9], we seek for a control u of the form

u(t ) =− ∑
k≥1

vk (T − t ) (8)

where, for each k ≥ 1, vk ∈ L2(0,T ;U ) solves the block moment problem
∫ T

0
e−λk, j t 〈

vk (t ),B∗φk, j
〉

U dt = e−λk, j T 〈
y0,φk, j

〉
X , ∀ j ∈ {1,2},∫ T

0
e−λk′ , j t 〈

vk (t ),B∗φk ′, j
〉

U dt = 0, ∀ k ′ ̸= k, ∀ j ∈ {1,2}.

(9)
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To solve (9), for a fixed k, we consider the following auxiliary block moment problem in the
space U 

∫ T

0
e−λk, j t vk (t )dt =Ωk, j , ∀ j ∈ {1,2},∫ T

0
e−λk′ , j t vk (t )dt = 0, ∀ k ′ ̸= k, ∀ j ∈ {1,2},

(10)

whereΩk, j ∈U have to be precised. If we impose thatΩk,1 andΩk,2 satisfy the constraints〈
Ωk, j ,B∗φk, j

〉
U = e−λk, j T 〈

y0,φk, j
〉

X , ∀ j ∈ {1,2}, (11)

we obtain that the solutions of (10) also solve (9). The existence of Ωk,1 and Ωk,2 satisfying the
constraints (11) is ensured by the approximate controllability condition (7); however there exist
infinitely many choices. A crucial point is that, by orthogonal projection, there exists Ωk,1 and
Ωk,2 in the space Uk = Span{B∗φk,1,B∗φk,2} satisfying the constraints (11).

Then, for any Ωk,1, Ωk,2 ∈ Uk , since the space Uk is of finite dimension, applying the scalar
results of [9] component by component leads to the existence of vk ∈ L2(0,T ;U ) satisfying (10). It
also gives the following estimate

∥vk∥2
L2(0,T ;U ) ≤CT,εeελk,1 F (Ωk,1,Ωk,2), (12)

with

F :
(
Ωk,1,Ωk,2

) ∈U 2 7→ ∥∥Ωk,1
∥∥2

U +
∥∥∥∥Ωk,2 −Ωk,1

λk,2 −λk,1

∥∥∥∥2

U
.

Using (12) and minimizing the function F under the constraints (11) we obtain that there exists
vk ∈ L2(0,T ;U ) solution of the block moment problem (9) such that

∥vk∥2
L2(0,T ;U ) ≤CT,εeελk,1 inf

{
F (Ωk,1,Ωk,2) ; Ωk,1,Ωk,2 satisfy (11)

}
. (13)

The corresponding general statements of the resolution of block moment problems are de-
tailed in Section 2.2 (see Theorem 10) and proved in Section 3. Actually using a refined version of
the results in [9] (see Theorem 46) we obtain sharper results including dependency with respect
to T .

Now that we can solve the block moment problems (9), a way to characterize the minimal null
control time is to estimate for which values of T the series (8) defining the control u converges in
L2(0,T ;U ).

To achieve this goal, we isolate in the estimate (13) the dependency with respect to T . Notice
that the function F does not depend on T but that the constraints (11) do.

For any k ≥ 1 and anyΩk,1,Ωk,2 ∈Uk we set

Ω̃k, j := eλk, j TΩk, j , ∀ j ∈ {1,2}.

Then, there is equivalence between the constraints (11) and the new constraints〈
Ω̃k, j ,B∗φk, j

〉
U = 〈

y0,φk, j
〉

X , ∀ j ∈ {1,2}. (14)

Now these constraints are independent of the variable T . From the mean value theorem we
obtain

F (Ωk,1,Ωk,2) =
∥∥∥e−λk,1T Ω̃k,1

∥∥∥2

U
+

∥∥∥∥∥e−λk,2T Ω̃k,2 −e−λk,1T Ω̃k,1

λk,2 −λk,1

∥∥∥∥∥
2

U

.

≤e−2λk,1T ∥∥Ω̃k,1
∥∥2

U +2e−2λk,2T

∥∥∥∥∥ Ω̃k,2 − Ω̃k,1

λk,2 −λk,1

∥∥∥∥∥
2

U

+2

(
e−λk,2T −e−λk,1T

λk,2 −λk,1

)2 ∥∥Ω̃k,1
∥∥2

U

≤2(1+T 2)e−2λk,1T F (Ω̃k,1,Ω̃k,2).

The general statement of this estimate is given in Lemma 27.
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Plugging this estimate into (12) and optimizing the function F under the constraints (14) yields

∥vk∥2
L2(0,T ;U ) ≤CT,εeελk,1 e−2λk,1T Ck (y0) (15)

where Ck (y0) is the quantity, independent of T , given by

Ck (y0) := inf

{∥∥Ω̃1
∥∥2

U +
∥∥∥∥ Ω̃2 − Ω̃1

λk,2 −λk,1

∥∥∥∥2

U
;
Ω̃1,Ω̃2 ∈Uk satisfy〈
Ω̃ j ,B∗φk, j

〉
U = 〈

y0,φk, j
〉

X , ∀ j ∈ {1,2}

}
. (16)

Estimate (15) proves that for any time T > 0 such that

T > limsup
k→+∞

lnCk (y0)

2λk,1

the series (8) defining the control u converges in L2(0,T ;U ). Thus, null controllability of (1) from
y0 holds for such T .

We also prove that the obtained estimate (15) is sufficiently sharp so that it characterizes the
minimal null control time from y0 as

T0(y0) = limsup
k→+∞

lnCk (y0)

2λk,1
. (17)

The corresponding general statements regarding the minimal null control time together with
bounds on the cost of controllability are detailed in Section 2.2 (see Theorem 11) and proved in
Section 4.

At this stage we have characterized the minimal null control time as stated in (17). However to
be able to estimate the actual value of T0(y0) one should be able to estimate the quantity Ck (y0)
as defined in (16). This formula is not very explicit and it does not get better in the general setting.

However, we notice that (16) is a finite dimensional optimization problem that we explicitly
solve in terms of the eigenelements of A ∗ and their observations through B∗.

Indeed the minimization problem (16) has a unique solution characterized by the existence of
multipliers m1, m2 ∈R such that for any H1, H2 ∈Uk we have〈

H1,Ω̃1
〉

U +
〈
Ω̃2 − Ω̃1

λk,2 −λk,1
,

H2 −H1

λk,2 −λk,1

〉
U
= m1

〈
H1,B∗φk,1

〉
U +m2

〈
H2,B∗φk,2

〉
U . (18)

Setting H1 = H2 = H for any H ∈Uk implies

Ω̃1 = m1B
∗φk,1 +m2B

∗φk,2.

Setting H1 = 0 and H2 = (λk,2 −λk,1)H for any H ∈Uk implies

Ω̃2 = m1B
∗φk,1 +m2B

∗φk,2 +m2(λk,2 −λk,1)2B∗φk,2.

Getting back to the constraints (14) we obtain(〈
y0,φk,1

〉
X〈

y0,φk,2
〉

X

)
= M

(
m1

m2

)
, (19)

where the 2×2 matrix M is defined by

M = GramU
(
B∗φk,1,B∗φk,2

)+GramU
(
0,(λk,2 −λk,1)B∗φk,2

)
.

Setting H1 = Ω̃1 and H2 = Ω̃2 in (18) and using (19) impliy

Ck (y0) = ∥∥Ω̃1
∥∥2

U +
∥∥∥∥ Ω̃2 − Ω̃1

λk,2 −λk,1

∥∥∥∥2

U
=

〈(〈
y0,φk,1

〉
X〈

y0,φk,2
〉

X

)
,

(
m1

m2

)〉
=

〈(〈
y0,φk,1

〉
X〈

y0,φk,2
〉

X

)
, M−1

(〈
y0,φk,1

〉
X〈

y0,φk,2
〉

X

)〉
.
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Thus, after computations, for the particular example we are considering here, the obtained
formula reads

Ck (y0) = 1

∥ϕk∥2
L2(ω)

〈
y0,

(
ϕk

ϕk

)〉2

X

+ e2ak2

∥ϕk∥2
L2(ω)

〈
y0,

(
ϕk

0

)〉2

X

.

Then, from (17), it comes that the minimal null control time from X of this example is given by

T0(X ) = a.

Notice, for instance, that this expression also gives that for a given y0 if the set{
k ∈N∗ ;

〈
y0,

(
ϕk

0

)〉
X

̸= 0

}
is finite, then null controllability from y0 holds in any positive time, i.e. T0(y0) = 0.

We obtain different explicit formula depending on the configuration for the multiplicity of the
eigenvalues of the considered block. The general statements of an explicit solution of the corre-
sponding optimization problem are detailed in Section 2.4 (see Theorem 14 and Theorem 18) and
proved in Section 5.

2. Main results

We state in this section the main results of this article concerning the resolution of block moment
problems and the application to the characterization of the minimal null control time. We start
by giving the functional setting and assumptions we use.

2.1. Framework, spectral assumptions and notations

2.1.1. Functional setting

The functional setting for the study of system (1) is the same as in [9]. For the sake of
completeness, let us briefly detail it. Unless explicitly stated, all the spaces are assumed to be
complex vector spaces.

We consider X a Hilbert space, whose inner product and norm are denoted by 〈 · , · 〉X and ∥·∥X

respectively. The space X is identified to its anti-dual through the Riesz theorem. Let (A ,D(A ))
be an unbounded operator in X such that −A generates a C 0−semigroup in X . Its adjoint in X is
denoted by (A ∗,D(A ∗)). Up to a suitable translation, we can assume that 0 is in the resolvent set
of A .

We denote by X1 (resp. X ∗
1 ) the Hilbert space D(A ) (resp. D(A ∗)) equipped with the norm

∥x∥1 := ∥A x∥X (resp. ∥x∥1∗ := ∥A ∗x∥X ) and we define X−1 as the completion of X with respect
to the norm ∥∥y

∥∥−1 := sup
z∈X ∗

1

〈
y, z

〉
X

∥z∥1∗
.

Notice that X−1 is isometrical to the topological anti-dual of X ∗
1 using X as a pivot space (see for

instance [38, Proposition 2.10.2]). The corresponding duality bracket will be denoted by 〈 · , · 〉−1,1∗

and satisfies 〈
y,cz

〉
−1,1∗ = c

〈
y, z

〉
−1,1∗ , ∀ y ∈ X−1,∀ z ∈ X ∗

1 ,∀ c ∈C.

The control space U is a Hilbert space (that we will identify to its anti-dual). Its inner product and
norm are denoted by 〈 · , · 〉U and ∥·∥U respectively. Let B : U → X−1 be a linear continuous control
operator and denote by B∗ : X ∗

1 →U its adjoint in the duality described above. Let (X ∗⋄ ,∥·∥⋄∗ ) be
a Hilbert space such that X ∗

1 ⊂ X ∗⋄ ⊂ X with dense and continuous embeddings. We assume that
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X ∗⋄ is stable by the semigroup generated by −A ∗. We also define X−⋄ as the subspace of X−1

defined by

X−⋄ :=
{

y ∈ X−1 ;
∥∥y

∥∥−⋄ := sup
z∈X ∗

1

〈
y, z

〉
−1,1∗

∥z∥⋄∗
<+∞

}
,

which is also isometrical to the anti-dual of X ∗⋄ with X as a pivot space. The corresponding duality
bracket will be denoted by 〈 · , · 〉−⋄,⋄. Thus, we end up with the following five functional spaces

X ∗
1 ⊂ X ∗

⋄ ⊂ X ⊂ X−⋄ ⊂ X−1.

We say that the control operator B is an admissible control operator for (1) with respect to the
space X−⋄ if for any T > 0 there exists CT > 0 such that∫ T

0

∥∥∥B∗e−(T−t )A ∗
z
∥∥∥2

U
dt ≤CT ∥z∥2

⋄∗ , ∀ z ∈ X ∗
1 . (20)

Notice that if (20) holds for some T > 0 it holds for any T > 0. The admissibility condition (20)
implies that, by density, we can give a meaning to the map(

t 7→B∗e−(T−t )A ∗
z
)
∈ L2(0,T ;U ),

for any z ∈ X ∗⋄ . Then, we end up with the following well-posedness result (see [9, Proposition 1.2]).

Proposition 2. Assume that (20) holds. Then, for any T > 0, any y0 ∈ X−⋄, and any u ∈ L2(0,T ;U ),
there exists a unique y ∈C 0([0,T ]; X−⋄) solution to (1) in the sense that it satisfies for any t ∈ [0,T ]
and any zt ∈ X ∗⋄ ,〈

y(t ), zt
〉
−⋄,⋄−

〈
y0,e−tA ∗

zt

〉
−⋄,⋄ =

∫ t

0

〈
u(s),B∗e−(t−s)A ∗

zt

〉
U

ds.

Moreover there exists CT > 0 such that

sup
t∈[0,T ]

∥∥y(t )
∥∥−⋄ ≤CT

(∥∥y0
∥∥−⋄+∥u∥L2(0,T ;U )

)
.

Remark 3. By analogy with the semigroup notation, when u = 0, we set for any t ∈ [0,T ],
e−tA y0 := y(t ). This extends the semigroup e−·A defined on X to X−⋄ and implies that for any
z ∈ X−⋄, 〈

e−T A z,φ
〉
−⋄,⋄ =

〈
z,e−T A ∗

φ
〉
−⋄,⋄ , ∀φ ∈ X ∗

⋄ . (21)

With this notion of solution at hand, we finally define the minimal null control time from a
subspace of initial conditions Y0.

Definition 4. Let Y0 be a closed subspace of X−⋄ and let T > 0. The system (1) is said to be null
controllable from Y0 at time T if for any y0 ∈ Y0, there exists a control u ∈ L2(0,T ;U ) such that the
associated solution of (1) satisfies y(T ) = 0.

The minimal null control time T0(Y0) ∈ [0,+∞] is defined by

• for any T > T0(Y0), system (1) is null controllable from Y0 at time T ;
• for any T < T0(Y0), system (1) is not null controllable from Y0 at time T .

To simplify the notations, for any y0 ∈ X−⋄, we define T0(y0) := T0(Span{y0}).

2.1.2. Spectral assumptions

In all this article we assume that the operators A and B satisfy the assumptions of Sec-
tion 2.1.1. Moreover to solve the control problem we will need some additional spectral assump-
tions.
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Behavior of eigenvalues.
We assume that the spectrum of A ∗, denoted by Λ, is only composed of (countably many)

eigenvalues. Moreover, we assume that the eigenvalues lie in a suitable sector of the complex
plane, i.e., there exists τ> 0 such that

Λ⊂ Sτ (22)

where

Sτ :=
{

z ∈C ; ℜz > 0 and |ℑz| < (sinhτ)ℜz
}

.

Remark 5. In [9], the assumption on Λ was stronger. Namely, in that article it was assumed
that Λ ⊂ (1,+∞). The fact that minΛ ≥ 1 was only used in the lower bound on the solution
of scalar block moment problems (see estimate (117)). The extension to complex eigenvalues
satisfying (22) was done in [12] and is stated in Appendix A.

If necessary, one can replace the operator A by A +σ without modifying the controllability
properties. Then, in the different estimates, the behavior with respect to σ can be carefully
tracked if needed.

As in the case of a scalar control (see [9]) we assume that this spectrum satisfies a weak-gap
condition. Namely, there exists p ∈N∗ and ϱ> 0 such that

♯
(
Λ∩D(µ,ϱ/2)

)
≤ p, ∀µ ∈C, (23)

where D(µ,ϱ/2) denotes the open disk in the complex plane with center µ and radius ϱ/2. This
means that the eigenvalues are allowed to condensate by groups but the cardinality of these
groups should be bounded. To precise this, let us recall the notion of groupings used in [9,
Definition 1.6, Proposition 7.1] and extended to the complex setting in [12, Proposition V.5.28].

Proposition 6. Let p ∈ N∗ and ϱ > 0. Let Λ ⊂ C be such that the weak-gap condition (23) holds.
Then, there exists a countable family G of disjoint subsets ofΛ satisfying

Λ= ⋃
G∈G

G (24)

and each G ∈G satisfies

diamG ≤ ϱ, (25)

♯G ≤ p, (26)

and dist(ConvG ,Λ\G) ≥ ϱ

2×4p−1 . (27)

Let us mention that the results do not depend on the particular construction done in [12,
Proposition V.5.28] and remain valid for any grouping G satisfying (24)-(27).

Concerning the asymptotic behavior of the spectrum we will use the counting function
associated toΛ defined by

NΛ : r > 0 7→ ♯ {λ ∈Λ ; |λ| ≤ r } .

We assume that there exists κ> 0 and θ ∈ (0,1) such that

NΛ(r ) ≤ κr θ, ∀ r > 0 (28)

and

|NΛ(r )−NΛ(s)| ≤ κ×
(
1+|r − s|θ

)
, ∀ r, s > 0. (29)

Notice that this condition is slightly stronger than the classical summability condition (4) used
for instance in [5, 9, 22] and many other works.
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Remark 7. Let us underline that if we do not assume (29) to hold all the results of the present
article still hold with a slight change in the estimates. To lighten the writing we only detail this
change for Theorem 46 concerning the resolution of block moment problems with a scalar
control (see Remark 47). However, as proved in Section 7, the assumption (29) holds for many
examples.

Notice also that (28), with r = inf |Λ|, implies the following lower bound on the bottom of the
spectrum

inf |Λ| ≥ κ−θ.

