Martijn Caspers

On the isomorphism class of q-Gaussian W^*-algebras for infinite variables

Volume 361 (2023), p. 1711-1716

Published online: 21 December 2023

https://doi.org/10.5802/crmath.489

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
On the isomorphism class of q-Gaussian W^*-algebras for infinite variables

Martijn Caspers

Abstract. Let $M_q(H_R)$ be the q-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space H_R where $-1 < q < 1$. We show that $M_q(H_R) \not\cong M_0(H_R)$ for $-1 < q \neq 0 < 1$. The C^*-algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.

Keywords. q-Gaussian von Neumann algebras, Akemann–Ostrand property.

2020 Mathematics Subject Classification. 46L35, 46L06.

Funding. Supported by the NWO Vidi grant VI.Vidi.192.018 "Non-commutative harmonic analysis and rigidity of operator algebras".

1. Introduction

Von Neumann algebras of q-Gaussian variables originate from the work of Bożejko and Speicher [3] (see also [2]). To a real Hilbert space H_R and a parameter $-1 < q < 1$ it associates a von Neumann algebra $M_q(H_R)$. At parameter $q = 0$ this assignment $H_R \mapsto M_0(H_R)$ is known as Voiculescu’s free Gaussian functor. The dependence of q of these von Neumann algebras has been an intriguing and very difficult problem. A breakthrough result in this direction was obtained by Guionnet–Shlyakhtenko [8] who showed that for finite dimensional H_R for a range of q close to 0 all von Neumann algebras $M_q(H_R)$ are isomorphic. The range for which isomorphism is known decreases as the dimension H_R becomes larger. The Guionnet–Shlyakhtenko approach is based on free analogues of (optimal) transport techniques. Their result also relies on existence and power series estimates of conjugate variables obtained by Dabrowski [5]. In fact the free transport techniques provide even an isomorphism result of underlying q-Gaussian C^*-algebras.

In case H_R is infinite dimensional the isomorphism question of q-Gaussian algebras was addressed by Nelson and Zeng [10]. They showed that for mixed q-Gaussians for which the array $(q_{ij})_{ij}$ of commutation coefficients decays fast enough to 0 one obtains isomorphism of mixed q-Gaussian C^*- and von Neumann algebras. However, the isomorphism question for the original (non-mixed) q-Gaussians remained open, see Questions 1.1 and 1.2 of [10]. In [1] we showed...
that on the level of C^*-algebras there exists a non-isomorphsim result. In the current note we improve on this result: we show that for an infinite dimensional separable real Hilbert space H_R and $-1 < q < 1$, $q \neq 0$ we have $M_q(H_R) \neq M_0(H_R)$. This then fully answers Questions 1.1 and 1.2 of [10] and provides a stark contrast to the results of Guionnet–Shlyakhtenko for finite dimensional H_R.

The distinguishing property of $M_q(H_R)$ and $M_0(H_R)$ is a variation of the Akemann–Ostrand property that was suggested in a note by Ozawa [12] (see also [6]) and which we shall call W^*_{AO}. We formally define it in Definition 1. The most important novelty is that we quotient $\mathcal{R}(L^2(M))$ by the C^*-algebra \mathcal{K}_M which is much larger than the ideal of compact operators on $L^2(M)$. This larger quotient turns out to provide von Neumann algebraic descriptions of the Akemann–Ostrand property [12]. We use this to distinguish $M_q(H_R)$ and $M_0(H_R)$.

Acknowledgements

The author thanks Mateusz Wasilewski, Changying Ding and Cyril Houdayer for comments on an earlier draft of this paper.

2. Preliminaries

$\mathcal{B}(X, Y)$ denotes the bounded operators between Banach spaces $X \to Y$. $\mathcal{K}(X, Y)$ denotes the compact operators, meaning that they map the unit ball to a relatively compact set. We set $\mathcal{B}(X) := \mathcal{B}(X, X)$ and $\mathcal{K}(X) := \mathcal{K}(X, X)$.

The algebraic tensor product (vector space tensor product) is denoted by \otimes_{alg} and \otimes_{min} is the minimal tensor product of C^*-algebras. \otimes is used for tensor products of elements.

