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Abstract. Let Mq (HR) be the q-Gaussian von Neumann algebra associated with a separable infinite dimen-
sional real Hilbert space HR where −1 < q < 1. We show that Mq (HR) ̸≃ M0(HR) for −1 < q ̸= 0 < 1. The
C∗-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this
non-isomorphism result also holds on the level of von Neumann algebras.
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1. Introduction

Von Neumann algebras of q-Gaussian variables originate from the work of Bożejko and Spe-
icher [3] (see also [2]). To a real Hilbert space HR and a parameter −1 < q < 1 it associates a
von Neumann algebra Mq (HR). At parameter q = 0 this assignment HR 7→ Mq (HR) is known as
Voiculescu’s free Gaussian functor. The dependence of q of these von Neumann algebras has
been an intriguing and very difficult problem. A breakthrough result in this direction was ob-
tained by Guionnet–Shlyakhtenko [8] who showed that for finite dimensional HR for a range of
q close to 0 all von Neumann algebras Mq (HR) are isomorphic. The range for which isomor-
phism is known decreases as the dimension HR becomes larger. The Guionnet–Shlyakhtenko ap-
proach is based on free analogues of (optimal) transport techniques. Their result also relies on
existence and power series estimates of conjugate variables obtained by Dabrowski [5]. In fact
the free transport techniques provide even an isomorphism result of underlying q-Gaussian C∗-
algebras.

In case HR is infinite dimensional the isomorphism question of q-Gaussian algebras was
addressed by Nelson and Zeng [10]. They showed that for mixed q-Gaussians for which the array
(qi j )i j of commutation coefficients decays fast enough to 0 one obtains isomorphism of mixed
q-Gaussian C∗- and von Neumann algebras. However, the isomorphism question for the original
(non-mixed) q-Gaussians remained open, see Questions 1.1 and 1.2 of [10]. In [1] we showed
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that on the level of C∗-algebras there exists a non-isomorphsim result. In the current note we
improve on this result: we show that for an infinite dimensional separable real Hilbert space
HR and −1 < q < 1, q ̸= 0 we have Mq (HR) ̸≃ M0(HR). This then fully answers Questions 1.1
and 1.2 of [10] and provides a stark contrast to the results of Guionnet–Shlyakhtenko for finite
dimensional HR.

The distinguishing property of Mq (HR) and M0(HR) is a variation of the Akemann–Ostrand
property that was suggested in a note by Ozawa [12] (see also [6]) and which we shall call W∗AO.
We formally define it in Definition 1. The most important novelty is that we quotient B(L2(M))
by the C∗-algebra KM which is much larger than the ideal of compact operators on L2(M).
This larger quotient turns out to provide von Neumann algebraic descriptions of the Akemann–
Ostrand property [12]. We use this to distinguish Mq (HR) and M0(HR).
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2. Preliminaries

B(X ,Y ) denotes the bounded operators between Banach spaces X → Y . K (X ,Y ) denotes the
compact operators, meaning that they map the unit ball to a relatively compact set. We set
B(X ) :=B(X , X ) and K (X ) :=K (X , X ).

The algebraic tensor product (vector space tensor product) is denoted by ⊗alg and ⊗min is the
minimal tensor product of C∗-algebras. ⊗ is used for tensor products of elements.

We refer to [13] as a standard reference on von Neumann algebras. For a von Neumann algebra
M we denote by (M ,L2(M), J ,L2(M)+) its standard form. For x ∈ M we write xop := J x∗ J which is
the right multiplication with x on the standard space. For a finite von Neumann algebra M with
trace τwe have M ⊆ L2(M) where L2(M) is the completion of M with respect to the inner product
〈x, y〉 = τ(y∗x). Therefore every T ∈ B(L2(M)) determines a map Q0(T ) ∈ B(M ,L2(M)) given by
x 7→ T (x). Set

Q1 : B(L2(M)) →B(M ,L2(M))/K (M ,L2(M)) : T 7→Q0(T )+K (M ,L2(M)).