Our goal is not only to study the controllability properties of our system but also to obtain
estimates that are uniform in a way to be precised. To do so, we define the following class of
sequences: let p ∈N∗, ϱ,τ,κ> 0, θ ∈ (0,1) and consider the class

Lw (p,ϱ,τ,θ,κ) :=
{
Λ⊂ Sτ ; Λ satisfies (23), (28) and (29)

}
. (30)

Multiplicity of eigenvalues. In our study we allow both algebraic and geometric multiplicities for
the eigenvalues. We assume that these multiplicities are finite and that the algebraic multiplicity
is globally bounded. More precisely, we assume that

γλ := dimKer(A ∗−λ) <+∞, ∀λ ∈Λ, (31)

and that there exists η ∈N∗ such that

Ker(A ∗−λ)η = Ker(A ∗−λ)η+1, ∀λ ∈Λ. (32)

For any λ ∈Λwe denote by αλ the smallest integer such that

Ker(A ∗−λ)αλ = Ker(A ∗−λ)αλ+1

and set

Eλ := Ker(A ∗−λ)αλ .

(Generalized) eigenvectors. To study null-controllability, we assume that the Fattorini–Hautus
criterion is satisfied

Ker(A ∗−λ)∩KerB∗ = {0}, ∀λ ∈Λ. (33)

It is a necessary condition for approximate controllability. Note that, under additional assump-
tions on A and B it is also a sufficient condition for approximate controllability (see for in-
stance [20, 34]). However, when studying null controllability of system (1) for initial conditions
in a closed strict subspace Y0 of X−⋄ the condition (33) can be too strong, see for instance Sec-
tions 7.1.2 and 7.1.3.

We assume that the family of generalized eigenvectors of A ∗

Φ= {
φ ∈ Eλ ; λ ∈Λ}= ⋃

λ∈Λ
Eλ

is complete in X ∗⋄ i.e. for any y ∈ X−⋄,(〈
y,φ

〉
−⋄,⋄ = 0, ∀φ ∈Φ

)
=⇒ y = 0. (34)

In the following, to simplify the writing, we gather these assumptions and say that the opera-
tors A and B satisfy (H) if there exists p ∈N∗, ϱ,τ,κ> 0 and θ ∈ (0,1) such that

A and B satisfy the assumptions of Section 2.1.1;

Λ= Sp(A ∗) belongs to Lw (p,ϱ,τ,θ,κ) and satisfies (31) and (32) ;

the associated (generalized) eigenvectors satisfy (33) and (34).

(H)
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2.1.3. Notation

We give here some notation that will be used throughout this article.

• For any a,b ∈R, we define the following subsets of N:

�a,b� := [a,b]∩N, �a,b�:= [a,b)∩N.

• In all the present paper, 〈 · , · 〉 denotes the usual inner product in finite dimension i.e.〈
f , g

〉= t f g .

• For any t ∈R we denote by et the exponential function

et :C→C

z 7→ e−t z .

• We shall denote by Cν1,...,νl > 0 a constant possibly varying from one line to another but
depending only on the parameters ν1, . . . ,νl .

• For any non empty subset Γ⊂Λ, we set

rΓ := inf
λ∈Γ

ℜλ. (35)

Notice that assumptions (22) and (23) imply that rΓ > 0 for any Γ⊂Λ.
• For any multi-index α ∈ Nn , we denote its length by |α| = ∑n

j=1α j and its maximum by
|α|∞ = max j∈�1,n�α j .

For α,µ ∈Nn , we say that µ≤α if and only if µ j ≤α j for any j ∈ �1,n�.
• In all this article the notation f [· · · ] stands for (generalized) divided differences of a set

of values (x j , f j ). Let us recall that, for pairwise distinct x1, . . . , xn ∈C and f1, . . . , fn in any
vector space, the divided differences are defined by

f [x j ] = f j , f [x1, . . . , x j ] = f [x2, . . . , x j ]− f [x1, . . . , x j−1]

x j −x1
.

The two results that will be the most used in this article concerning divided differences
are the Leibniz formula

(g f )[x1, . . . , x j ] =
j∑

k=1
g [x1, . . . , xk ] f [xk , . . . , x j ],

and Jensen inequality stating that, when f j = f (x j ) for an holomorphic function f , we
have ∣∣ f [x1, . . . , x j ]

∣∣≤ ∣∣ f ( j−1)(z)
∣∣

( j −1)!
,

with z ∈ Conv{x1, . . . , x j }. For more detailed statements and other useful properties as
well as their generalizations when x1, . . . , xn are not assumed to be pairwise distinct we
refer the reader to [12, Appendix A.2] This generalization is used in the present article
whenever there are algebraically multiple eigenvalues.

• For any closed subspace Y of X−⋄ we denote by PY the orthogonal projection in X−⋄ onto
Y . We denote by P∗

Y ∈ L(X ∗⋄ ) its adjoint in the duality X−⋄, X ∗⋄ .

2.2. Resolution of block moment problems

Definition of block moment problems. Using the notion of solution given in Proposition 2
and the assumption (34), null controllability from y0 in time T reduces to the resolution of the
following problem: find u ∈ L2(0,T ;U ) such that∫ T

0

〈
u(t ),B∗e−(T−t )A ∗

φ
〉

U
dt =−

〈
y0,e−T A ∗

φ
〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈Λ. (36)
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Following the strategy initiated in [9] for scalar controls, we decompose this problem into block
moment problems. Hence we look for a control of the form

u =− ∑
G∈G

vG (T −· ) (37)

where G is a grouping (as stated in Proposition 6) and, for every G ∈G , vG ∈ L2(0,T ;U ) solves the
moment problem in the group G i.e.∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt =

〈
y0,e−T A ∗

φ
〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G , (38a)∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt = 0, ∀φ ∈ Eλ, ∀λ ∈Λ\G . (38b)

In fact it is sufficient to solve the following block moment problem∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt =

〈
e−T A y0,φ

〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G , (39a)∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η� (39b)

where e−T A y0 is defined in (21).
Indeed, for any φ ∈ Eλ, from [9, (1.22)], it comes that

e−tA ∗
φ= e−λt

∑
r≥0

(−t )r

r !
(A ∗−λ)rφ= ∑

r≥0
et

[
λ(r+1)] (A ∗−λ)rφ, (40)

where the sums are finite (and contains at most the first αλ terms). Thus, every solution of (39)
solves (38). The orthogonality condition (39b) is more restrictive than (38b) but leads to negligible
terms in the estimates.

Resolution of block moment problems. In our setting, the block moment problem (39) is proved
to be solvable for any T > 0. The resolution will follow from the scalar study done in [9] and
refined in [12] (see Theorem 46).

Due to (37), the main issue to prove null controllability of (1) is thus to sum those contributions
to obtain a solution of (36). This is justified thanks to a precise estimate of the cost of the
resolution of (39) for each group G which is the quantity

inf
{∥vG∥L2(0,T ;U ) ; vG solution of (39)

}
.

To state this result, we introduce some additional notation.
To solve the moment problem (39) we propose to lift it into a “vectorial block moment problem”

of the following form (see (59))
∫ T

0
vG (t )

(−t )l

l !
e−λt dt =Ωl

λ
, ∀λ ∈G , ∀ l ∈ �0,αλ�,∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�,

where Ωl
λ

belongs to U . Following (40), to recover a solution of (39), we need to impose some

constraints on the right-hand side that are given in the following definition.

Definition 8. For any λ ∈Λ and any z ∈ X−⋄, we set

O (λ, z) =
{

(Ω0, . . . ,Ωαλ−1) ∈Uαλ ;
αλ−1∑
l=0

〈
Ωl ,B∗(A ∗−λ)lφ

〉
U
= 〈

z,φ
〉
−⋄,⋄ , ∀φ ∈ Eλ

}
. (41)

For a given group G, we set
O (G , z) = ∏

λ∈G
O (λ, z) ⊂U |α| (42)
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where α is the multi-index of the algebraic multiplicities of the eigenvalues.

Consider any sequence of multi-indices (µl )l∈�0,|α|� such that
µl−1 ≤µl , ∀ l ∈ �1, |α|�,∣∣µl

∣∣= l , ∀ l ∈ �0, |α|�,

µ|α| =α.

(43)

To measure the cost associated to the group G = {
λ1, . . . ,λg

}
let us define the following functional

F :Ω=
(
Ω0

1, . . . ,Ωα1−1
1 , . . . ,Ω0

g , . . . ,Ω
αg −1
g

)
∈U |α| 7→

|α|∑
l=1

∥∥∥∥Ω[
λ

(µl )
·

]∥∥∥∥2

U
(44)

with the convention

Ω
[
λ j

(l+1)]=Ωl
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

The use of such functional to measure the cost comes from the analysis conducted for scalar
controls in [9] (see Proposition 26). It appears in the following lower bound for solutions of block
moment problems.

Proposition 9. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2).
Let T ∈ (0,+∞), and G ⊂Λ be a group satisfying (26).

There exists Cp,η,rΛ > 0 such that, for any z ∈ X−⋄, any vG ∈ L2(0,T ;U ) solving∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt = 〈

z,φ
〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G

satisfies

∥vG∥2
L2(0,T ;U ) ≥Cp,η,rΛC (G , z) (45)

where

C (G , z) := inf{F (Ω) ; Ω ∈O (G , z)} (46)

with F defined in (44) and O (G , z) defined in Definition 8.

The first main result of this article concerns the resolution of block moment problems of the
form (39). It roughly states that, up to terms that turns out to be negligible, the lower bound
obtained in Proposition 9 is optimal.

Theorem 10. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2).
Let T ∈ (0,+∞), and G ⊂Λ be a group satisfying (25)–(27).

For any z ∈ X−⋄, there exists vG ∈ L2(0,T ;U ) solution of∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt = 〈

z,φ
〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G , (47a)∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�, (47b)

satisfying the following estimate

∥vG∥2
L2(0,T ;U ) ≤C exp

(
C

T
θ

1−θ

)
exp

(
Cr θG

)
C (G , z). (48)

In this estimate, C (G , z) is defined in (46) and rG is defined in (35). The constant C > 0 appearing
in the estimate only depends on the parameters τ, p, ϱ, η, θ and κ.

Before giving the application of this resolution of block moment problems to the null control-
lability of our initial system (1), let us give some comments.
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• As it was the case in [9], the considered setting allows for a wide variety of applications.
In (34) the generalized eigenvectors are only assumed to form a complete family (and
not a Riesz basis as in many previous works) which is the minimal assumption to use a
moment method-like strategy. The weak gap condition (23) is also well adapted to study
systems of coupled one dimensional parabolic equations (see Section 7).

• The main restriction is the assumption (28). As detailed in Section 1.1, this assumption is
common to most of the results based on a moment-like method.

Though restrictive, let us underline that the moment method is, to the best of our
knowledge, the most suitable method to capture very sensitive features such as a minimal
null control time for parabolic control problems without constraints.

• The main novelty of this theorem is to ensure solvability of block moment problems
coming from control problems with control operators that are only assumed to be
admissible. In particular, the space U can be of infinite dimension. Results concerning
block moment problems with more general right-hand sides, that is not necessarily
coming from a controllability problem, are stated in Appendix C

• The estimate (48) does not explicitly depend on the sequence of eigenvalues Λ but
rather on some parameters such as the weak-gap parameters and the asymptotic of the
counting function. As presented in Section 1.1, the uniformity of such bounds can be
used to deal with parameter dependent problems.

• Let us also underline that the obtained estimate (48) tracks the dependency of the
constants with respect to the controllability time T . This will be crucial to estimate the
cost of controllability in Proposition 20. We refer to Remark 23 for possible applications
of such estimates of the cost of controllability.

• Though quite general and useful for the theoretical characterization of the minimal null
control time, the obtained estimate (48) still requires to be able to evaluate quantities of
the form C (G , z), which can be intricate. We provide in Section 2.4 some explicit formulas
that makes this estimation possible in many actual examples.

2.3. Determination of the minimal null control time

The resolution of block moment problems stated in Theorem 10 allows to obtain the following
characterization of the minimal null control time of our abstract control problem from a given
initial condition.

Theorem 11. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2)
and let G be an associated grouping as stated in Proposition 6. Then, for any y0 ∈ X−⋄, the minimal
null control time of (1) from y0 is given by

T0(y0) = limsup
G∈G

ln+C (G , y0)

2rG
(49)

where C (G , y0) is defined in (46).

In this statement we have used the notation ln+ s = max(0, ln s), for any s ≥ 0.
If one considers a space of initial conditions (instead of a single initial condition), the charac-

terization of the minimal null control time is given in the following corollary.

Corollary 12. Let Y0 be a closed subspace of X−⋄. Then, under the assumptions of Theorem 11, the
minimal null control time from Y0 is given by

T0(Y0) = limsup
G∈G

ln+C (G ,Y0)

2rG



Franck Boyer and Morgan Morancey 1207

with
C (G ,Y0) := sup

y0∈Y0∥y0∥−⋄=1

C (G , y0).

2.4. More explicit formulas

Assume that the operators A and B satisfy the assumption (H). Let G ⊂ Λ be such that ♯G ≤ p
and diamG ≤ ϱ. We have seen in Theorem 11 that the key quantity to compute the minimal null
control time from y0 is

C (G , y0) = inf
{
F (Ω) ; Ω ∈O (G , y0)

}
.

where the function F is defined in (44) and the constraints O (G , y0) are defined in (42). Let us give
more explicit formulas to compute such costs.

Notice that, for any z ∈ X−⋄, the quantity C (G , z) can be expressed as a finite dimensional
constrained problem. Indeed, for a given group G we consider the finite dimensional subspace

UG =B∗ Span
{
φ ∈ Eλ ; λ ∈G

}
(50)

and PUG the orthogonal projection in U onto UG . Then, for any Ω ∈ O (G , z) it comes that
PUGΩ ∈O (G , z) and F (PUGΩ) ≤ F (Ω). Thus, the optimization problem defining C (G , z) reduces to

C (G , z) = inf
{

F (Ω) ; Ω ∈O (G , z)∩U |α|
G

}
,

which is a finite dimensional optimization problem. From [9, Proposition 7.15], the function F is
coercive which implies that the infimum is actually attained:

C (G , z) = min
{

F (Ω) ; Ω ∈O (G , z)∩U |α|
G

}
. (51)

In this section, solving the optimization problem (51), we provide more explicit formulas for
this cost for some particular configurations for the multiplicities of the eigenvalues in the group
G (and only in that particular group).

A group G of geometrically simple eigenvalues. First, assume that the eigenvalues in G =
{λ1, . . . ,λg } are all geometrically simple i.e. γλ = 1 for every λ ∈G where γλ is defined in (31).

For any j ∈ �1, g � we denote by φ0
j an eigenvector of A ∗ associated to the eigenvalue λ j and

by (φl
j )l∈�0,α j � an associated Jordan chain i.e.

(A ∗−λ j )φl
j =φl−1

j , ∀ l ∈ �1,α j �.

To simplify the writing, we set

bl
j :=B∗φl

j ∈U , ∀ l ∈ �0,α j �, ∀ j ∈ �1, g �.

Recall that the sequence of multi-index (µl )l∈�0,|α|� satisfy (43) and let

M :=
|α|∑
l=1
Γl
µ (52)

with

Γl
µ := GramU

0, . . . ,0︸ ︷︷ ︸
l−1

,b

[
λ

(
µl−µl−1)
·

]
, . . . ,b

[
λ

(
µ|α|−µl−1)
·

]
where for every u1, . . . ,un ∈ U , GramU (u1, . . . ,un) denotes the Gram matrix whose entry on the
i -th row and j -th column is

〈
u j ,ui

〉
U . To explicit the cost C (G , y0), we will use the inverse of this

matrix. Its invertibility is guaranteed by the following proposition which is proved in Section 5.2.

Proposition 13. Under condition (33), the matrix M defined in (52) is invertible.
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The matrix M plays a crucial role in the computation of the cost C (G , y0). Let us give some
comments. It is a sum of Gram matrices whose construction is summarized in Figure 1 on an
example with G = {λ1,λ2} with α1 = 3 and α2 = 2. Each of these matrices is of size |α| which is the
number of eigenvalues (counted with their algebraic multiplicities) that belong to the group G .
Thus, on actual examples (see Section 7), the size of these matrices is usually reasonably small.

b0
1

b0
1

b0
1

b0
2

b0
2

b1
1

b1
1

b[λ1,λ2]

b1
2

b2
1

b[λ(2)
1 ,λ2]

b[λ1,λ(2)
2 ]

b[λ(3)
1 ,λ2]

b[λ(2)
1 ,λ(2)

2 ]

b[λ(3)
1 ,λ(2)

2 ]

0

0

0

0

0

0

0

0

0

0

Gram matrix Γ1
µ

Gram matrix Γ2
µ

Gram matrix Γ3
µ

Gram matrix Γ4
µ

Gram matrix Γ5
µ

Figure 1. Construction of the Gram matrices Γl
µ in the case of a group G = {λ1,λ2} with

multiplicities α = (3,2) and the sequence of multi-indices µ = (
(0,0), (1,0), (2,0), (3,0),

(3,1), (3,2)
)

Then, we obtain the following formula for the cost of a group of geometrically simple eigen-
values.

Theorem 14. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2).
Let G = {λ1, . . . ,λg } ⊂Λ be such that ♯G ≤ p and diamG ≤ ϱ and assume that γλ = 1 for every λ ∈G.
Then, for any y0 ∈ X−⋄, we have

C (G , y0) = 〈
M−1ξ,ξ

〉
, where ξ=


〈

y0,φ
[
λ

(µ1)·
]〉

−⋄,⋄
...〈

y0,φ

[
λ

(
µ|α|

)
·

]〉
−⋄,⋄

 ∈C|α|

and M is defined in (52).
Moreover, if Y0 is a closed subspace of X−⋄,

C (G ,Y0) = ρ (
GramX ∗⋄ (ψ1, . . . ,ψ|α|)M−1) (53)

where ψ j := P∗
Y0
φ

[
λ

(
µ j )
·

]
and, for any matrix M, the notation ρ(M) denotes the spectral radius of

the matrix M.
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Remark 15. Notice that we do not choose any particular eigenvector or Jordan chain. To
compute explicitly the cost C (G , y0) on actual examples, we will often choose them to satisfy

∥b0
j ∥U = 1,

〈
b0

j ,bl
j

〉
U
= 0, ∀ l ∈ �1,α j �,

to simplify the Gram matrices. Obviously, as the quantity C (G , y0) is independent of this choice,
we can choose any other specific Jordan chains or eigenvectors that are more suitable to each
problem.