We refer to [13] as a standard reference on von Neumann algebras. For a von Neumann algebra M we denote by $(M, L^2(M), J, L^2(M)^+)$ its standard form. For $x \in M$ we write $x^{\text{op}} := Jx^* J$ which is the right multiplication with x on the standard space. For a finite von Neumann algebra M with trace τ we have $M \subseteq L^2(M)$ where $L^2(M)$ is the completion of M with respect to the inner product $\langle x, y \rangle = \tau(y^* x)$. Therefore every $T \in \mathcal{B}(L^2(M))$ determines a map $Q_0(T) \in \mathcal{B}(M, L^2(M))$ given by $x \mapsto T(x)$. Set

$$Q_1 : \mathcal{B}(L^2(M)) \to \mathcal{B}(M, L^2(M))/\mathcal{K}(M, L^2(M)) : T \mapsto Q_0(T) + \mathcal{K}(M, L^2(M)).$$

Q_1 is clearly continuous and we define the closed left-ideal $\mathcal{K}_M^L = \ker(Q_1)$ and the hereditary C^*-subalgebra $\mathcal{K}_M = (\mathcal{K}_M^L)^* \cap \mathcal{K}_M^L$ of $\mathcal{B}(L^2(M))$ (see also [12]). We let $\mathcal{M}(\mathcal{K}_M) \subseteq \mathcal{B}(L^2(M))$ be the multiplier algebra of \mathcal{K}_M; indeed this multiplier algebra is faithfully represented on $L^2(M)$ by [9, Proposition 2.1]. Then \mathcal{K}_M is an ideal in the C^*-algebra $\mathcal{M}(\mathcal{K}_M)$. We have $M \subseteq \mathcal{M}(\mathcal{K}_M)$ and $M^{\text{op}} \subseteq \mathcal{M}(\mathcal{K}_M)$.

2.1. A von Neumann version of the Akemann–Ostrand property

Definition 1. Let M be a finite von Neumann algebra. We say that M has W^*_{AO} if the map

$$\theta : M \otimes_{alg} M^{\text{op}} \to \mathcal{M}(\mathcal{K}_M)/\mathcal{K}_M : a \otimes b^{\text{op}} \mapsto ab^{\text{op}} + \mathcal{K}_M.$$ \hspace{1cm} (1)

is continuous with respect to the minimal tensor norm and thus extends to a \ast-homomorphism $M \otimes_{min} M^{\text{op}} \to \mathcal{M}(\mathcal{K}_M)/\mathcal{K}_M$.

We recall the following from [12, Section 4]. Let Γ be a discrete group and let $\mathcal{L}(\Gamma)$ and $\mathcal{R}(\Gamma)$ be the left and right group von Neumann algebra respectively acting on $\ell^2(\Gamma)$. In this case $L^2(\mathcal{L}(\Gamma)) \approx \ell^2(\Gamma)$ as bimodules with the natural left and right actions of $\mathcal{L}(\Gamma)$ and $\mathcal{R}(\Gamma)$ on $\ell^2(\Gamma)$. We have $J\delta_s = \delta_{s^{-1}}$ which extends to an antilinear isometry on $\ell^2(\Gamma)$. Then $\mathcal{R}(\Gamma) = J\mathcal{L}(\Gamma)J$.

1712 Martijn Caspers
Assume Γ is icc so that $\mathcal{L}(\Gamma)$ and $\mathcal{R}(\Gamma)$ are factors, i.e. $\mathcal{L}(\Gamma) \cap \mathcal{R}(\Gamma) = \mathbb{C}I$. The map

$$\pi : C^* (\mathcal{L}(\Gamma), \mathcal{R}(\Gamma)) \to \mathcal{B}(\ell^2(\Gamma) \otimes \ell^2(\Gamma)) : ab^{op} \to a \otimes b^{op}, \quad a \in \mathcal{L}(\Gamma), b^{op} \in \mathcal{R}(\Gamma).$$

is a well-defined $*$-homomorphism by Takesaki’s theorem on minimality of the spatial tensor product. In [12, Section 4, Theorem] Ozawa showed the following theorem.

Theorem 2. Let Γ be an exact icc group such that the $*$-homomorphism

$$C^r_r(\Gamma) \otimes_{alg} C^r_r(\Gamma)^{op} \to \mathcal{B}(\ell^2(\Gamma)) / \mathcal{K}(\ell^2(\Gamma)) : a \otimes b^{op} \to ab^{op} + \mathcal{K}(\ell^2(\Gamma)),$$

is continuous with respect to \otimes_{\min}. Then $\mathcal{L}(\Gamma)$ has $W^* \Lambda O$.