Q1 is clearly continuous and we define the closed left-ideal K L
M = ker(Q1) and the hereditary

C∗-subalgebra KM = (K L
M )∗ ∩K L

M of B(L2(M)) (see also [12]). We let M (KM ) ⊆ B(L2(M)) be
the multiplier algebra of KM ; indeed this multiplier algebra is faithfully represented on L2(M)
by [9, Proposition 2.1]. Then KM is an ideal in the C∗-algebra M (KM ). We have M ⊆ M (KM )
and M op ⊆M (KM ).

2.1. A von Neumann version of the Akemann–Ostrand property

Definition 1. Let M be a finite von Neumann algebra. We say that M has W∗AO if the map

θ : M ⊗alg M op →M (KM )/KM : a ⊗bop 7→ abop +KM . (1)

is continuous with respect to the minimal tensor norm and thus extends to a ∗-homomorphism
M ⊗min M op →M (KM )/KM .

We recall the following from [12, Section 4]. Let Γ be a discrete group and let L (Γ) and
R(Γ) be the left and right group von Neumann algebra respectively acting on ℓ2(Γ). In this case
L2(L (Γ)) ≃ ℓ2(Γ) as bimodules with the natural left and right actions of L (Γ) and R(Γ) on ℓ2(Γ).
We have Jδs = δs−1 which extends to an antilinear isometry on ℓ2(Γ). Then R(Γ) = JL (Γ)J .
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Assume Γ is icc so that L (Γ) and R(Γ) are factors, i.e. L (Γ)∩R(Γ) =C1. The map

π : C∗(L (Γ),R(Γ)) →B(ℓ2(Γ)⊗ℓ2(Γ)) : abop 7→ a ⊗bop, a ∈L (Γ),bop ∈R(Γ).

is a well-defined ∗-homomorphism by Takesaki’s theorem on minimality of the spatial tensor
product. In [12, Section 4, Theorem] Ozawa showed the following theorem.

Theorem 2. Let Γ be an exact icc group such that the ∗-homomorphism

C∗
r (Γ)⊗alg C∗

r (Γ)op →B(ℓ2(Γ))/K (ℓ2(Γ)) : a ⊗bop 7→ abop +K (ℓ2(Γ)),

is continuous with respect to ⊗min. Then L (Γ) has W∗AO.

Proof. By [12, Section 4, Theorem] we have

ker(π) =KL (Γ) ∩C∗(L (Γ),R(Γ)).

Therefore,
L (Γ)⊗min R(Γ) →≃π−1

C∗(L (Γ),R(Γ))/(KL (Γ) ∩C∗(L (Γ),R(Γ))),

which concludes the theorem. □

Remark 3. It follows that if Γ is an icc group that is bi-exact (or said to be in class S , see [4,
Section 15]) then L (Γ) has W∗AO.

2.2. q-Gaussians

Let −1 < q < 1 and let HR be a real Hilbert space with complexification H := HR⊕ i HR. Set the
symmetrization operator P k

q on H⊗k ,

P k
q (ξ1 ⊗ . . .⊗ξn) = ∑

σ∈Sk

q i (σ)ξσ(1) ⊗ . . .⊗ξσ(n), (2)

where Sk is the symmetric group of permutations of k elements and i (σ) := #{(a,b) | a < b,
σ(b) < σ(a)} the number of inversions. The operator P k

q is positive and invertible [3]. Define a
new inner product on H⊗k by

〈ξ,η〉q := 〈P k
qξ,η〉,

and call the new Hilbert space H⊗k
q . Set the Hilbert space direct sum Fq (H) := CΩ⊕ (

⊕∞
k=1 H⊗k

q )
whereΩ is a unit vector called the vacuum vector. For ξ ∈ H let

lq (ξ)(η1 ⊗ . . .⊗ηk ) := ξ⊗η1 ⊗ . . .⊗ηk , lq (ξ)Ω= ξ,

and then l∗q (ξ) = lq (ξ)∗. These ‘creation’ and ‘annihilation’ operators are bounded and extend to
Fq (H). We define a von Neumann algebra by the double commutant

Mq (HR) := {lq (ξ)+ l∗q (ξ) | ξ ∈ HR}′′.