Remark 16. In the case where the eigenvalues of the considered group G are also algebraically
simple, then the expression of M given in (52) reduces to

M =
g∑

l=1
Γl with Γl = GramU

0, . . . ,0︸ ︷︷ ︸
l−1

,b[λl ], . . . ,b[λl , . . . ,λg ]

 (54)

and the expression of ξ reduces to

ξ=


〈

y0,φ[λ1]
〉
−⋄,⋄

...〈
y0,φ[λ1, . . . ,λg ]

〉
−⋄,⋄

 .

A group G of semi-simple eigenvalues. We now assume that all the eigenvalues in G are semi-
simple i.e. for any λ ∈G we have αλ = 1 where αλ is defined in (32).

For any j ∈ �1, g �, we denote by (φ j ,i )i∈�1,γ j � a basis of Ker(A ∗−λ j ). To simplify the writing, we
set

b j ,i :=B∗φ j ,i , ∀ j ∈ �1, g �, ∀ i ∈ �1,γ j �
and γG := γ1 +·· ·+γg .

For any i ∈ �1, g �, we set δi
1 := 1 and

δi
j :=

j−1∏
k=1

(
λi −λk

)
, ∀ j ∈ �2, g �. (55)

Notice that δi
j = 0 as soon as j > i .

Let

M =
g∑

l=1
Γl with Γl = GramU

(
δ1

l b1,1, . . . ,δ1
l b1,γ1 , . . . ,δg

l bg ,1, . . . ,δg
l bg ,γg

)
. (56)

Here again, to explicit the cost C (G , y0) we will use the inverse of this matrix. Its invertibility is
guaranteed by the following proposition which is proved in Section 5.3.

Proposition 17. Under condition (33), the matrix M defined in (56) is invertible.

Notice that the square matrix Γl is of size γG and can be seen as a block matrix where the block
(i , j ) with γi rows and γ j columns is

〈
δ

j
l b j ,1,δi

l bi ,1

〉
U

· · ·
〈
δ

j
l b j ,γ j ,δi

l bi ,1

〉
U

...
...〈

δ
j
l b j ,1,δi

l bi ,γi

〉
U

· · ·
〈
δ

j
l b j ,γ j ,δi

l bi ,γi

〉
U

 .

Thus, the block (i , j ) of Γl is identically 0 for i , j ∈ �1, l�.
Then, we obtain the following formula for the cost of a group made of semi-simple eigenval-

ues.
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Theorem 18. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2).
Let G = {λ1, . . . ,λg } ⊂Λ be such that ♯G ≤ p and diamG ≤ ϱ and assume thatαλ = 1 for every λ ∈G.
Then, for any y0 ∈ X−⋄, we have

C (G , y0) = 〈
M−1ξ,ξ

〉
where

ξ=



〈
y0,φ1,1

〉
−⋄,⋄

...〈
y0,φ1,γ1

〉
−⋄,⋄

...〈
y0,φg ,1

〉
−⋄,⋄

...〈
y0,φg ,γg

〉
−⋄,⋄


and M is defined in (56).

Moreover, if Y0 is a closed subspace of X−⋄,

C (G ,Y0) = ρ
(
GramX ∗⋄ (ψ1,1, . . . ,ψ1,γ1 , . . . ,ψg ,1, . . . ,ψg ,γg )M−1

)
(57)

where ψ j ,i := P∗
Y0
φ j ,i and, for any matrix M, the notation ρ(M) denotes its spectral radius.

Remark 19. When the eigenvalues of the group G are geometrically and algebraically simple,
Theorem 18 gives a characterization of the cost of the block C (G , y0) which is different from the
one coming from Theorem 14 and detailed in Remark 16. A direct proof of this equivalence (stated
in Proposition 55) using algebraic manipulations is given in Appendix D.

Dealing simultaneously with geometric and algebraic multiplicity. Combining Theorems 14
and 18, we can deal with operators A ∗ which have both groups of geometrically simple eigen-
values and groups of semi-simple eigenvalues. However, for technical reasons, in the case where
both algebraic and geometric multiplicities need to be taken into account into a group G we do
obtain a general formula for the cost of this group C (G , y0). Nevertheless, if this situation occurs
in actual examples, computing this cost is a finite dimensional constrained optimization prob-
lem which can be solved “by hand”. We present in Section 5.4 an example of such resolution for a
group G that does not satisfies the assumptions of Theorem 14 nor of Theorem 18.

2.5. Estimate of the cost of null controllability

When system (1) is null controllable, we obtain the following bound on the cost of controllability.

Proposition 20. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2)
and let G be an associated grouping as stated in Proposition 6.

Let y0 ∈ X−⋄ and let T > T0(y0). There exists a control u ∈ L2(0,T ;U ) such that the associated
solution of (1) initiated from y0 satisfies y(T ) = 0 and

∥u∥2
L2(0,T ;U ) ≤C exp

(
C

(T −T0(y0))
θ

1−θ

)
(1+T )2η

∑
G∈G

e−(T−T0(y0))rG e−2rG T0(y0)C (G ,Y0).

The constant C > 0 appearing in the estimate only depends on the parameters τ, p, ϱ, η, θ and κ.

Though quite general the above formula is not very explicit. More importantly, it is proved
in [29, Theorem 1.1] that, with a suitable choice of A and B satisfying our assumptions, any
blow-up of the cost of controllability can occur. We give below a setting (inspired from [29,
Theorem 1.2]) in which this upper bound on the cost of controllability is simpler and can have
some applications (see Remark 23).
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Corollary 21. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2)
and let G be an associated grouping as stated in Proposition 6. Letβ> 0. For any y0 ∈ X−⋄ satisfying,

C (G , y0) ≤βe2rG T0(y0) ∥∥y0
∥∥2
−⋄ , ∀G ∈G , (58)

for any T > T0(y0) close enough to T0(y0), there exists a control u ∈ L2(0,T ;U ) such that the
associated solution of (1) satisfies y(T ) = 0 and

∥u∥L2(0,T ;U ) ≤C exp

(
C

(T −T0(y0))
θ

1−θ

)∥∥y0
∥∥−⋄ ,

where the constant C > 0 only depends on the parameters β, τ, p, ϱ, η, θ and κ.

Remark 22. In the setting of Corollary 21, replacing the assumption (58) by

C (G , y0) ≤βeβrσG e2rG T0(y0) ∥∥y0
∥∥2
−⋄ , ∀G ∈G ,

with σ ∈ (0,1) leads to the following estimate

∥u∥L2(0,T ;U ) ≤C exp

 C

(T −T0(y0))
max(θ,σ)

1−max(θ,σ)

∥∥y0
∥∥−⋄ .

Remark 23. Giving the best possible estimate on the cost of small time null controllability is a
question that has drawn a lot of interest in the past years.

In classical cases, for instance for heat-like equations, null controllability holds in any positive
time and the cost of controllability in small time behaves like exp

(C
T

)
(see for instance [37]). There

are two main applications of such estimate.

• Controllability in cylindrical domains. It is proved in [8] that null controllability of para-
bolic problems in cylindrical geometries (with operators compatible with this geometry)
with a boundary control located on the top of the cylinder can be proved thanks to null
controllability of the associated problem in the transverse variable together with suitable
estimates of the cost of controllability. Their proof relies on an adaptation of the classical
strategy of Lebeau and Robbiano [28] and thus uses an estimate of the cost of controlla-
bility in small time of the form exp

(C
T

)
. These ideas were already present in [10] and later

generalized in an abstract setting in [1].
• Nonlinear control problems. The source term method has been introduced in [30] to

prove controllability of a nonlinear fluid-structure system (see also [7, Section 2] for
a general presentation of this strategy). Roughly speaking it amounts to prove null
controllability with a source term in suitable weighted spaces and then use a fixed point
argument. The null controllability with a source term is here proved by an iterative
process which strongly uses that the cost of controllability of the linearized system
behaves like exp

(C
T

)
.

Notice that from the upper bound given in Corollary 21, the cost of controllability in small time
can explode faster than exp

(C
T

)
. Yet, as studied in [33] and in [35, Chapter 4], the arguments of

the two previous applications can be adapted with an explosion of the cost of the form exp

(
C

T
θ

1−θ

)
with θ ∈ (0,1).

However, these two applications uses a decomposition of the time interval [0,T ] into an infi-
nite number of sub-intervals (which explains the use of the asymptotic of the cost of controlla-
bility when the time goes to zero). Thus their extension in the case of a minimal null control time
is an open problem.
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3. Resolution of block moment problems

In this section we prove Theorem 10 that is we solve the block moment problem (47). To do
so, we first consider a vectorial block moment problem (see (59) below) which is proved to be
equivalent to the block moment problem (47) in Proposition 24. This equivalence strongly relies
on the constraints (41). Then we prove the lower bound for solutions of block moment problems
stated in Proposition 9.

Finally, in Section 3.2, we solve the vectorial block moment problem (59) which will conclude
the proof of Theorem 10.

3.1. An auxiliary equivalent vectorial block moment problem

LetΛ⊂ Sτ, G = {λ1, . . . ,λg } ⊂Λ, η ∈N∗ and α= (α1, . . . ,αg ) ∈Ng with |α|∞ ≤ η. For any

Ω=
(
Ω0

1, . . . ,Ωα1−1
1 , . . . ,Ω0

g , . . . ,Ω
αg −1
g

)
∈U |α|,

we consider the following auxiliary vectorial block moment problem : find vG ∈ L2(0,T ;U )
such that ∫ T

0
vG (t )

(−t )l

l !
e−λ j t dt =Ωl

j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �, (59a)∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�. (59b)

This block moment problem is said to be vectorial: the right-hand side Ω belongs to U |α| and its
solution vG (t ) belongs to the control space U for almost every t . Its resolution with (almost) sharp
estimates is given in Proposition 26.

Through (40), when the right-hand side Ω of (59) satisfy the constraints (42), solving this
vectorial block moment problem provides a solution of the original block moment problem (47).
More precisely we have the following proposition

Proposition 24. Let T > 0 and z ∈ X−⋄. The following two statements are equivalent:

(i) there existsΩ ∈O (G , z) such that the function vG ∈ L2(0,T ;U ) solves (59);
(ii) the function vG ∈ L2(0,T ;U ) solves (47).

Proof. Assume first that there existsΩ ∈O (G , z) and let v ∈ L2(0,T ;U ) be such that (59) holds.
Then, using (40), for any j ∈ �1, g � and any φ ∈ Eλ j we have∫ T

0

〈
v(t ),B∗e−tA ∗

φ
〉

U
dt =

∫ T

0

〈
v(t ),e−λ j t

α j −1∑
l=0

(−t )l

l !
B∗(A ∗−λ j )lφ

〉
U

dt

=
α j −1∑
l=0

〈∫ T

0
v(t )

(−t )l

l !
e−λ j t dt ,B∗(A ∗−λ j )lφ

〉
U

=
α j −1∑
l=0

〈
Ωl

j ,B∗(A ∗−λ j )lφ
〉

U
.

Since
(
Ω0

j , . . . ,Ω
α j −1
j

)
∈O (λ j , z) (see (41)), this leads to∫ T

0

〈
v(t ),B∗e−tA ∗

φ
〉

U
dt = 〈

z,φ
〉
−⋄,⋄ , ∀ j ∈ �1, g �,∀φ ∈ Eλ j ,

which proves that v solves (47).
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Assume now that v ∈ L2(0,T ;U ) solves (47). Setting

Ωl
j :=

∫ T

0
v(t )

(−t )l

l !
e−λ j t dt

we obtain that v solves (59). As in the previous step, the identity (40) implies thatΩ ∈O (G , z). □

Using this vectorial block moment problem allows to prove the lower bound stated in Propo-
sition 9.

Proof of Proposition 9. Let vG ∈ L2(0,T ;U ) be any solution of (47a). Let

Ωl
j :=

∫ T

0
vG (t )

(−t )l

l !
e−λ j t dt =

∫ T

0
vG (t )et

[
λ j

(l+1)]
dt , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

As in the proof of Proposition 24, the use of (40) implies that

Ω=
(
Ω0

1, . . . ,Ωα1−1
1 , . . . ,Ω0

g , . . . ,Ω
αg −1
g

)
∈O (G , z).

Thus,

C (G , z) ≤ F (Ω) =
|α|∑
l=1

∥∥∥∥Ω[
λ

(µl )
·

]∥∥∥∥2

U
. (60)

Notice that

Ω

[
λ

(µl )
·

]
=

∫ T

0
vG (t )et

[
λ

(µl )
·

]
dt , ∀ l ∈ �0, |α|�.

Using Jensen inequality [9, Proposition 6.1] yields,∣∣∣∣et

[
λ

(µl )
·

]∣∣∣∣= ∣∣∣et

[
λ(µl )
·

]∣∣∣≤ t l−1e−rG t

(l −1)!
.

Together with Cauchy–Schwarz inequality this implies∥∥∥∥Ω[
λ

(µl )
·

]∥∥∥∥
U
≤

(∫ +∞

0

t l−1e−rG t

(l −1)!
dt

) 1
2

∥vG∥L2(0,T ;U ).

Then, as rG ≥ rΛ and |α| ≤ pη, estimate (60) ends the proof of Theorem 10. □

3.2. Solving the original moment problem

In view of Proposition 24, to solve (47), we prove that there exists at least one Ω satisfying the
constraints (41).

Proposition 25. Let λ ∈Λ and z ∈ X−⋄. Then, under assumption (33), we have

O (λ, z) ̸=∅.

Proof. Let T > 0. The finite dimensional space Eλ is stable by the semigroup e−·A ∗
(see for

instance (40)). Using the approximate controllability assumption (33) we have that

φ ∈ Eλ 7→
∥∥∥B∗e−·A ∗

φ
∥∥∥

L2(0,T,U )

is a norm on Eλ. Then, the equivalence of norms in finite dimension implies that the following
HUM-type functional

J :φ ∈ Eλ 7→
1

2

∥∥∥B∗e−·A ∗
φ

∥∥∥2

L2(0,T,U )
−ℜ〈

z,φ
〉
−⋄,⋄

is coercive. Let φ̃ ∈ Eλ be such that

J
(
φ̃

)= inf
φ∈Eλ

J (φ)
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and v := B∗e−·A ∗
φ̃. The optimality condition gives (paying attention to the fact that Eλ is a

complex vector space) ∫ T

0

〈
v(t ),B∗e−tA ∗

φ
〉

U
dt = 〈

z,φ
〉
−⋄,⋄ , ∀φ ∈ Eλ. (61)

Finally, we setΩ := (
Ω0, . . . ,Ωαλ−1

)
with

Ωl :=
∫ T

0
v(t )

(−t )l

l !
e−λt dt , ∀ l ∈ �0,αλ�.

Using (61) and following the computations of Proposition 24 we obtain thatΩ ∈O (λ, z). □

We now turn to the resolution of the vectorial block moment problem (59).

Proposition 26. Let p ∈N∗, ϱ,τ,κ> 0 and θ ∈ (0,1). Assume that

Λ ∈Lw (p,ϱ,τ,θ,κ).

Let G = {λ1, . . . ,λg } ⊂Λ be a group satisfying (25)–(27). Let T ∈ (0,+∞) and η ∈N∗. For any multi-
index α ∈Ng with |α|∞ ≤ η and any

Ω=
(
Ω0

1, . . . ,Ωα1−1
1 , . . . ,Ω0

g , . . . ,Ω
αg −1
g

)
∈U |α|,

there exists vG ∈ L2(0,T ;U ) solution of (59) such that

∥vG∥2
L2(0,T ;U ) ≤C exp

(
C

T
θ

1−θ

)
exp

(
Cr θG

)
F (Ω),

where F is defined in (44) and rG is defined in (35). The constant C > 0 appearing in the estimate
only depends on the parameters τ, p, ϱ, η, θ and κ.

Proof. Let (e j ) j∈�1,d� be an orthonormal basis of the finite dimensional subspace of U given by

Span
{
Ωl

j ; j ∈ �1, g �, l ∈ �0,α j �
}

.

Then, for any j ∈ �1, g � and l ∈ �0,α j �, there exists
(
ai

[
λ j

(l+1)])
i∈�1,d� ∈ C|α| such that the

decomposition ofΩl
j reads

Ωl
j =

d∑
i=1

ai

[
λ j

(l+1)]
ei .

From Theorem 46, for any i ∈ �1,d�, there exists vi ∈ L2(0,T ;C) such that
∫ T

0
vi (t )

(−t )l

l !
e−λ j t dt = ai

[
λ j

(l+1)]
, ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �,∫ T

0
vi (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�,

and

∥vi∥2
L2(0,T ;C) ≤CeC T − θ

1−θ eCr θG max
µ∈Ng

µ≤α

∣∣∣ai

[
λ1

(µ1)
, . . . ,λg

(µg )]∣∣∣2
.