Proof. By [12, Section 4, Theorem] we have

$$\ker(\pi) = \mathcal{K}_{\mathcal{L}(\Gamma)} \cap C^* (\mathcal{L}(\Gamma), \mathcal{R}(\Gamma)).$$

Therefore,

$$\mathcal{L}(\Gamma) \otimes_{\min} \mathcal{R}(\Gamma) \xrightarrow{\pi} C^* (\mathcal{L}(\Gamma), \mathcal{R}(\Gamma)) / (\mathcal{K}_{\mathcal{L}(\Gamma)} \cap C^* (\mathcal{L}(\Gamma), \mathcal{R}(\Gamma))),$$

which concludes the theorem. \qed

Remark 3. It follows that if Γ is an icc group that is bi-exact (or said to be in class \mathcal{S}, see [4, Section 15]) then $\mathcal{L}(\Gamma)$ has $W^* \Lambda O$.

2.2. q-Gaussians

Let $-1 < q < 1$ and let $H_{\mathbb{R}}$ be a real Hilbert space with complexification $H := H_{\mathbb{R}} \oplus i H_{\mathbb{R}}$. Set the symmetrization operator P^k_q on $H^\otimes k$,

$$P^k_q(\xi_1 \otimes \cdots \otimes \xi_n) = \sum_{\sigma \in S_k} q^{i(\sigma)} \xi_{\sigma(1)} \otimes \cdots \otimes \xi_{\sigma(n)},$$

where S_k is the symmetric group of permutations of k elements and $i(\sigma) := \# \{ (a, b) \mid a < b, \sigma(b) < \sigma(a) \}$ the number of inversions. The operator P^k_q is positive and invertible [3]. Define a new inner product on $H^\otimes k$ by

$$\langle \xi, \eta \rangle_q := \langle P^k_q \xi, \eta \rangle,$$

and call the new Hilbert space $H^\otimes k_q$. Set the Hilbert space direct sum $F_q(H) := \Omega \oplus (\oplus_{k=1}^\infty H^\otimes k_q)$ where Ω is a unit vector called the vacuum vector. For $\xi \in H$ let

$$l_q(\xi)(\eta_1 \otimes \cdots \otimes \eta_k) := \xi \otimes \eta_1 \otimes \cdots \otimes \eta_k, \quad l_q(\xi) \Omega = \xi,$$

and then $l_q^*(\xi) = l_q(\xi)^*$. These ‘creation’ and ‘annihilation’ operators are bounded and extend to $F_q(H)$. We define a von Neumann algebra by the double commutant

$$M_q(H_{\mathbb{R}}) := (l_q(\xi) + l_q^*(\xi) \mid \xi \in H_{\mathbb{R}})^\prime \prime.$$

Then $\tau_{\Omega}(x) := \langle x \Omega, \Omega \rangle$ is a faithful tracial state on $M_q(H_{\mathbb{R}})$ which is moreover normal. Now $F_q(H)$ is the standard form Hilbert space of $M_q(H_{\mathbb{R}})$ and $Jx\Omega = x^* \Omega$. For vectors $\xi_1, \ldots, \xi_k \in H$ there exists a unique operator $W_q(\xi_1 \otimes \cdots \otimes \xi_k) \in M_q(H_{\mathbb{R}})$ such that

$$W_q(\xi_1 \otimes \cdots \otimes \xi_k) \Omega = \xi_1 \otimes \cdots \otimes \xi_k.$$

These operators are called Wick operators. It follows that $W^*_q(\xi) \Omega = \xi$.

Remark 4. Let F_∞ be the free group with countably infinitely many generators. F_∞ is icc and exact [4] and hence Theorem 2 applies. We conclude that $\mathcal{L}(F_\infty)$ has $W^* \Lambda O$. We have that $\mathcal{L}(F_\infty) \approx \Gamma_0(H_{\mathbb{R}})$ with $H_{\mathbb{R}}$ a separable infinite dimensional real Hilbert space (see [7, Theorem 2.6.2]) and so $\Gamma_0(H_{\mathbb{R}})$ has the $W^* \Lambda O$.

Martijn Caspers

1713
3. Non-isomorphism of q-Gaussian von Neumann algebras

The following theorem provides a necessary condition for $W^*\text{AO}$.