Then τΩ(x) := 〈xΩ,Ω〉 is a faithful tracial state on Mq (HR) which is moreover normal. Now Fq (H)
is the standard form Hilbert space of Mq (HR) and J xΩ = x∗Ω. For vectors ξ1, . . . ,ξk ∈ H there
exists a unique operator Wq (ξ1 ⊗ . . .⊗ξk ) ∈ Mq (HR) such that

Wq (ξ1 ⊗ . . .⊗ξk )Ω= ξ1 ⊗ . . .⊗ξk .

These operators are called Wick operators. It follows that Wq (ξ)opΩ= ξ.

Remark 4. Let F∞ be the free group with countably infinitely many generators. F∞ is icc and ex-
act [4] and hence Theorem 2 applies. We conclude that L (F∞) has W∗AO. We have that L (F∞) ≃
Γ0(HR) with HR a separable infinite dimensional real Hilbert space (see [7, Theorem 2.6.2]) and
so Γ0(HR) has the W∗AO.
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3. Non-isomorphism of q-Gaussian von Neumann algebras

The following theorem provides a necessary condition for W∗AO.

Theorem 5. Let M be a finite von Neumann algebra with finite normal faithful tracial state τ.
Suppose there exists a unital von Neumann subalgebra B ⊆ M and infinitely many subspaces
Mi ⊆ M , i ∈ N that are left and right B-invariant and mutually τ-orthogonal in the sense that
τ(y∗x) = 0 for x ∈ Mi , y ∈ M j , i ̸= j . Suppose moreover that there exists δ > 0 and finitely many
operators b j ,c j ∈ B, with

∑
j b j ⊗ cop

j non-zero, such that for every i ∈N we have∥∥∥∥∥Q0

(∑
j

b j cop
j

)∥∥∥∥∥
B(Mi ,L2(Mi ))

≥ (1+δ)

∥∥∥∥∥∑
j

b j ⊗ cop
j

∥∥∥∥∥
B⊗minB op

. (3)

Then M does not have W∗AO.

Proof. Let X be the set of finite rank operators x ∈ B(L2(M)) such that there exists Ix ⊆ I finite
with ker(x)⊥ ⊆⊕i∈Ix L2(Mi ). Take x ∈ X and choose k ∈ I \Ix . Then,∥∥∥∥∥Q0

(∑
j

b j cop
j +x

)∥∥∥∥∥
B(M ,L2(M))

≥
∥∥∥∥∥Q0

(∑
j

b j cop
j +x

)∥∥∥∥∥
B(Mk ,L2(Mk ))

=
∥∥∥∥∥Q0

(∑
j

b j cop
j

)∥∥∥∥∥
B(Mk ,L2(Mk ))

≥ (1+δ)

∥∥∥∥∥∑
j

b j ⊗ cop
j

∥∥∥∥∥
B⊗minB op

.

The operators in X are norm dense in K (L2(M)) and by [12, Section 2, Proposition] we have that
Q0(K (L2(M))) is dense in Q0(K L

M ) in the norm of B(M ,L2(M)). As Q0 is contractive Q0(X ) is
dense in Q0(K L

M ). It therefore follows that for any x ∈K L
M we have∥∥∥∥∥Q0

(∑
j

b j cop
j +x

)∥∥∥∥∥
B(M ,L2(M))

≥ (1+δ)

∥∥∥∥∥∑
j

b j ⊗ cop
j

∥∥∥∥∥
B⊗minB op

.

Since Q0 is contractive for every x ∈K L
M we have,∥∥∥∥∥∑

j
b j cop

j +x

∥∥∥∥∥
B(L2(M))

≥ (1+δ)

∥∥∥∥∥∑
j

b j ⊗ cop
j

∥∥∥∥∥
B⊗minB op

.

Hence, certainly for the Banach space quotient norm we have∥∥∥∥∥∑
j

b j cop
j +KM

∥∥∥∥∥
B(L2(M))/KM

≥ (1+δ)

∥∥∥∥∥∑
j

b j ⊗ cop
j

∥∥∥∥∥
B⊗minB op

.