Setting

v :=
d∑

i=1
vi ei ,
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we get that v solves (59) and using [9, Proposition 7.15]

∥v∥2
L2(0,T ;U ) =

d∑
i=1

∥vi∥2
L2(0,T ;C)

≤CeC T − θ
1−θ eCr θG

d∑
i=1

max
µ∈Ng

µ≤α

∣∣∣ai

[
λ1

(µ1)
, . . . ,λg

(µg )]∣∣∣2

≤Cp,ϱ,ηCeC T − θ
1−θ eCr θG

|α|∑
p=1

(
d∑

i=1

∣∣∣ai

[
λ

(µp )
·

]∣∣∣2
)

=CeC T − θ
1−θ eCr θG

|α|∑
p=1

∥∥∥Ω[
λ

(µp )
·

]∥∥∥2
.

This ends the proof of Proposition 26. □

We now have all the ingredients to prove Theorem 10.

Proof of Theorem 10. From Proposition 25, we have O (G , z) ̸= ∅. Recall that, from (51), the
optimization problem defining C (G , z) can be reduced to a finite dimensional optimization
problem for which the infimum is attained. Thus, letΩ ∈O (G , z) be such that

F (Ω) =C (G , z).

Let vG ∈ L2(0,T ;U ) be the solution of (59) given by Proposition 26 with Ω as right-hand side.
As Ω ∈ O (G , z), from Proposition 24 we deduce that vG solves (47). The upper bound (48) on
∥vG∥L2(0,T ;U ) is given by Proposition 26. □

4. Application to the determination of the minimal null control time

This section is dedicated to the consequences of Theorem 10 on the null controllability properties
of system (1).

From Theorem 10, the resolution of block moment problems (39) associated with null control-
lability of (1) will involve the quantity C (G ,e−T A y0). To formulate the minimal null control time
we isolate the dependency with respect to the variable T leading to quantities involving C (G , y0).
The comparison between these two costs is detailed in Section 4.1.

Then, this leads to the formulation of the minimal null control time stated in Theorem 11.
We then prove the estimates on the cost of null controllability stated in Proposition 20 and
Corollary 21. This is detailed in Section 4.2.

4.1. Relating the different costs

Let us prove that the cost C (G ,e−T A z) appearing in Theorem 10 roughly behaves like
e−2rG T C (G , z). More precisely, we have the following estimates.

Lemma 27. Assume that the operators A and B satisfy the assumption (H) (see Section 2.1.2).
There exists Cp,ϱ,η > 0 such that for any G ⊂Λ with ♯G ≤ p and diamG ≤ ϱ, for any T > 0 and any
z ∈ X−⋄,

C (G ,e−T A z) ≤Cp,ϱ,η(1+T )2|α|e−2rG T C (G , z) (62)

and

e−2rG T C (G , z) ≤Cp,ϱ,η(1+T )2|α|e2ϱT C (G ,e−T A z). (63)
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Proof. Recall that from (21) we have〈
y0,e−T A ∗

φ
〉
−⋄,⋄ =

〈
e−T A y0,φ

〉
−⋄,⋄ , ∀φ ∈ X ∗

⋄ .

We set G = {λ1, . . . ,λg }.
We start with the proof of (62).
From (51), let Ω̃ ∈O (G , z) be such that F (Ω̃) =C (G , z). We defineΩ by

Ωl
j := (eT Ω̃)

[
λ j

(l+1)]
, ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �,

with the convention
Ω̃

[
λ j

(l+1)]= Ω̃l
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

Let us prove thatΩ ∈O (G ,e−T A z). For any j ∈ �1, g � and any φ ∈ Eλ j , using [9, Definition 7.12] we
obtain ∑

l≥0

〈
Ωl

j ,B∗(A ∗−λ j )lφ
〉

U
= ∑

l≥0

l∑
r=0

eT

[
λ j

(r+1)]〈
Ω̃l−r

j ,B∗(A ∗−λ j )lφ
〉

U

= ∑
r≥0

eT

[
λ j

(r+1)] ∑
l≥r

〈
Ω̃l−r

j ,B∗(A ∗−λ j )lφ
〉

U

= ∑
r≥0

eT

[
λ j

(r+1)] ∑
l≥0

〈
Ω̃l

j ,B∗(A ∗−λ j )l+rφ
〉

U
.

Since Ω̃ ∈O (G , z) and eT

[
λ j

(r+1)]= eT

[
λ(r+1)

j

]
for any r ≥ 0, using (40) this yields∑

l≥0

〈
Ωl

j ,B∗(A ∗−λ j )lφ
〉

U
= ∑

r≥0
eT

[
λ(r+1)

j

]〈
z,

(
(A ∗−λ j )rφ

)〉
−⋄,⋄

=
〈

z,e−T A ∗
φ

〉
−⋄,⋄ =

〈
e−T A z,φ

〉
−⋄,⋄ . (64)

This proves the claim.
Applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9, Proposition 6.1] we

obtain, ∥∥∥∥Ω[
λ

(µl )
·

]∥∥∥∥
U
=

∥∥∥∥∥ l∑
q=1

eT

[
λ

(µl−µq−1)
·

]
Ω̃

[
λ

(µq )
·

]∥∥∥∥∥
≤Cp,ϱ,η(1+T )|α|e−rG T

(
l∑

q=1

∥∥∥Ω̃[
λ

(µq )
·

]∥∥∥2
) 1

2

.

Thus,
F (Ω) ≤Cp,ϱ,η(1+T )2|α|e−2rG T F (Ω̃) =Cp,ϱ,η(1+T )2|α|e−2rG T C (G , z).

AsΩ ∈O (G ,e−T A z), this proves (62).
The proof of (63) uses the same ingredients.
From (51), let Ω ∈ O (G ,e−T A z) be such that F (Ω) = C (G ,e−T A z). For any j ∈ �1, g � and any

l ∈ �0,α j �, let

Ω̃l
j := (e−TΩ)

[
λ j

(l+1)]
where

Ω
[
λ j

(l+1)]
:=Ωl

j .

As previously, applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9, Proposi-
tion 6.1], since λ j satisfies ℜλ j ≤ rG +ϱ for any j ∈ �1, g �, we obtain∥∥∥∥Ω̃[

λ
(µl )
·

]∥∥∥∥
U
≤Cp,ϱ,η(1+T )2|α|e(rG+ϱ)T

(
l∑

q=1

∥∥∥Ω[
λ

(µq )
·

]∥∥∥2
) 1

2

.
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The same computations as in (64) give thatΩ ∈O (G , z). Thus

C (G , z) ≤ F (Ω̃) ≤Cp,ϱ,η(1+T )2|α|e2(rG+ϱ)T F (Ω)

=Cp,ϱ,η(1+T )2|α|e2(rG+ϱ)T C (G ,e−T A z)

and (63) is proved. □

4.2. The minimal null control time

This section is dedicated to the proof of Theorem 11 and Corollary 12 concerning the minimal
null control time. Proposition 20 and Corollary 21 concerning the cost of null controllability will
follow from the estimates obtained in the proof of Theorem 11. This is discussed at the end of the
current section.

Proof of Theorem 11. We start with the proof of null controllability in time T > T0(y0).
We set ε= T −T0(y0) > 0. Let G ∈G and let vG ∈ L2(0,ε;U ) be the solution of the block moment

problem (47) in time ε associated with z = e−T A y0 given by Theorem 10 i.e.∫ ε

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt =

〈
e−T A y0,φ

〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G ,∫ ε

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�.

We still denote by vG ∈ L2(0,T ;U ) the extension of vG by 0. Thus, vG satisfies∫ T

0

〈
vG (t ),B∗e−tA ∗

φ
〉

U
dt =

〈
e−T A y0,φ

〉
−⋄,⋄ , ∀φ ∈ Eλ, ∀λ ∈G ,∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�.

From (40), this implies that vG solves (38). Thus, the only point left is to prove that the series (37)
defining the control u converges in L2(0,T ;U ).

From Theorem 10 we have that

∥vG∥2
L2(0,T ;U ) = ∥vG∥2

L2(0,ε;U ) ≤CeCε−
θ

1−θ eCr θG C (G ,e−T A y0).

By the Young inequality we get

eCr θG ≤ eCε−
θ

1−θ eεrG

where in the right-hand side the constant C > 0 has changed but still depend on the same
parameters. Thus,

∥vG∥2
L2(0,T ;U ) ≤CeCε−

θ
1−θ eεrG C (G ,e−T A y0).

Using (62) we obtain

∥vG∥2
L2(0,T ;U ) ≤CeCε−

θ
1−θ (1+T )2|α|e−εrG e−2rG (T−ε) C (G , y0).

Recalling that ε= T −T0(y0) this gives

∥vG∥2
L2(0,T ;U ) ≤C exp

 C(
T −T0(y0)

) θ
1−θ

 (1+T )2|α|e−(T−T0(y0))rG e−2rG T0(y0) C (G , y0). (65)

Recall that in (49) we have defined T0(y0) by

T0(y0) = limsup
G∈G

ln+C (G , y0)

2rG
.
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Thus, when rG is sufficiently large, we have

e−2rG T0(y0) C (G , y0) ≤ exp

(
T −T0(y0)

2
rG

)
.

Together with (65) this implies, for rG sufficiently large,

∥vG∥2
L2(0,T ;U ) ≤C exp

 C(
T −T0(y0)

) θ
1−θ

 (1+T )2|α| exp

(
−T −T0(y0)

2
rG

)
and proves that the series

u = ∑
G∈G

vG (T −· ) (66)

converges in L2(0,T ;U ). This proves null controllability of (1) from y0 in any time T > T0(y0).
We now end the proof of Theorem 11 by proving that null controllability does not hold in

time T < T0(y0). The proof mainly relies on the optimality of the resolution of the block moment
problems given in Proposition 9 (see (45)).

Let T > 0. Assume that problem (1) is null controllable from y0 in time T . Thus there exists
u ∈ L2(0,T ;U ) such that y(T ) = 0 and

∥u∥L2(0,T ;U ) ≤CT
∥∥y0

∥∥−⋄ .

Let v :=−u(T −· ). Then, for any G ∈G , v satisfies (47a) with z = e−T A y0. From (45), this implies

C 2
T

∥∥y0
∥∥2
−⋄ ≥ ∥u∥2

L2(0,T ;U ) = ∥v∥2
L2(0,T ;U ) ≥Cp,η,rΛC (G ,e−T A y0). (67)

Applying (63) we obtain
C (G , y0) ≤CT,p,ϱ,ηe2rG T C (G ,e−T A y0).

Together with (67) this implies

C (G , y0) ≤CT,p,ϱ,η,rΛ

∥∥y0
∥∥2
−⋄ e2rG T . (68)

Getting back to the definition of T0(y0) given in (49), this implies that T ≥ T0(y0) and ends the
proof of Theorem 11. □

Remark 28. It is worth noticing that the solution vG constructed above is only active on the time
interval (0,T−T0(y0)). Thus, whenever T0(y0) > 0, the series (66) defining the control u proves that
it is possible to control y0 to 0 in any time T > T0(y0) with a control that is identically vanishing
on the time interval

(
0,T0(y0)

)
.

We now turn to the proof of Corollary 12.

Proof of Corollary 12. By definition, we have T0(Y0) = supy0∈Y0
T0(y0). Using the definition of

C (G ,Y0) and Theorem 11, it directly comes that

T0(Y0) ≤ limsup
G∈G

ln+C (G ,Y0)

2rG
.

We now focus on the converse inequality. Let T > 0 such that

T < limsup
G∈G

ln+C (G ,Y0)

2rG

and let us prove that T ≤ T0(Y0).
There exists ε> 0 and a sequence of groups (Gk )k∈N ∈GN such that for any k ∈N∗, there exists

y0,k ∈ Y0 with
∥∥y0,k

∥∥−⋄ = 1 satisfying

T +ε< lnC (Gk , y0,k )

2rGk

. (69)
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By contradiction, assume that for any y0 ∈ Y0, we have T > T0(y0). Thus, from (68), there exists
CT,p,ϱ,η,rΛ > 0 such that for any k ∈N∗

lnC (Gk , y0,k )

2rGk

≤ lnCT,p,ϱ,η,rΛ

2rGk

+T.

Taking k sufficiently large, this is in contradiction with (69). □

We end this section with the proof of Proposition 20 and Corollary 21 concerning the cost of
null controllability.

A careful inspection of the proof of null controllability in time T > T0(y0) detailed in Section 4.2
allows to give a bound on the cost of controllability.

Proof of Proposition 20 and Corollary 21. The proof of Proposition 20 follows directly from (37)
and (65).

The proof of Corollary 21 then follows directly from Proposition 20, assumption (58) and the
estimate ∑

G∈G

e−rG x ≤ Cθ,κ

xθ
, ∀ x > 0,

proved in [12, Proposition A.5.38]. □

5. Computation of the cost of a block

In this section we prove more explicit formulas to estimate the cost C (G , y0) of the resolution of a
block moment problem depending on the assumptions on the eigenvalues in the group G . More
precisely, we prove here Theorems 14 and 18. For pedagogical purpose, we start in Section 5.1
with Theorem 14 for algebraically (and geometrically) simple eigenvalues i.e. when αλ = γλ = 1
for any λ ∈G . Then, in Section 5.2, we prove the general statement of Theorem 14 that is when all
the eigenvalues in the group are geometrically simple i.e. γλ = 1 for any λ ∈G .

The formula for the cost C (G , y0) when all the eigenvalues in the group G are semi-simple (i.e.
αλ = 1 for any λ ∈G) stated in Theorem 18 is then proved in Section 5.3. The extension to spaces
of initial conditions (53) and (57) does not depend on the matrix M and follows directly from
Lemma 48. Thus, their proofs are not detailed here.

When both algebraic and geometric multiplicities appear in the same group we do not get a
general formula but describe the procedure on an example in Section 5.4.

Recall that from (51), computing C (G , y0) is a finite dimensional optimization problem
given by

C (G , y0) = min
{

F (Ω) ; Ω ∈O (G , y0)∩U |α|
G

}
where the function F is defined in (44), the constraints associated with O (G , y0) are defined in (42)
and UG is defined in (50).

5.1. The case of simple eigenvalues

In all this section, we consider the simpler case where αλ = γλ = 1 for every λ ∈ G . Thus, in the
rest of this section, we drop the superscript 0 associated to eigenvectors.

We start with the proof of the invertibility of the matrix M stated in Proposition 13.

Proof. Recall that, as αλ = γλ = 1, the positive semi-definite matrix M is defined in (54). Let
τ ∈Cg be such that 〈Mτ,τ〉 = 0. Then, for each l ∈ �1, g �, we have〈

Γlτ,τ
〉= 0.
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We prove that τ= 0. By contradiction let

l = max{ j ∈ �1, g � ; τ j ̸= 0}.

Then from (54) this leads to
〈
Γlτ,τ

〉 = ∥b[λl ]∥2
U |τl |2. Using (33) implies τl = 0. This is in contra-

diction with the definition of l which proves the invertibility of M . □

We now prove Theorem 14.

Proof. First of all, notice that the function F to minimize reduces to

F (Ω) =
g∑

j=1

∥∥∥Ω[λ1, . . . ,λ j ]
∥∥∥2

and, as γλ =αλ = 1, the constraints defining the set O (λ j , y0) reduce to〈
Ω j ,b j

〉
U = 〈

y0,φ j
〉
−⋄,⋄ .

Thus, the minimization problem reduces to

C (G , y0) = min

{
F (Ω) ;

Ω= (Ω1, . . . ,Ωg ) ∈U g
G such that〈

Ω j ,b j
〉

U = 〈
y0,φ j

〉
−⋄,⋄ , ∀ j ∈ �1, g �

}
. (70)

For the sake of generality, let us consider for this proof any ω1, . . . ,ωg ∈ C and the more general
constraints 〈

Ω j ,b j
〉

U =ω j , ∀ j ∈ �1, g �. (71)

Using the formalism of divided differences, this is equivalent to the family of constraints

〈Ω,b〉U [λ1, . . . ,λ j ] =ω[λ1, . . . ,λ j ], ∀ j ∈ �1, g �. (72)

We consider the constrained complex minimization problem

min
{
F (Ω) ; Ω= (Ω1, . . . ,Ωg ) ∈U g

G such that (72) holds
}

.

It has a unique solution, which is characterised by the existence of multipliers (m j ) j∈�1,g � ⊂ C

such that
g∑

j=1

〈
H [λ1, . . . ,λ j ],Ω[λ1, . . . ,λ j ]

〉
U
=

g∑
j=1

m j 〈H ,b〉U [λ1, . . . ,λ j ], (73)

for any H1, . . . , Hg ∈UG .
Then, for a given q ∈ �1, g �, using Leibniz formula [12, Proposition A.2.11], the constraints (72)

can be rewritten as

ω[λ1, . . . ,λq ] = 〈Ω,b〉U [λ1, . . . ,λq ] =
q∑

j=1

〈
Ω[λ1, . . . ,λ j ],b[λ j , . . . ,λq ]

〉
U

(74)

To relate (74) and (73), we look for H1, . . . , Hg ∈UG such that, for a given q ∈ �1, g � we have

H [λ1, . . . ,λ j ] =
{

b[λ j , . . . ,λq ], for j ≤ q,

0, for j > q.

This can be done by setting H1 = b[λ1, . . . ,λq ] and, from the interpolation formula [9, Proposi-
tion 7.6], by defining H j by the formula

H j =
j∑

i=1

(
j−1∏
k=1

(λi −λk )

)
H [λ1, . . . ,λi ], ∀ j ∈ �2, g �.

Then, from (74) we obtain

ω[λ1, . . . ,λq ] =
g∑

j=1

〈
Ω[λ1, . . . ,λ j ], H [λ1, . . . ,λ j ]

〉
U

.
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Now relation (73) leads, after conjugation, to

ω[λ1, . . . ,λq ] =
g∑

j=1
m j 〈H ,b〉U [λ1, . . . ,λ j ].

The application of Leibniz formula [12, Proposition A.2.11] yields

ω[λ1, . . . ,λq ] =
g∑

j=1
m j

(
j∑

l=1

〈
H [λ1, . . . ,λl ],b[λl , . . . ,λ j ]

〉
U

)

=
g∑

j=1
m j

(
min( j ,q)∑

l=1

〈
b[λl , . . . ,λq ],b[λl , . . . ,λ j ]

〉
U

)
.

Conjugating this relation leads to

ω[λ1, . . . ,λq ] =
g∑

j=1
m j

(
min( j ,q)∑

l=1

〈
b[λl , . . . ,λ j ],b[λl , . . . ,λq ]

〉
U

)

=
g∑

l=1

g∑
j=1

m jΓ
l
q, j = (Mm)q ,

where Γl and M are defined in (54).
Let

ξ :=


ω[λ1]

...

ω[λ1, . . . ,λg ]

 ∈Cg .

We have just proved that m = M−1ξ. Getting back to (73) with H = Ω together with the con-
straints (72), we obtain

F (Ω) =
g∑

j=1
m j 〈Ω,b〉U [λ1, . . . ,λ j ] = 〈

M−1ξ,ξ
〉

.

With the specific choice, ω j = 〈
y0,φ j

〉
−⋄,⋄, this ends the proof of Theorem 14 with the extra

assumption that αλ = 1 for all λ ∈G . Indeed, by anti-linearity we have

ω[λ1, . . . ,λ j ] = 〈
y0,φ[λ1, . . . ,λ j ]

〉
−⋄,⋄ , ∀ j ∈ �1, g �. □

Remark 29. As mentioned in Remark 15, estimate (70) implies that the cost of the block G
(i.e. the quantity

〈
M−1ξ,ξ

〉
) can be estimated using any eigenvectors: there is no normalization

condition.

Remark 30. Rewriting the constraints in the form (72) is not mandatory but, as the function
to minimize involves divided differences, it leads to more exploitable formulas and will ease the
writing when dealing with algebraic multiplicity of eigenvalues. Dealing directly with (71) would
lead to the expression (131) for the cost of the block G as it will appear in the proof of Theorem 18.

5.2. The case of geometrically simple eigenvalues

The proof of Proposition 13 and Theorem 14 under the sole assumption γλ = 1 for any λ ∈ G
follows closely the proof done in Section 5.1. The main difference is the use of generalized divided
differences (see [9, Section 7.3]) instead of classical divided differences as detailed below.

Proof of Proposition 13. Due to (43), for any l ∈ �1, |α|� the multi-index µl −µl−1 is composed of
only one 1 and g −1 zeros. Thus,

b
[
λ(µl−µl−1)
·

]
= b0

j
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for a certain j ∈ �1, g �. From (33) it comes that

b
[
λ(µl−µl−1)
·

]
̸= 0, ∀ l ∈ �1, |α|�.

The rest of the proof follows as in Section 5.1. □

Proof of Theorem 14. As γλ = 1, the constraints defining the set O (λ j , y0) reduce to

l∑
r=0

〈
Ωr

j ,bl−r
j

〉
U
=

l∑
r=0

〈
Ωr

j ,B∗(A ∗−λ j )rφl
j

〉
U

=
〈

y0,φl
j

〉
−⋄,⋄ , ∀ l ∈ �0,α j �.

By definition of 〈Ω,b〉U

[
λ j

(l+1)]
, this is equivalent to

〈Ω,b〉U

[
λ j

(l+1)]= 〈
y0,φl

j

〉
−⋄,⋄ , ∀ l ∈ �0,α j �.

Thus,

C (G , y0) = min

F (Ω) ;
Ω= (Ω0

1, . . . ,Ωα1−1
1 , . . . ,Ω0

g , . . . ,Ω
αg −1
g ) ∈U |α|

G such that

〈Ω,b〉U

[
λ j

(l+1)]= 〈
y0,φl

j

〉
−⋄,⋄ , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �

 . (75)

For the sake of generality, let us consider for this proof any(
ω0

1, . . . ,ωα1−1
1 , . . . ,ω0

g , . . . ,ω
αg −1
g

)
∈C|α|

and the more general constraints

〈Ω,b〉U

[
λ j

(l+1)]=ωl
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

From (43), this is equivalent to the family of constraints

〈Ω,b〉U

[
λ·

(µp )]=ω[
λ·

(µp )]
, ∀ p ∈ �1, |α|�,

and we proceed as in Section 5.1. The only difference is the use of generalized divided differences.
For instance, the equation (73) now reads

|α|∑
l=1

〈
H

[
λ·

(µl )]
,Ω

[
λ·

(µl )]〉
U
=

|α|∑
l=1

m l 〈H ,b〉U

[
λ·

(µl )]
, ∀ H = (

H l
j

) ∈U |α|
G .

The rest of the proof remains unchanged. □

Remark 31. As mentioned in Remark 15, estimate (75) implies that the cost of the block G (i.e. the
quantity

〈
M−1ξ,ξ

〉
) can be estimated using any eigenvectors and any associated Jordan chains.

5.3. The case of semi-simple eigenvalues

We start with the proof of Proposition 17.

Proof of Proposition 17. Recall that the positive semi-definite matrix M is defined in (56). Let
τ ∈ CγG be such that 〈Mτ,τ〉 = 0. Then, for any l ∈ �1, g �,

〈
Γlτ,τ

〉 = 0. We prove that τ = 0. By
contradiction let

l̃ = max{ j ∈ �1,γG� ; τ j ̸= 0}

and l ∈ �1, g � be such that

γ1 +·· ·+γl−1 < l̃ ≤ γ1 +·· ·+γl
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with the convention that l = 1 when l̃ ≤ γ1. We denote by σ ∈Cγl the l th block of τ i.e.

σ=

τγ1+···+γl−1+1
...

τγ1+···+γl

 .

From (55) we have δi
l = 0 when i < l . Thus all the blocks (i , j ) of Γl are equal to 0 when i , j ∈ �1, l�.

This leads to 〈
Γlτ,τ

〉
=

∣∣∣δl
l

∣∣∣2 〈
GramU

(
bl ,1, . . . ,bl ,γl

)
σ,σ

〉
.

As the eigenvalues λ1, . . . ,λg are distinct it comes that δl
l ̸= 0 (see (55)) which implies〈

GramU
(
bl ,1, . . . ,bl ,γl

)
σ,σ

〉= 0.

From (33), we have that bl ,1, . . . ,bl ,γl
are linearly independent. This proves the invertibility of

GramU
(
bl ,1, . . . ,bl ,γl

)
and givesσ= 0. This is in contradiction with the definition of l̃ which proves

the invertibility of M . □

We now turn to the proof of Theorem 18.

Proof of Theorem 18. First of all, notice that the function F to minimize reduces to

F (Ω) =
g∑

j=1

∥∥∥Ω[λ1, . . . ,λ j ]
∥∥∥2

and, as αλ = 1, the constraints defining the set O (λ j , y0) reduce to〈
Ω j ,B∗φ

〉
U = 〈

y0,φ
〉
−⋄,⋄ , ∀φ ∈ Ker(A ∗−λ j ).

To simplify the writing, let us consider the linear maps

B j :=


〈· ,B∗φ j ,1

〉
U

...〈
· ,B∗φ j ,γ j

〉
U

 ∈L (U ,Cγ j ).

Then the constraints defining O (λ j , y0) can be rewritten as the equality

B jΩ j =


〈

y0,φ j ,1
〉
−⋄,⋄

...〈
y0,φ j ,γ j

〉
−⋄,⋄

 . (76)

Thus,

C (G , y0) = min
{

F (Ω) ; Ω= (Ω1, . . . ,Ωg ) ∈U g
G such that (76) holds for any j ∈ �1, g �

}
. (77)

For the sake of generality, let us consider for this proof, for any j ∈ �1, g �, any ω j ∈ Cγ j and the
more general constraints

B jΩ j =ω j , ∀ j ∈ �1, g �. (78)

As the ω j ’s have different sizes we avoid in this proof the use of divided differences to rewrite
the constraints. This is why we end up with the formula (56) rather than an adaptation of (54) (see
also the discussion in Remark 30).

Arguing as before, the solution of our optimisation problem satisfies
g∑

j=1

〈
H [λ1, . . . ,λ j ],Ω[λ1, . . . ,λ j ]

〉
U
=

g∑
j=1

〈
B j H j ,m j

〉
, ∀ H1, . . . , Hg ∈UG , (79)

for some m j ∈Cγ j , j = 1, . . . , g .
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Recall that in (55) we defined the numbers

δi
j =

∏
k∈�1, j �

(
λi −λk

)
, ∀ j ∈ �2, g �.

Then, from the interpolation formula [9, Proposition 7.6], we obtain that

Ωi =
i∑

l=1
δi

lΩ[λ1, . . . ,λl ]. (80)

For any H ∈UG and i ∈ �1, g �, let us design H (i )
1 , . . . , H (i )

g ∈UG such that

H (i )[λ1, . . . ,λl ] = δi
l H , ∀ l ∈ �1, i�. (81)

To do so, we set H (i )
1 = H then, using the interpolation formula [9, Proposition 7.6], we define

recursively

H (i )
j =

j∑
l=1

δ
j
l H (i )[λ1, . . . ,λl ] =

(
j∑

l=1
δi

lδ
j
l

)
H = a(i )

j H

with

a(i )
j :=

g∑
l=1

δi
lδ

j
l =

min(i , j )∑
l=1

δi
lδ

j
l . (82)

This ensures (81). Plugging this set of values H (i )
j , j = 1, . . . , g in (79) and taking into account (80),

leads to
g∑

j=1
a(i )

j

〈
B j H ,m j

〉= g∑
j=1

〈
B j H (i )

j ,m j

〉
=

g∑
j=1

δi
j

〈
H ,Ω[λ1, . . . ,λ j ]

〉
U

=
〈

H ,
g∑

j=1
δi

jΩ[λ1, . . . ,λ j ]

〉
U

= 〈H ,Ωi 〉U .

This being true for any H ∈UG , we end up with

Ωi =
g∑

j=1
a(i )

j B∗
j m j . (83)

Together with (78), using (82), we obtain that

ωi =
g∑

j=1
a(i )

j Bi B∗
j m j

=
g∑

l=1

g∑
j=1

(
δi

l Bi

)(
δ

j
l B j

)∗
m j

= (Mm)i

where M is defined in (56) and (Mm)i ∈Cγi denotes the i th block of Mm ∈CγG .
Finally, if we set

ξ :=

ω1
...
ωg

 ∈CγG , (84)
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we have proved that the multiplier is given by m = M−1ξ. Applying (79) with H j =Ω j and using
the constraints (76) leads to

F (Ω) =
g∑

j=1

∥∥∥Ω[λ1, . . . ,λ j ]
∥∥∥2 = 〈

M−1ξ,ξ
〉

,

which proves the claim. □

Remark 32. From (83) and the equality m = M−1ξ, it comes that

C (G , y0) = min
{

F (Ω) ; Ω= (Ω1, . . . ,Ωg ) ∈U g
G such that (78) holds for any j ∈ �1, g �

}
where the minimum is achieved for

Ωi =
g∑

j=1

(
g∑

l=1
δi

lδ
j
l

)
B∗

j (M−1ξ) j

with ξ defined by (84).

Remark 33. As mentioned in Remark 15, estimate (77) implies that the cost of the block G (i.e.
the quantity

〈
M−1ξ,ξ

〉
) can be estimated using any basis of eigenvectors.

5.4. Dealing simultaneously with algebraic and geometric multiplicities

The proof of Theorem 14 strongly relies on the use of divided differences to rewrite the constraints
whereas the proof of Theorem 18 is based on the vectorial writing of the constraints through
the operators B j ∈ L (U ;Cγ j ). As the target spaces of these operators do not have the same
dimension, one cannot directly compute divided differences. Thus, the setting we developed
to compute the cost of a given block does not lead to a general formula when both kind of
multiplicities need to be taken into account in the same group. However, for actual problems,
the computation of this cost is a finite dimensional constrained optimization problem which can
be explicitly solved.

Let us give an example of such a group that does not fit into Theorem 14 nor into Theorem 18
but for which we manage to compute the cost by hand. To simplify a little the presentation, we
give this example in the case of real Hilbert spaces and real eigenvalues.

We consider a group G = {λ1,λ2} of two distinct eigenvalues such that γλ1 = αλ1 = 2 and
γλ2 = αλ2 = 1. Let (φ0

1,1,φ0
1,2) be a basis of Ker(A ∗ − λ1) and φ0

2,1 be an eigenvector of A ∗

associated to the eigenvalue λ2. Assume that the generalized eigenvector φ1
1,1 is such that(

A ∗−λ1
)
φ1

1,1 =φ0
1,1,

and that {φ0
1,1,φ1

1,1,φ0
1,2} forms a basis of Ker(A ∗−λ1)2.

For this group, in the same spirit as in Theorems 14 and 18, we obtain the following result.

Proposition 34. For any y0 ∈ X−⋄, we have

C (G , y0) = 〈
M−1ξ,ξ

〉
where ξ=



〈
y0,φ0

1,1

〉
−⋄,⋄〈

y0,φ0
1,2

〉
−⋄,⋄〈

y0,φ1
1,1

〉
−⋄,⋄〈

y0,φ0
2,1

〉
−⋄,⋄


and M is the invertible matrix defined by

M = GramU
(
b0

1,1, b0
1,2, b1

1,1, b0
2,1

)+GramU
(
0, 0, b0

1,1, δb0
2,1

)+GramU
(
0, 0, 0, δ2b0

2,1

)
with δ=λ2 −λ1.
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Proof. Let (
ω0

1,1,ω0
1,2,ω1

1,1,ω0
2,1

)t ∈R4.

As in the proofs of Theorems 14 and 18, the goal is to compute the minimum of the function

F :
(
Ω0

1,Ω1
1,Ω0

2

) ∈U 3
G 7→ ∥Ω0

1∥2 +∥Ω1
1∥2 +∥Ω[λ(2)

1 ,λ2]∥2,

under the 4 constraints 〈
Ω0

j ,b0
j ,i

〉
U
=ω0

j ,i , ∀ i ∈ �1,γ j �, ∀ j ∈ �1,2�,〈
Ω0

1,b1
1,1

〉
U
+〈
Ω1

1,b0
1,1

〉
U
=ω1

1,1.

Then, the Lagrange multipliers m0
1,1,m0

1,2,m1
1,1 and m0

2,1 satisfy the equations〈
Ω0

1, H 0
1

〉
U +〈

Ω1
1, H 1

1

〉
U +

〈
Ω[λ(2)

1 ,λ2], H [λ(2)
1 ,λ2]

〉
U

= m0
1,1

〈
H 0

1 ,b0
1,1

〉
U
+m0

1,2

〈
H 0

1 ,b0
1,2

〉
U
+m1

1,1

(〈
H 0

1 ,b1
1,1

〉
U
+〈

H 1
1 ,b0

1,1

〉
U

)
+m0

2,1

〈
H 0

2 ,b0
2,1

〉
U

, (85)

for every H 0
1 , H 1

1 , H 0
2 ∈UG . Considering successively

H 0
1 = b0

1,1, H 1
1 = 0, H 0

2 = b0
1,1,

H 0
1 = b0

1,2, H 1
1 = 0, H 0

2 = b0
1,2,

H 0
1 = b1

1,1, H 1
1 = b0

1,1, H 0
2 = b1

1,1 + (λ2 −λ1)b0
1,1,

and

H 0
1 = b0

2,1, H 1
1 = (λ2 −λ1)b0

2,1, H 0
2 = (

1+ (λ2 −λ1)2 + (λ2 −λ1)4)b0
2,1,

and plugging it into (85), we obtain that
ω0

1,1
ω0

1,2
ω1

1,1
ω0

2,1

= M


m0

1,1
m0

1,2
m1

1,1
m0

2,1

 .

Then, the same argument as in the proofs of Theorems 14 and 18 ends the proof. □

6. Application to the study of null controllability of academic examples

In this section we provide examples to illustrate how to use the formulas obtained in Theo-
rems 11, 14 and 18 in order to compute the minimal null control time.

We start with academic examples for which computations are simpler. Then, in Section 7, we
study coupled systems of actual partial differential equations of parabolic type.

6.1. Setting and notations

Let A be the unbounded Sturm–Liouville operator defined in L2(0,1;R) by

D(A) = H 2(0,1;R)∩H 1
0 (0,1;R), A =−∂x

(
γ∂x ·

)+ c ·, (86)

with c ∈ L∞(0,1;R) satisfying c ≥ 0 and γ ∈C 1([0,1];R) satisfying inf[0,1]γ> 0.
The operator A admits an increasing sequence of eigenvalues denoted by (νk )k∈N∗ . The

associated normalized eigenvectors (ϕk )k∈N∗ form a Hilbert basis of L2(0,1;R).

Remark 35. The assumption c ≥ 0 ensures that for any k ≥ 1, the eigenvalues satisfies νk > 0.
From Remark 5, the controllability results proved in the present article still hold when the
function c is bounded from below.
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To lighten the notations, for any I ⊂ (0,1) we set ∥·∥I = ∥·∥L2(I ).
Let f : Sp(A) →R be a bounded function. Associated to this function we consider the operator

f (A) defined on D(A) by the spectral theorem by

f (A) = ∑
k≥1

f (νk )
〈 · ,ϕk

〉
L2(0,1;R)ϕk . (87)

6.2. Spectral properties of Sturm–Liouville operators

Let A be the Sturm–Liouville operator defined in (86). All the examples studied in this article are
based on this operator. We recall here some spectral properties that will be used in our study.