As the left hand side norm is the norm of the C∗-quotient M (KM )/KM this concludes the proof
(see [9, Proposition 2.1] as in the preliminaries). □

The proof of the following theorem essentially repeats its C∗-algebraic counterpart from [1,
Theorem 3.3].

Theorem 6. Assume dim(HR) =∞ and −1 < q < 1, q ̸= 0. Then the von Neumann algebra Mq (HR)
does not have W∗AO.

Proof. Let d ≥ 2 be such that q2d > 1. Let

M := Mq (Rd ⊕HR), B := Mq (Rd ⊕0).
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Let { fi }i be an infinite set of orthogonal vectors in 0⊕ HR such that ∥Wq ( fi )∥ = 1. Let Mq,i :=
BWq ( fi )B which is a B-B invariant subset of M . Then Mq,i and Mq, j are τΩ-orthogonal if i ̸= j .
For k ∈N let

B(k) = {Wq (ξ) | ξ ∈ (Rd ⊕0)⊗k }.

It is proved in [1, Equation (3.2)] that for b,c ∈B(k) we have

〈bWq ( fi )cΩ, fi 〉q = 〈bcop fi , fi 〉q = qk〈bcopΩ,Ω〉q .

Then for finitely many b j ,c j ∈B(k) we have∥∥∥∥∥Q0

(∑
j

b j cop
j

)∥∥∥∥∥
B(Mq,i ,L2(Mq,i ))

≥
∥∥∥∥∥∑

j
b j Wq ( fi )c j

∥∥∥∥∥
L2(Mq,i )

≥
∣∣∣∣∣∣
〈∑

j
b j Wq ( fi )c jΩ, fi

〉
q

∣∣∣∣∣∣=
∣∣∣∣∣∑

j
qk 〈

b jΩc j ,Ω
〉

q

∣∣∣∣∣ . (4)

Now let {e1, . . . ,ed } be an orthonormal basis of Rd ⊕ 0 and for j = ( j1, . . . , jk ) ∈ {1, . . . ,d}k let
e j = e j1 ⊗ . . . ⊗ e jk . Let Jk be the set of all such multi-indices of length k. So #Jk = d k . Set

ξ j = (P k
q )−

1
2 e j so that 〈ξ j ,ξ j 〉q = 〈P k

qξ j ,ξ j 〉 = 1.
Now (4) yields that for all k ≥ 1 and all i ,∥∥∥∥∥Q0

( ∑
j∈Jk

Wq (ξ j )∗Wq (ξ j )op

)∥∥∥∥∥
B(Mq,i ,L2(Mq,i ))

≥ ∑
j∈Jk

qk〈Wq (ξ j )∗ΩWq (ξ j ),Ω〉q

= ∑
j∈Jk

qk〈ΩWq (ξ j ),Wq (ξ j )Ω〉q

= ∑
j∈Jk

qk〈ξ j ,ξ j 〉q = qk d k .

From [11, Proof of Theorem 2] (or see [1, Proof of Theorem 3.3]) we find,∥∥∥∥∥ ∑
j∈Jk

Wq (ξ j )∗⊗Wq (ξ j )op

∥∥∥∥∥
B⊗minB op

≤
( ∞∏

i=1
(1−q i )−1

)3

(k +1)2d k/2.

Therefore, as q2d > 1 there exists δ> 0 such that for k large enough we have for every i ,∥∥∥∥∥Q0

( ∑
j∈Jk

Wq (ξ j )∗Wq (ξ j )op

)∥∥∥∥∥
B(Mq,i ,L2(Mq,i ))

≥ (1+δ)

∥∥∥∥∥ ∑
j∈Jk

Wq (ξ j )∗⊗Wq (ξ j )op

∥∥∥∥∥
B⊗minB op

.

Hence the assumptions of Theorem 5 are witnessed which shows that W∗AO does not hold. □

Corollary 7. Let HR be an infinite dimensional real separable Hilbert space. The von Neumann
algebras Γ0(HR) and Γq (HR) with −1 < q < 1, q ̸= 0 are non-isomorphic.

Proof. This is a consequence of Theorem 6 and Remark 4 as W∗AO is preserved under isomor-
phism. □
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