From [2, Theorem 1.1 and Remark 2.1], there exist ϱ> 0 and C > 0 such that

ϱ< νk+1 −νk , ∀ k ≥ 1, (88)
1

C

p
νk ≤ |ϕ′

k (x)| ≤C
p
νk , ∀ x ∈ {0,1}, ∀ k ≥ 1, (89)

and, for any non-empty open set ω⊂ (0,1),

inf
k≥1

∥ϕk∥ω > 0. (90)

Moreover, using [12, Theorem IV.1.3], the associated counting function satisfies

N(νk )k (r ) ≤C
p

r , ∀ r > 0, (91)

and ∣∣N(νk )k (r )−N(νk )k (s)
∣∣≤C

(
1+

√
|r − s|

)
, ∀ r, s > 0. (92)

We also recall the classical Lebeau–Robbiano spectral inequality∥∥∥∥∥ ∑
k≤K

akϕk

∥∥∥∥∥
Ω

≤CeC
p
νK

∥∥∥∥∥ ∑
k≤K

akϕk

∥∥∥∥∥
ω

, ∀ K ≥ 1,∀ (ak )k ⊂R. (93)

Indeed, as detailed for instance in [12, Theorem IV.2.19], the proof of this spectral inequality given
in [27] directly extends to the low regularity coefficients considered here.

6.3. Perturbation of a 2×2 Jordan block

Let ω ⊂ (0,1) be a non-empty open set and U = L2(Ω). Let A be the Sturm–Liouville operator
defined in (86) and f (A) be the operator defined in (87) with f : Sp(A) →R satisfying∣∣ f (νk )

∣∣< ϱ

2
, ∀ k ≥ 1.

We consider the operator A on X = L2(0,1;R)2 defined by

A =
(

A I
0 A+ f (A)

)
, D(A ) = D(A)×D(A), (94)

and

B : u ∈U 7→
(

0
1ωu

)
. (95)

Then,

B∗ :

(
ϕ1

ϕ2

)
∈ X 7→1ωϕ2.

It is easy to see that (−A ,D(A )) generates a C0-semigroup on X and that B : U → X is bounded.
Thus we consider for this example that X ∗⋄ = X = X−⋄.

Proposition 36. Let us consider the control system (1) with A and B given by (94)–(95). Then,
null-controllability from X−⋄ holds in any time i.e. T0(X−⋄) = 0.
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Proof. The spectrum of (A ∗,D(A )) is given by

Λ= {νk ; k ≥ 1}∪ {νk + f (νk ) ; k ≥ 1}.

Recall that (νk )k≥1 satisfies (88), (91) and (92). From [12, Lemma V.4.20] it comes that there exists
κ> 0 such thatΛ ∈Lw

(
2, ϱ2 , 1

2 ,κ
)
.

An associated grouping is given by{
Gk := {λk,1 := νk , λk,2 := νk + f (νk )}, if f (νk ) ̸= 0,

Gk := {λk,1 := νk }, if f (νk ) = 0.

If f (νk ) ̸= 0 the eigenvalues λk,1 and λk,2 are simple and we consider the associated eigenvectors

φ0
k,1 =

(− f (νk )
1

)
ϕk , φ0

k,2 =
(
0
1

)
ϕk .

If f (νk ) = 0 the eigenvalue λk,1 is algebraically double and we consider the associated Jordan
chain

φ0
k,1 =

(
0
1

)
ϕk , φ1

k,1 =
(
1
0

)
ϕk .

From (90) it comes that (33) and (34) are satisfied. Thus, from Theorem 11, we obtain that for any
y0 ∈ X−⋄,

T0(y0) = limsup
k→+∞

ln+C (Gk , y0)

2minGk
.

Let us now conclude by estimating C (Gk , y0).

• Consider first that f (νk ) ̸= 0. Then, φ[λk,1,λk,2] = (
1
0

)
ϕk and

b[λk,1,λk,2] =B∗φ[λk,1,λk,2] = 1ωϕk −1ωϕk

f (νk )
= 0.

From Theorem 14 it comes that

C (Gk , y0) = 〈
M−1ξ,ξ

〉
with

M = Gram(b[λk,1],b[λk,1,λk,2])+Gram(0,b[λk,2]) =
(∥ϕk∥2

ω 0
0 ∥ϕk∥2

ω

)
and

ξ=
( 〈

y0,φ[λk,1]
〉
−⋄,⋄〈

y0,φ[λk,1,λk,2]
〉
−⋄,⋄

)
=


〈

y0,

(− f (νk )
1

)
ϕk

〉
−⋄,⋄〈

y0,

(
1
0

)
ϕk

〉
−⋄,⋄

 .

Thus,

C (Gk , y0) =
〈

y0,

(− f (νk )
1

)
ϕk

∥ϕk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
ϕk

∥ϕk∥ω

〉2

−⋄,⋄
.

• Consider now that f (νk ) = 0. Then, b[λ(2)
k,1] = 0. From Theorem 14 it comes that

C (Gk , y0) = 〈
M−1ξ,ξ

〉
with

Mk = Gram(b[λk,1],b[λ(2)
k,1])+Gram(0,b[λk,1]) =

(∥ϕk∥2
ω 0

0 ∥ϕk∥2
ω

)
.
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and

ξ=
(〈

y0,φ[λk,1]
〉
−⋄,⋄〈

y0,φ[λ(2)
k,1]

〉
−⋄,⋄

)
=


〈

y0,

(
0
1

)
ϕk

〉
−⋄,⋄〈

y0,

(
1
0

)
ϕk

〉
−⋄,⋄

 .

As previously,

C (Gk , y0) =
〈

y0,

(
0
1

)
ϕk

∥ϕk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
ϕk

∥ϕk∥ω

〉2

−⋄,⋄
.

Gathering both cases and using estimate (90) we obtain, for any y0 ∈ X−⋄,

C (Gk , y0) ≤C
∥∥y0

∥∥2
−⋄ , ∀ k ≥ 1.

Thus,

T0(y0) = limsup
k→+∞

ln+C (Gk , y0)

2minGk
= 0. □

6.4. Competition between different perturbations

Let ω1,ω2 ⊂ (0,1) be two open sets with ω1 ̸=∅ and U = L2(Ω)2. Let B1,B2 ∈ R3. To simplify the
computations, we assume that

Bi =
 0

Bi ,2

Bi ,3

 .

Let α,β> 0 with α ̸=β and f , g : Sp(A) →R be defined by

f (νk ) = ϱ

2
e−ανk , g (νk ) = ϱ

2
e−βνk .

As previously, we consider the associated operators f (A) and g (A) defined by the spectral
theorem and we define the evolution operator A on X = L2(0,1;R)3 by

A =
A I 0

0 A+ f (A) 0
0 0 A+ g (A)

 , D(A ) = D(A)3, (96)

and the control operator by

B :

(
u1

u2

)
∈U 7→1ω1 u1B1 +1ω2 u2B2. (97)

Then, the observation operator reads

B∗ :

ϕ1

ϕ2

ϕ3

 ∈ X 7→
(
1ω1

(
B1,2ϕ2 +B1,3ϕ3

)
1ω2

(
B2,2ϕ2 +B2,3ϕ3

)) .
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Proposition 37. Let us consider the control system (1) with A and B given by (96)–(97).

(i) If ω2 =∅, we assume that
B1,2B1,3 ̸= 0. (98)

Then,
T0(X−⋄) =β+min{α,β}.

(ii) If ω2 ̸=∅, we assume that (
B 2

1,2 +B 2
2,2

)(
B 2

1,3 +B 2
2,3

) ̸= 0. (99)

(a) If B1 and B2 are linearly independent, then,

T0(X−⋄) = 0.

(b) If B1 and B2 are not linearly independent, then,

T0(X−⋄) =β+min{α,β}.

Proof. It is easy to see that (−A ,D(A )) generates a C0-semigroup on X and that B : U → X is
bounded. Thus we consider for this example that X ∗⋄ = X = X−⋄ and Y0 = X−⋄.

The spectrum of (A ∗,D(A )) is given byΛ=⋃
k≥1 Gk where

Gk := {λk,1 := νk , λk,2 := νk + f (νk ), λk,3 := νk + g (νk )}.

Again, since (νk )k≥1 satisfies (88), (91) and (92), the application of [12, Lemma V.4.20] yields the
existence of κ> 0 such thatΛ ∈Lw

(
3, ϱ2 , 1

2 ,κ
)
. The sequence (Gk )k≥1 is an associated grouping.

The eigenvalues are simple and the corresponding eigenvectors are given by

φ0
k,1 =

− f (νk )
1
0

ϕk , φ0
k,2 =

0
1
0

ϕk , φ0
k,3 =

0
0
1

ϕk .

Thus, the assumption (34) hold. Moreover,

b1 = b2 =
(
1ω1ϕk B1,2

1ω2ϕk B2,2

)
, b3 =

(
1ω1ϕk B1,3

1ω2ϕk B2,3

)
(100)

From (90) and (98) or (99) (depending on the assumption on ω2) it comes that (33) is satisfied.
Thus, from Theorem 11, it comes that for any y0 ∈ X−⋄,

T0(y0) = limsup
k→+∞

ln+C (Gk , y0)

2minGk
.

Let us now estimate C (Gk , y0). From Theorem 14 it comes that

C (Gk , y0) = 〈
M−1ξ,ξ

〉
with

M = Gram
(
b[λk,1],b[λk,1,λk,2],b[λk,1,λk,2,λk,3]

)
+Gram

(
0,b[λk,2],b[λk,2,λk,3]

)+Gram
(
0,0,b[λk,3]

)
and

ξ=


〈

y0,φ[λk,1]
〉
−⋄,⋄〈

y0,φ[λk,1,λk,2]
〉
−⋄,⋄〈

y0,φ[λk,1,λk,2,λk,3]
〉
−⋄,⋄

 .

Explicit computations yield

φ[λk,1] =
− f (νk )

1
0

ϕk , φ[λk,1,λk,2] =
1

0
0

ϕk ,



Franck Boyer and Morgan Morancey 1231

and

φ[λk,1,λk,2,λk,3] = 1

g (νk )
(
g (νk )− f (νk )

)
 f (νk )− g (νk )

−1
1

ϕk .

(i). Assume that ω2 =∅.
After the change of variables

z = diag

(
1

B1,2
,

1

B1,2
,

1

B1,3

)
y,

the system under study reads
∂t z +

A I 0
0 A+ f (A) 0
0 0 A+ g (A)

z = 1ω1 u1(t , x)

0
1
1

 ,

z(t ,0) = z(t ,1) = 0.

This leads to
b[λk,1] = b[λk,2] = b[λk,3] =1ω1ϕk .

Thus, M = ∥ϕk∥2
ω1

I3 and

C (Gk , y0) =
〈

y0,

− f (νk )
1
0

 ϕk

∥ϕk∥ω1

〉2

−⋄,⋄

+
〈

y0,

1
0
0

 ϕk

∥ϕk∥ω1

〉2

−⋄,⋄

+
(

1

g (νk )
(
g (νk )− f (νk )

) )2
〈

y0,

 f (νk )− g (νk )
−1
1

 ϕk

∥ϕk∥ω1

〉2

−⋄,⋄

.

From (90), we obtain for any y0 ∈ X−⋄,

C (Gk , y0) ≤C
∥∥y0

∥∥2
−⋄

(
1+

(
1

g (νk )
(
g (νk )− f (νk )

) )2)
.

This leads to

T0(X−⋄) ≤ limsup
k→+∞

− ln+ ∣∣g (νk )
(
g (νk )− f (νk )

)∣∣
νk

.

Conversely, with the particular choice

y0 =
∑
k≥1

1

νk

0
0
1

ϕk ,

we have

C (Gk , y0) = 1

ν2
k∥ϕk∥2

ω1

(
1

g (νk )
(
g (νk )− f (νk )

) )2

.

Thus, from (90), we obtain

T0(X−⋄) ≥ T0(y0) = limsup
k→+∞

− ln
∣∣g (νk )

(
g (νk )− f (νk )

)∣∣
νk

which gives

T0(X−⋄) = limsup
k→+∞

− ln
∣∣g (νk )

(
g (νk )− f (νk )

)∣∣
νk

.

Then, the same computations as [9, Section 5.1.3] yield

T0(X−⋄) =β+min{α,β}.
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(ii). We now consider the case ω2 ̸=∅.

(a). Assume that B1 and B2 are linearly independent. If necessary, we consider smaller control
sets so that ω1 ∩ω2 =∅. As we will prove that T0(X−⋄) = 0, this is not a restrictive assumption.

To ease the reading we drop the index k in what follows. As previously, the vector ξ is not
bounded. Let us consider the dilatation Dϵ = diag(1,1,ϵ) with

ϵ= g (ν)
(
g (ν)− f (ν)

)
and ξ̃= Dϵξ. Then, from Section D.1, it comes that

C (G , y0) = 〈
M̃−1ξ̃, ξ̃

〉
with

M̃ =Gram
(
b[λ1],b[λ1,λ2],ϵb[λ1,λ2,λ3]

)+Gram
(
0,b[λ2],ϵb[λ2,λ3]

)+Gram
(
0,0,ϵb[λ3]

)
.

As
∥∥ξ̃∥∥ is bounded, we simply give a lower bound on the smallest eigenvalue of M̃ . Using (100), it

comes that

b[λ1,λ2] = 0, b[λ2,λ3] = b3 −b1

g (ν)− f (ν)
, b[λ1,λ2,λ3] = 1

ϵ
(b3 −b1).

Thus,

M̃ =Gram
(
b1,0,b3 −b1

)+Gram
(
0,b1, g (ν)(b3 −b1)

)+Gram
(
0,0,ϵb3

)
.

This gives that, for any τ ∈R3, we have〈
M̃τ,τ

〉= ∥τ1b1 +τ3(b3 −b1)∥2
U +∥∥τ2b1 + g (ν)τ3(b3 −b1)

∥∥2
U +ϵ2 ∥τ3b3∥2

U . (101)

To obtain a lower bound on this quantity we use the following lemma.

Lemma 38. There exists C > 0 (independent of k) such that for any θ1, θ3 ∈R,

∥θ1b1 +θ3b3∥2
U ≥C

(
θ2

1 +θ2
3

)
.

Proof of Lemma 38. As ω1 ∩ω2 =∅,

∥θ1b1 +θ3b3∥2
U =(

B1,2θ1 +B1,3θ3
)2 ∥ϕk∥2

ω1
+ (

B2,2θ1 +B2,3θ3
)2 ∥ϕk∥2

ω2
.

Using (90) it comes that

∥θ1b1 +θ3b3∥2
U ≥C

((
B1,2θ1 +B1,3θ3

)2 + (
B2,2θ1 +B2,3θ3

)2
)

=
∥∥∥∥(

B1,2 B1,3

B2,2 B2,3

)(
θ1

θ3

)∥∥∥∥2

.

Since B1 and B2 are linearly independent, this ends the proof. □

Applying this lemma twice to (101) yield〈
M̃τ,τ

〉≥C
(
(τ1 −τ3)2 +τ2

3 + (τ2 − g (ν)τ3)2 + g (ν)2τ2
3 +ϵ2τ2

3

)
≥C

(
(τ1 −τ3)2 +τ2

3 + (τ2 − g (ν)τ3)2) .

Taking into account that 0 < g (ν) < 1
2 for ν large enough, the study of this quadratic form in R3

leads to 〈
M̃τ,τ

〉≥C
(
τ2

1 +τ2
2 +τ2

3

)
.

Thus the smallest eigenvalue of M̃ is bounded from below. This leads to the boundedness of〈
M̃−1ξ̃, ξ̃

〉
which concludes the proof of case (ii)(a).
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(b). Assume now that B1 and B2 are not linearly independent. Then, there exist x1, x2 ∈ R such
that {

x1B1,2 +x2B1,3 = 0

x1B2,2 +x2B2,3 = 0.

Up to a change of normalization of the eigenvectors (independent of k) we obtain

b1 = b2 = b3 =
(
1ω1ϕk x1B1,2

1ω2ϕk x1B2,2

)
and this amounts to case (i). □

7. Analysis of controllability for systems of partial differential equations

We now turn to the analysis of null controllability of actual partial differential equations. We
consider here coupled systems of two linear one dimensional parabolic equations.

7.1. Coupled heat equations with different diffusion coefficients

In this application, we consider the Sturm–Liouville operator A defined in (86) and we define in
X = L2(0,1;R)2 the operator

A =
(

A I
0 d A

)
, D(A ) = D(A)2,

with d > 0. We will assume d ̸= 1, since the case d = 1 is much simpler and already studied in the
literature: see the computations of Section 6.3 in the case f = 0 or, for instance, [24] for a more
general study based on Carleman estimates.

We will consider two cases : the case where two boundary controls are applied to the system,
and the case where we consider the same distributed control in the two equations of the system.

7.1.1. Spectrum of A ∗

LetΛ1 := Sp(A) = {νk ; k ≥ 1} andΛ2 := dΛ1.
The spectrum of A ∗ is given by Λ=Λ1 ∪Λ2 which belongs to Lw

(
2,ϱ, 1

2 ,κ
)

for some ϱ,κ> 0
(see [12, Lemma V.4.20]).

For any λ ∈Λ, there are two non mutually exclusive cases:

• If λ= νk ∈Λ1, then we can associate an eigenvector given by

φλ,1 =
(

1
εk

)
ϕk ,

with εk = 1
νk (1−d) . Note that εk tends to zero when k goes to infinity.

• If λ= dνl ∈Λ2, then we can associate an eigenvector given by

φλ,2 =
(
0
1

)
ϕl .

It clearly appears that the elements in Λ1 ∩Λ2 (if this set is not empty) are geometrically double
eigenvalues of A ∗, since in that case φλ,1 and φλ,2 are linearly independent.

Note that (34) holds for the choices of X ∗⋄ that we will make in the sequel, since (ϕk )k≥1 is a
Hilbert basis of L2(0,1;R).
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7.1.2. Two boundary controls

In this section, we study the following boundary control system{
∂t y +A y = 0, t ∈ (0,T ),

y(t ,0) = B0u0(t ), y(t ,1) = B1u1(t ), t ∈ (0,T ),
(102)

with

B0 =
(
1
1

)
and B1 =

(
0
1

)
. (103)

The control operator B is defined in a weak sense as in [38]. The expression of its adjoint is
given by

B∗ :

(
f
g

)
∈ X ∗

1 7→

−B∗
0

(
f ′(0)
g ′(0)

)
B∗

1

(
f ′(1)
g ′(1)

)
=

(−( f ′(0)+ g ′(0))
g ′(1)

)
.

Considering X ∗⋄ = H 1
0 (0,1;R)2, we obtain that B is admissible with respect to X−⋄ = H−1(0,1;R)2.

Proposition 39. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0,1;R)2 of finite codimen-
sion such that

• for any y0 ̸∈ Y0, system (102) is not approximately controllable;
• for any y0 ∈ Y0, system (102) is null controllable in any time T > 0.

Remark 40. The situation with a single control is quite different. Indeed, considering B0 = (
0
1

)
and B1 = 0, it is proved in [5] that, when A is the Dirichlet Laplace operator, approximate
controllability holds if and only

p
d ̸∈Q and in this case that

T0(X−⋄) = limsup
λ→∞
λ∈Λ

ln+
(

1

dist
(
λ,Λ\{λ}

) )
λ

.

With this formula the authors prove that, for any τ ∈ [0,+∞], there exists a diffusion ratio d > 0
such that the minimal null control time of system (102) satisfies T0(X−⋄) = τ.

Remark 41. From the definition of Y0 in the following proof, we directly obtain that in the case
where A is the Dirichlet Laplace operator on the interval (0,1), then Y0 = H−1(0,1;R)2.

Remark 42. The particular choice of B0 and B1 is done to simplify the computations. Notice that
with this choice, it is not possible to steer to zero the second equation and then control the first
equation. This would be the case with the simpler choice

B0 =
(
0
1

)
and B1 =

(
1
0

)
.

Proof. Let us compute the observations associated to the eigenvectors of A ∗.
For any k ≥ 1, we define sk ∈R be such that ϕ′

k (1) = skϕ
′
k (0). From (89), there exists C > 0 such

that
1

C
≤ |sk | ≤C , ∀ k ≥ 1. (104)

• For any λ= νk ∈Λ1, we have

B∗φλ,1 =−ϕ′
k (0)

(
1+εk

−skεk

)
. (105)

• For any λ= dνl ∈Λ2, we have

B∗φλ,2 =−ϕ′
l (0)

(
1

−sl

)
. (106)
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Due to (89) and (104), it comes that (33) holds for any simple eigenvalueλ ∈ (Λ1\Λ2)∪(Λ2\Λ1).
However, for a geometrically double eigenvalue λ ∈ Λ1 ∩Λ2, there can be non-observable

modes. Indeed, let k and l such that λ= νk = dνl . Then, the condition

Ker(A ∗−λ)∩KerB∗ ̸= {0}

is equivalent to the fact that B∗φλ,1 and B∗φλ,2 given by (105)–(106) are linearly independent,
which is itself equivalent to the condition

skεk = sl (1+εk ). (107)

Due to the asymptotics εk −→
k→+∞

0 it turns out that the set

Θ := {λ= νk = dνl ∈Λ1 ∩Λ2 ; (107) holds} ,

is finite.
For any λ ∈Θ, we can find ψλ ∈ Span(φλ,1,φλ2 ) such that B∗ψλ = 0 and ψλ ̸= 0, that is a non

observable mode.
Finally, we introduce the set

Y0 :=
{

y0 ∈ X−⋄ ;
〈

y0,ψλ

〉
−⋄,⋄ = 0, ∀λ ∈Θ

}
which is, by construction, of finite codimension. For y0 ∈ Y0, the associated moment problem
reduces to the one where the geometrically double eigenvalues λ ∈ Θ are now considered as
simple eigenvalues with associated eigenvectorφλ,2, since the moment equation is automatically
satisfied for the other eigenvector ψλ.

We consider now a grouping G as given by Proposition 6, with p = 2 and ϱ > 0 small enough
such that for i ∈ {1,2} we have

|λ−µ| > ϱ, ∀λ,µ ∈Λi ,λ ̸=µ. (108)

Hence, Theorem 11 gives the formula

T0(y0) = limsup
G∈G

ln+C (G , y0)

2rG
.

We will prove in the sequel, analyzing the different possible blocks, that

sup
G∈G

C (G , y0) <+∞, (109)

which will let us conclude the claim, that is T0(y0) = 0.

Blocks of a simple eigenvalue. We immediately obtain

C (G , y0) =



∣∣∣〈y0,φλ,1
〉
−⋄,⋄

∣∣∣2

(
(1+εk )2 + s2

kε
2
k

) |ϕ′
k (0)|2 , if λ= νk ,∣∣∣〈y0,φλ,2

〉
−⋄,⋄

∣∣∣2

(
1+ s2

l

) |ϕ′
l (0)|2 , if λ= dνl .

Using again (89) the estimate (104) and the fact that (εk )k goes to 0 as k goes to infinity, we observe
that the blocks consisting of a single simple eigenvalue do not contribute to the minimal time: the
quantity C (G , y0) is bounded independently of G .

Moreover, by the discussion above, the blocks consisting of a single double eigenvalue belong-
ing toΘ do not contribute either.
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Blocks of two simple eigenvalues: G = {λ1 := νk }∪ {λ2 := dνl }. From Theorem 18 we obtain

C (G , y0) = 〈
M−1ξ,ξ

〉
with

M = Gram
(
b[λ1],b[λ2]

)+Gram
(
0,(λ2 −λ1)b[λ2]

)
and

ξ=
(〈

y0,φλ1,1
〉
−⋄,⋄〈

y0,φλ2,2
〉
−⋄,⋄

)
.

To ease the reading, we use the following change of normalization for the eigenvectors

φ̃λ1 := φλ1,1

−ϕ′
k (0)

, φ̃λ2 := φλ2,2

−ϕ′
l (0)

,

and we denote by M̃ and ξ̃ the associated quantities. Notice that, due to (89), the quantity ∥ξ̃∥ is
bounded. Thus, to estimate C (G , y0) we give a lower bound on the smallest eigenvalue of M̃ . We
have

M̃ = Gram
(
b̃[λ1], b̃[λ2]

)+Gram
(
0,(λ2 −λ1)b̃[λ2]

)
=

(
ϵ2

k s2
k + (1+εk )2 1+εk +εk sk sl

1+εk +εk sk sl 1+ s2
l

)
︸ ︷︷ ︸

=Γ1

+
(
0 0
0 (λ2 −λ1)2(1+ s2

l )

)
.

For any τ ∈R2,
〈

M̃τ,τ
〉≥ 〈

Γ1τ,τ
〉

. Then,

minSp(Γ1) ≥ det(Γ1)

tr(Γ1)
= ((1+εk )sl −εk sk )2

1+ (1+ϵk )2 +ε2
k s2

k + s2
l

From (104), it comes that, for k large enough, minSp(Γ1) is bounded from below by a positive
constant independent of G .

Blocks made of a geometrically double eigenvalue which does not belong toΘ. Consider G =
{λ} with λ= νk = dνl ∈Λ1 ∩Λ2. With the same notations as previously, Theorem 18 implies that

C (G , y0) = 〈
M̃−1ξ̃, ξ̃

〉
where

ξ̃=


〈

y0,
φλ,1

−ϕ′
k (0)

〉
−⋄,⋄〈

y0,
φλ,2

−ϕ′
l (0)

〉
−⋄,⋄


and

M̃ = Gram

(
B∗φλ,1

−ϕ′
k (0)

,
B∗φλ,2

−ϕ′
l (0)

)
= Γ1.

Notice that since λ ̸∈Θ, we have det(Γ1) = ((1+εk )sl −εk sk )2 > 0.
Thus, the study of the previous item proves that, for λ large enough, minSp(Γ1) is bounded

from below by a positive constant independent of λ.

Gathering all cases, we deduce (109) and the proof is complete. □
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7.1.3. Simultaneous distributed control

Let us now consider the following control problem{
∂t y +A y =1ω

(
1
1

)
u(t , x), t ∈ (0,T ),

y(t ,0) = y(t ,1) = 0, t ∈ (0,T ).
(110)

In that case, the observation operator B∗ is given by

B∗ :

(
f
g

)
∈ X ∗

1 7→1ω( f + g ),

and is clearly admissible with respect to the pivot space X . Our result concerning this example is
very similar to Proposition 39 and reads as follows.

Proposition 43. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0,1;R)2 of codimension
less or equal than 1 such that

• for any y0 ̸∈ Y0, system (110) is not approximately controllable;
• for any y0 ∈ Y0, system (110) is null controllable in any time T > 0.

Remark 44. During the proof it will appear that there exists a countable set D ⊂ (1,+∞) such that
for any d ̸∈ D ∪ {1}, we have Y0 = H−1(0,1;R)2, which means that our system is null-controllable
at any time T > 0 for any initial data. In particular, it is noticeable that this property holds for any
d < 1, that is in the case where the diffusion coefficient is lower in the second equation (the one
which does not contain coupling terms).

Proof. We start by computing the observations related to the eigenelements of A ∗

• For any λ= νk ∈Λ1, we have

B∗φλ,1 = (1+εk )ϕk1ω. (111)

• For any λ= dνl ∈Λ2, we have

B∗φλ,2 =ϕl1ω. (112)

If for some k we have 1+εk = 0, then we clearly get chat (33) does not hold. We can thus introduce
the set

Θ := {λ= νk ; 1+εk = 0},

which is of cardinal less or equal than 1 (by definition of the sequence (εk )k , see Section 7.1.1).
Note also that for d < 1, we always have εk > 0, so thatΘ=∅, see Remark 44.

We notice however that, for any λ= dνl , we have B∗φλ,2 ̸= 0 and that if λ= νk = dνl ∈Λ1∩Λ2,
with λ ̸∈Θ, then B∗φλ,1 and B∗φλ,2 are linearly independent.

Let us introduce
Y0 := {

y0 ∈ X ; s.t.
〈

y0,φλ,1
〉

X = 0,∀λ ∈Θ}
.

By definition of this set, for any initial data in Y0, the moment equation (2) related to the
eigenvector φλ,1 for λ ∈Θ is automatically satisfied for any control since both members are equal
to zero.

As in the proof of Proposition 39, we consider a grouping G as given by Proposition 6, with
p = 2 and ϱ> 0 small enough such that for i ∈ {1,2} we have

|λ−µ| > ϱ, ∀λ,µ ∈Λi ,λ ̸=µ.

Hence, Theorem 11 gives the formula

T0(y0) = limsup
G∈G

ln+C (G , y0)

2rG
.

Let us now evaluate the quantities C (G , y0) for every possible block.
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Blocks made of a simple eigenvalue that does not belong toΘ. We immediately obtain

C (G , y0) =



∣∣〈y0,φλ,1
〉

X

∣∣2

(1+εk )2∥ϕk∥2
ω

, if λ= νk ,∣∣〈y0,φλ,2
〉

X

∣∣2

∥ϕl∥2
ω

, if λ= dνl ,

which is a bounded quantity thanks to (90) and the fact that (εk )k tends to zero at infinity.

Blocks made of two eigenvalues: G = {λ1 := νk }∪ {λ2 := dνl }. Note that the proof below works
exactly the same in the case where λ1 ̸= λ2, that is if the two eigenvalues are simple, or in the
case where λ1 =λ2, that is if there is only a geometrically double eigenvalue.

By the discussion above, we can assume that λ1 does not belong to Θ (if not, this block has to
be considered as a block containing only the simple eigenvalue λ2).

Thanks to Theorem 18 we have C (G , y0) ≤ 〈M̃−1ξ,ξ〉 where

M̃ = Gram(1ωϕk ,1ωϕl ),

ξ=


〈
y0,φλ1,1

〉
X

1+εk〈
y0,φλ2,2

〉
X

 .

By using the Lebeau–Robbiano inequality (93), and the fact that |λ1 −λ2| ≤ ϱ, we have that

〈M̃−1ξ,ξ〉 ≤C1eC1
p

rG ∥ξ∥2 ≤C2eC1
p

rG
∥∥y0

∥∥2
X ,

where C1,C2 only depends on ϱ, ω and on the operator A .
All in all, we have obtained that

ln+C (G , y0) ≤C
(
1+p

rG
)

.

Gathering all cases, we conclude that T0(y0) = 0. □

7.2. Other applications

Let us consider the following control system
∂t y +

(
−∂xx + c1(x) 1

0 −∂xx + c2(x)

)
y =

(
0

1ωu(t , x)

)
, (t , x) ∈ (0,T )× (0,1),

y(t ,0) = y(t ,1) = 0, t ∈ (0,T ),

y(0, x) = y0(x),

(113)

where c1,c2 ∈ L2(0,1;R).
With the technics developed in this article, one can prove the following controllability result.

Proposition 45. For any non-negative potentials c1, c2, system (113) is null controllable in any
time T > 0 from L2(0,1;R)2.

The proof follows closely the computations done for the same system with a boundary control
in [9, Section 5.2.1]. The only difference is that the contributions of terms of the form ∥B∗·∥U =
∥·∥ω are estimated using (90).

As the result stated in Proposition 45 is already known (it is for instance an application of [24]
with a proof based on Carleman estimates), we do not detail the proof here to lighten this article.
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With the technics developed in this article we can also analyze null controllability for the
following control system

∂t y +
(

A q(x)

0 A

)
y =

(
0

1ωu(t , x)

)
, (t , x) ∈ (0,T )× (0,1),

y(t ,0) = y(t ,1) = 0, t ∈ (0,T ),

y(0, x) = y0(x),

(114)

where the coupling function q belongs to L∞(0,1;R) and ω ⊂ (0,1) is a non empty open set. We
manage to characterize the value of the minimal null-control time without any other assumption
on q and ω.

This analysis extends previous results of [15] where approximate controllability was studied
and those of [6] where null controllability was studied in the particular case where A is the
Dirichlet Laplace operator and ω is an interval disjoint of Supp q . Our formalism also allows us
to recover null controllability in any time when q has a strict sign on a subdomain of ω as proved
in [24] by means of Carleman estimates.

Since the analysis of this example makes use of refined spectral properties of the underlying
operator whose proofs are rather intricate, we will develop it in the forthcoming paper [13].

Appendix A. Some refinements in the case of scalar controls

In [9], the block moment method was introduced to solve null controllability problems with
scalar controls (U = R). With respect to block moment problems, the main result of this paper
is [9, Theorem 4.1]. In this work there were no assumptions on the counting function. The
spectrumΛwas only assumed to satisfyΛ⊂ [1,+∞) and∑

λ∈Λ

1

λ
<+∞.

Using the slightly more restrictive condition (28) on the asymptotics of the counting function we
allow the eigenvalues to be complex valued and we obtain sharper estimates together with the
explicit dependency of the constants with respect to the final time T (see Remark 23 for possible
applications of such estimates). This improved resolution of scalar block moment problems reads
as follow and is proved in [12, Theorem V.4.26].

Theorem 46. Let p ∈N∗, ϱ,τ,κ> 0 and θ ∈ (0,1). Assume that

Λ ∈Lw (p,ϱ,τ,θ,κ).

Let G = {λ1, . . . ,λg } ⊂Λ be a group satisfying (25)–(27). Let T ∈ (0,+∞) and η ∈N∗. For any multi-
index α ∈Ng with |α|∞ ≤ η and any

ω=
(
ω0

1, . . . ,ωα1−1
1 , . . . ,ω0

g , . . . ,ω
αg −1
g

)
∈C|α|,

there exists vG ∈ L2(0,T ;C) satisfying∫ T

0
vG (t )

(−t )l

l !
e−λ j t dt =ωl

j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �, (115a)∫ T

0
vG (t )

(−t )l

l !
e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�. (115b)

The solution vG satisfies the following estimate

∥vG∥L2(0,T ;U ) ≤C exp

(
C

T
θ

1−θ

)
exp

(
Cr θG

)
max
µ∈Ng

µ≤α

∣∣∣ω[
λ

(µ)
·

]∣∣∣ , (116)
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where rG is defined in (35) and with the convention

ω
[
λ j

(l+1)]=ωl
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

The constant C > 0 appearing in the estimate only depends on the parameters τ, p, ϱ, η, θ and κ.
Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0,T ;U ) solution of (115a)

satisfy

∥vG∥L2(0,T ;C) ≥Cp,η,rΛ max
µ∈Ng

µ≤α

∣∣∣ω[
λ

(µ)
·

]∣∣∣ . (117)

Remark 47. If every assumption hold except (29) in the definition of the class Lw (p,ϱ,τ,θ,κ),
Theorem 46 remains valid replacing θ in estimate (116) by any θ′ ∈ (θ,1) (see [12, Theo-
rem V.4.26]).

Since every estimate on the resolution of block moment problems proved in this paper follows
from (116), this remark holds in the whole current paper. Notably it applies to Theorem 10 and to
the estimates of the cost of controllability stated in Proposition 20 and Corollary 21.

Appendix B. An auxiliary optimization argument

Lemma 48. Let Y be a closed subspace of X−⋄. Let g ∈N∗ andψ1, . . . ,ψg ∈ P∗
Y X ∗⋄ . For any y ∈ Y , let

ξy =


〈

y,ψ1
〉
−⋄,⋄

...〈
y,ψg

〉
−⋄,⋄

 .

Then, for any positive semi-definite hermitian square matrix M ∈Mg (C), we have

sup
y∈Y

∥y∥−⋄=1

〈
Mξy ,ξy

〉= ρ(GψM) (118)

with Gψ = GramX ∗⋄ (ψ1, . . . ,ψg ).

In the course of the proof we will use that there exists an isometric linear bijection I : X−⋄ 7→ X ∗⋄
such that 〈

y,ϕ
〉
−⋄,⋄ =

(
I y,ϕ

)
⋄∗ , ∀ y ∈ X−⋄,∀ϕ ∈ X ∗

⋄ .

Note that it satisfies (
I y,ϕ

)
⋄∗ =

(
y, I−1ϕ

)
−⋄ , ∀ y ∈ X−⋄,∀ϕ ∈ X ∗

⋄ .

Proof. Let S be the value of the supremum in the left-hand side of (118). By assumption on the
(ψi )i , we first observe that the supremum can be taken on the whole space X−⋄ instead of Y
without changing its value. Then, for any 1 ≤ i ≤ g , we have〈

y,ψi
〉
−⋄,⋄ =

(
y, I−1ψi

)
−⋄ ,

and therefore the value of S does not change if we take the supremum over the set

Ψ̃= Span(ψ̃1, . . . ,ψ̃g ) ⊂ X−⋄,

with

ψ̃i = I−1ψi . (119)
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We write any element y ∈ Ψ̃ as follows y = ∑g
i=1 xi ψ̃i , with x = (x j ) j∈�1,g � ∈ Cg so that we can

compute (
y,ψ̃i

)
−⋄ =

g∑
j=1

x j
(
ψ̃ j ,ψ̃i

)
−⋄ = (Gψ̃x)i , ∀ i ∈ �1, g �,

(
y, y

)
−⋄ =

g∑
i=1

g∑
j=1

xi x j
(
ψ̃ j ,ψ̃i

)
−⋄ =

〈
Gψ̃x, x

〉
,

where Gψ̃ is the Gram matrix in X−⋄ of the family {ψ̃1, . . . ,ψ̃g }. Using that I is an isometry from
X−⋄ onto X ∗⋄ it actually appears that

Gψ̃ =Gψ.

Finally, we have proved that

ξy =Gψx, and
∥∥y

∥∥2
−⋄ =

〈
Gψx, x

〉
.

The supremum we are looking for thus reads

S = sup
x∈Cg

〈Gψx,x〉=1

〈
MGψx,Gψx

〉
.

• By compactness, we know that this supremum is actually achieved at some point x0 ∈Cg ,
that is 〈

MGψx0,Gψx0
〉= S, and

〈
Gψx0, x0

〉= 1.

The Lagrange multiplier theorem gives that there exists λ ∈C such that〈
MGψx0,Gψh

〉=λ〈
Gψx0,h

〉
, ∀ h ∈Cg . (120)

Taking h = x0 in this equation, we get〈
MGψx0,Gψx0

〉=λ〈
Gψx0, x0

〉=λ,

and thus λ= S, in particular λ is a non negative real number.
From (120), we deduce

GψMGψx0 =λGψx0.

and since Gψx0 ̸= 0 (we recall that
〈
Gψx0, x0

〉= 1), we conclude that λ is an eigenvalue of
GψM and therefore

S =λ≤ ρ(GψM).

We have thus proved that
S ≤ ρ(GψM).

• If ρ(GψM) = 0, the claim is proved. If not, we set

λ= ρ(GψM) = ρ(MGψ) = ρ
(
G

1
2
ψMG

1
2
ψ

)
,

which is a positive number which is an eigenvalue of the three matrices above. In
particular, there exists x0 ∈Cg \ {0} such that

MGψx0 =λx0.

Taking the inner product with Gψx0 we obtain〈
MGψx0,Gψx0

〉=λ〈
x0,Gψx0

〉
,

and since
〈

x0,Gψx0
〉= ∥∥∥G

1
2
ψx0

∥∥∥2
cannot be equal to zero, we deduce that

λ≤ S,

and the proof is complete. □
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Appendix C. Solving general block moment problems

As this paper is oriented towards control theory we do not deal with the most general block
moment problems. Indeed, in Theorem 10, the considered block moment problems have a
specific right-hand side which is a linear form. This formalism is chosen in order to avoid
exhibiting a particular basis of the generalized eigenspaces. The price to pay is this restriction
on the considered right-hand sides. However the proofs detailed in Sections 3 and 5 directly lead
to the following more general results.

The study with a group composed of geometrically simple eigenvalues (see Sections 5.1
and 5.2) leads to the following theorem.

Theorem 49. Let p ∈N∗, ϱ,τ,κ> 0 and θ ∈ (0,1). Assume that

Λ ∈Lw (p,ϱ,τ,θ,κ).

Recall that this class of sequences is defined in (30). Let G = {λ1, . . . ,λg } ⊂ Λ be a group satisfy-
ing (25)–(27). Let T ∈ (0,+∞) and η ∈N∗. For any multi-index α ∈Ng with |α|∞ ≤ η, any

ω=
(
ω0

1, . . . ,ωα1−1
1 , . . . ,ω0

g , . . . ,ω
αg −1
g

)
∈C|α|,

and any b ∈U |α| with
b0

j ̸= 0, ∀ j ∈ �1, g �,

there exists vG ∈ L2(0,T ;U ) satisfying∫ T

0

〈
vG (t ), (et b)

[
λ j

(l+1)]〉
U

dt =ωl
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �, (121a)∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G ,∀ l ∈ �0,η�. (121b)

The solution vG satisfies the following estimate

∥vG∥2
L2(0,T ;U ) ≤C exp

(
C

T
θ

1−θ

)
exp

(
Cr θG

)〈
M−1ξ,ξ

〉
,

where

ξ :=


ω

[
λ

(µ1)
·

]
...

ω
[
λ

(µ|α|)
·

]
 ,

the sequence (µp )p∈�0,|α|� is defined in (43), the associated matrix M is defined in (52), rG is defined
in (35) and with the convention

ω
[
λ j

(l+1)]=ωl
j , ∀ j ∈ �1, g �, ∀ l ∈ �0,α j �.

The constant C > 0 appearing in the estimate only depends on the parameters τ, p, ϱ, η, θ and κ.
Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0,T ;U ) solution of (121a)

satisfy
∥vG∥2

L2(0,T ;U ) ≥Cp,η,rΛ

〈
M−1ξ,ξ

〉
.

Remark 50. As detailed in Remark 16, when the eigenvalues in G are also algebraically simple,
i.e. αλ = γλ = 1 for any λ ∈G , the expression of ξ reduces to

ξ :=


ω

[
λ1

]
...

ω
[
λ1, . . . ,λg

]
 ,

and the expression of M reduces to the one given in (54).
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The study with a group composed of semi-simple eigenvalues (see Section 5.3) leads to the
following theorem.

Theorem 51. Let p ∈N∗, ϱ,τ,κ> 0 and θ ∈ (0,1). Assume that

Λ ∈Lw (p,ϱ,τ,θ,κ).

Recall that this class of sequences is defined in (30). Let G = {λ1, . . . ,λg } ⊂ Λ be a group satisfy-
ing (25)–(27). Let γ1, . . . ,γg ∈N∗ and γG = γ1 +·· ·+γg . Let η ∈N∗ and T ∈ (0,+∞).

For any
(
ω j ,i

)
j∈�1,g �,i∈�1,γ j � ∈ CγG and any

(
b j ,i

)
j∈�1,g �,i∈�1,γ j � ∈ UγG such that b j ,1, . . . ,b j ,γ j are

linearly independent for every j ∈ �1, g �, there exists vG ∈ L2(0,T ;U ) satisfying∫ T

0

〈
vG (t ),e−λ j t b j ,i

〉
U

dt =ω j ,i , ∀ j ∈ �1, g �, ∀ i ∈ �1,γ j �, (122a)∫ T

0
vG (t )t l e−λt dt = 0, ∀λ ∈Λ\G , ∀ l ∈ �0,η�. (122b)

The solution vG satisfies the following estimate

∥vG∥2
L2(0,T ;U ) ≤C exp

(
C

T
θ

1−θ

)
exp

(
Cr θG

)〈
M−1ξ,ξ

〉
,

where ξ ∈CγG is defined by blocks with

ξ j :=

ω j ,1
...

ω j ,g

 ,

the associated matrix M is defined in (56) and rG is defined in (35). The constant C > 0 appearing
in the estimate only depends on the parameters τ, p, ϱ, η, θ and κ.

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0,T ;U ) solution of (122a)
satisfy

∥vG∥2
L2(0,T ;U ) ≥Cp,η,rΛ

〈
M−1ξ,ξ

〉
.

Appendix D. Post-processing formulas

The minimal null control time given in Theorem 11, together with the computation of the
contribution of each group given in Theorems 14 and 18, allow to answer the question of minimal
null control time for a wide variety of one dimensional parabolic control problems. However, for
a given problem, the precise estimate of the quantity of interest

〈
M−1ξ,ξ

〉
can remain a tricky

question.
There is no normalization condition on the eigenvectors and no uniqueness of the considered

Jordan chains. Thus, it happens that there are choices for which the quantity of interest
〈

M−1ξ,ξ
〉

is easier to compute (see for instance Remark 15). We gather here some results that are used in
Sections 6 and 7 to estimate such quantities.

We will make an intensive use of the following reformulation. Let n ∈N∗ and let T, M ∈ GLn(C).
For any ξ ∈Cn , let ξ̃ := T ξ. Then,〈

M−1ξ,ξ
〉= 〈

M−1T −1ξ̃,T −1ξ̃
〉= 〈

M̃−1ξ̃, ξ̃
〉

(123)

where

M̃ := T MT ∗. (124)

As the matrix M is a sum of Gram matrices we will also use the following lemma.



1244 Franck Boyer and Morgan Morancey

Lemma 52. Let X be a Hilbert space. Let n ∈N∗ and e = (e1, . . . ,en) ∈ X n . Let T ∈Mn(C). Then,

T GramX (e1, . . . ,en)T ∗ = GramX
(
(Te)1, . . . , (Te)n

)
where, for any i ∈ �1,n�, (Te)i is defined by

(Te)i :=
n∑

j=1
Ti , j e j .

Proof. For any ω ∈Cn , it comes that〈
T GramX (e1, . . . ,en)T ∗ω,ω

〉= 〈
GramX (e1, . . . ,en)

(
T ∗ω

)
,
(
T ∗ω

)〉
(125)

=
∥∥∥∥∥ n∑

i=1
(T ∗ω)i ei

∥∥∥∥∥
2

(126)

=
∥∥∥∥∥ n∑

i=1

n∑
j=1

T j ,iω j ei

∥∥∥∥∥
2

(127)

=
∥∥∥∥∥ n∑

j=1
ω j (Te) j

∥∥∥∥∥
2

(128)

=
〈

GramX
(
(Te)1, . . . , (Te)n

)
ω,ω

〉
. (129)

□

Depending on the phenomenon at stake on actual examples, with a suitable choice of ξ̃
(i.e. of T ), the quantity

〈
M̃−1ξ̃, ξ̃

〉
can be easier to estimate than

〈
M−1ξ,ξ

〉
.

D.1. Dilatations

Notice that 〈
M̃−1ξ̃, ξ̃

〉≤ ∥M̃−1∥∥ξ̃∥2.

When the minimal null control time can be estimated with rough estimates (this can only
characterize the minimal time when T0 = 0), it can simplify the computations to have a bounded
∥ξ̃∥. To do so, it is convenient to consider dilatations of ξ.

Let X be a Hilbert space. Let n ∈ N∗ and e1, . . . ,en ∈ X . Let ξ ∈ Cn and β ∈ Cn with non-zero
entries. Let

T = Dβ := diag(β) ∈ GLn(C), and ξ̃= T ξ.

Then, from Lemma 52, it comes that

T GramX (e1, . . . ,en)T ∗ = GramX
(
β1e1, . . . ,βnen

)
.

D.2. Invariance by scale change

In our assumptions there is no normalization condition on the eigenvectors (see Remark 15). This
allows to have simpler expressions for these eigenvectors. Actually, the computation of

〈
M−1ξ,ξ

〉
can be done with a different scale change on every generalized eigenvector as detailed in the
following proposition.

Proposition 53. Let M and ξ be as defined in Theorem 14. Let β ∈ C|α| be such that β0
j ̸= 0 for all

j ∈ �1, g �. Set

ξ̃=


〈

y0, (βφ)
[
λ(µ1)

]〉
−⋄,⋄

...〈
y0, (βφ)

[
λ

(
µ|α|

)]〉
−⋄,⋄ .
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Then, 〈
M−1ξ,ξ

〉= 〈
M̃−1ξ̃, ξ̃

〉
where

M̃ :=
|α|∑
l=1

GramU

0, . . . ,0︸ ︷︷ ︸
l−1

, (βb)
[
λ

(
µl−µl−1)]

, . . . , (βb)
[
λ

(
µ|αk |−µl−1)] . (130)

Proof. From Leibniz formula [9, Proposition 7.13], it comes that for any p ∈ �1, |α|�,

(βφ)
[
λ(µp )

]
=

|µp |∑
q=1

β
[
λ(µp−µq−1)

]
φ

[
λ(µq )

]
.

Thus, ξ̃= T ξ where T is the following lower triangular matrix

T =
(
1q≤pβ

[
λ(µp−µq−1)

])
p,q∈�1,|α|� .

The diagonal entries of this lower triangular matrix are β0
j and thus T ∈ GL|α|(C). From (124), the

associated matrix is

M̃ :=
|α|∑
l=1

T GramU

0, . . . ,0︸ ︷︷ ︸
l−1

,b
[
λ

(
µl−µl−1)]

, . . . ,b
[
λ

(
µ|α|−µl−1)]T ∗.

Let l ∈ �1, |α|� and

e1 = ·· · = el−1 = 0,

ep = b
[
λ

(
µp−µl−1)]

, ∀ p ∈ �l , |α|�.

Then, for any p ∈ �1, |α|�,

(Te)p =
|α|∑

q=1
1q≤pβ

[
λ(µp−µq−1)

]
eq .

Thus, (Te)1 = ·· · = (Te)l−1 = 0 and, for any p ∈ �l , |α|�,

(Te)p =
|α|∑

q=1
1q≤pβ

[
λ(µp−µq−1)

]
eq =

p∑
q=l

β
[
λ(µp−µq−1)

]
b

[
λ

(
µq−µl−1)]

.

Then, using again Leibniz formula [9, Proposition 7.13], we obtain

(Te)p = (βb)
[
λ

(
µp−µl−1)]

.

Finally, applying (123) and Lemma 52 ends the proof of Proposition 53. □

Remark 54. As there is no normalization condition on the eigenvectors a similar statement
automatically holds with M and ξ defined in Theorem 18.

D.3. An equivalent formula for simple eigenvalues

In this section, we consider the case of a group of simple eigenvalues i.e. αλ = γλ = 1 for
every λ ∈ G . In that case, the cost of the group G can be computed either using the formula of
Theorem 14 for geometrically simple eigenvalues or the formula of Theorem 18 for semi-simple
eigenvalues. Even though these theorems imply that those two formulas coincide (as they are
both the cost of the group) we give a direct proof of this statement.
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Proposition 55. Let M and ξ be the matrix and the vector given in Theorem 14 i.e.

M :=
g∑

l=1
GramU

0, . . . ,0︸ ︷︷ ︸
l−1

,b[λl ], . . . ,b[λl , . . . ,λg ]


and

ξ=


〈

y0,φ[λ1]
〉
−⋄,⋄

...〈
y0,φ[λ1, . . . ,λg ]

〉
−⋄,⋄

 .

Let M̃ and ξ̃ be the matrix and the vector given in Theorem 18 i.e.

M̃ :=
g∑

l=1
GramU

(
δ1

l b[λ1], . . . ,δg
l b[λg ]

)
and ξ̃ :=


〈

y0,φ[λ1]
〉
−⋄,⋄

...〈
y0,φ[λg ]

〉
−⋄,⋄

 . (131)

Then, 〈
M−1ξ,ξ

〉= 〈
M̃−1ξ̃, ξ̃

〉
Proof. The usual interpolation formula [9, Proposition 7.6] gives

φ[λi ] =
i∑

j=1

(
j−1∏
k=1

(λi −λk )

)
φ[λ1, . . . ,λ j ]. (132)

Recall that the notation δi
j has been introduced in (55). With these notations, ξ̃ = T ξ where T is

the following lower triangular matrix

T =
(
δi

j

)
i , j∈�1,g � ∈ GLg (C).

From (124), we define

M̂ :=
g∑

l=1
T GramU

0, . . . ,0︸ ︷︷ ︸
l−1

,b [λl ] , . . . ,b
[
λl , . . . ,λg

]T ∗,

so that we have
〈

M−1ξ,ξ
〉= 〈

M̂−1ξ̃, ξ̃
〉

. We will now prove that M̂ = M̃ .
Let l ∈ �1, g � and

e1 = ·· · = el−1 = 0,

e j = b[λl , . . . ,λ j ], ∀ j ∈ �l , g �.

Then, (Te)1 = ·· · = (Te)l−1 = 0 and for i ∈ �l , g �, using again the interpolation property [9,
Proposition 7.6], we obtain

(Te)i =
g∑

j=l
δi

j b[λl , . . . ,λ j ]

=
i∑

j=l
δi

j b[λl , . . . ,λ j ]

= δi
l

i∑
j=l

(
j−1∏
k=l

(λi −λk )

)
b[λl , . . . ,λ j ]

= δi
l b[λi ].

Recalling that δ1
l = ·· · = δl−1

l = 0, we thus obtain

(Te)i = δi
l b[λi ], ∀ i ∈ �1, g �.

Finally, from Lemma 52, we deduce that M̂ = M̃ which ends the proof of Proposition 55. □
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