Theorem 5. Let M be a finite von Neumann algebra with finite normal faithful tracial state τ. Suppose there exists a unital von Neumann subalgebra $B \subset M$ and infinitely many subspaces $M_i \subset M$, $i \in \mathbb{N}$ that are left and right B-invariant and mutually τ-orthogonal in the sense that $\tau(y^*x) = 0$ for $x \in M_i$, $y \in M_j$, $i \neq j$. Suppose moreover that there exists $\delta > 0$ and finitely many operators $b_j, c_j \in B$, with $\sum_j b_j \otimes c_j$ non-zero, such that for every $i \in \mathbb{N}$ we have

$$\left\| Q_0 \left(\sum_j b_j c_j \right) \right\|_{\mathcal{B}(M_i, L^2(M_i))} \geq (1 + \delta) \left\| \sum_j b_j \otimes c_j \right\|_{B \otimes_{\min} B^\text{op}}.$$ (3)

Then M does not have $W^*\text{AO}$.

Proof. Let X be the set of finite rank operators $x \in \mathcal{B}(L^2(M))$ such that there exists $I_x \subset I$ finite with $\ker(x)^0 \subset \oplus_{i \in I_x} L^2(M_i)$. Take $x \in X$ and choose $k \in I \setminus I_x$. Then,

$$\left\| Q_0 \left(\sum_j b_j c_j + x \right) \right\|_{\mathcal{B}(M_k, L^2(M_k))} \geq \left\| Q_0 \left(\sum_j b_j c_j \right) \right\|_{\mathcal{B}(M_k, L^2(M_k))}$$

$$= \left\| Q_0 \left(\sum_j b_j c_j \right) \right\|_{\mathcal{B}(M_i, L^2(M_i))} \geq (1 + \delta) \left\| \sum_j b_j \otimes c_j \right\|_{B \otimes_{\min} B^\text{op}}.$$

The operators in X are norm dense in $\mathcal{K}(L^2(M))$ and by [12, Section 2, Proposition] we have that $Q_0(\mathcal{K}(L^2(M)))$ is dense in $Q_0(\mathcal{K}_M^L)$ in the norm of $\mathcal{B}(M, L^2(M))$. As Q_0 is contractive $Q_0(X)$ is dense in $Q_0(\mathcal{K}_M^L)$. It therefore follows that for any $x \in \mathcal{K}_M^L$ we have

$$\left\| Q_0 \left(\sum_j b_j c_j + x \right) \right\|_{\mathcal{B}(M_k, L^2(M_k))} \geq (1 + \delta) \left\| \sum_j b_j \otimes c_j \right\|_{B \otimes_{\min} B^\text{op}}.$$

Since Q_0 is contractive for every $x \in \mathcal{K}_M^L$ we have,

$$\left\| \sum_j b_j c_j + x \right\|_{\mathcal{B}(L^2(M))} \geq (1 + \delta) \left\| \sum_j b_j \otimes c_j \right\|_{B \otimes_{\min} B^\text{op}}.$$

Hence, certainly for the Banach space quotient norm we have

$$\left\| \sum_j b_j c_j + \mathcal{K}_M \right\|_{\mathcal{B}(L^2(M)/\mathcal{K}_M)} \geq (1 + \delta) \left\| \sum_j b_j \otimes c_j \right\|_{B \otimes_{\min} B^\text{op}}.$$

As the left hand side norm is the norm of the C^*-quotient $\mathcal{M}(\mathcal{K}_M)/\mathcal{K}_M$ this concludes the proof (see [9, Proposition 2.1] as in the preliminaries).

The proof of the following theorem essentially repeats its C^*-algebraic counterpart from [1, Theorem 3.3].

Theorem 6. Assume $\dim(H_\mathbb{R}) = \infty$ and $-1 < q < 1, q \neq 0$. Then the von Neumann algebra $M_q(H_\mathbb{R})$ does not have $W^*\text{AO}$.

Proof. Let $d \geq 2$ be such that $q^2 d > 1$. Let

$$M := M_q(\mathbb{R}^d \oplus H_\mathbb{R}), \quad B := M_q(\mathbb{R}^d \oplus 0).$$
Let \(\{f_i\}_i \) be an infinite set of orthogonal vectors in \(0 \oplus H_\mathbb{R} \) such that \(\|W_q(f_i)\| = 1 \). Let \(M_{q,i} := BW_q(f_i)B \) which is a \(B' \)-invariant subset of \(M \). Then \(M_{q,i} \) and \(M_{q,j} \) are \(\tau_\Omega \)-orthogonal if \(i \neq j \).

For \(k \in \mathbb{N} \) let

\[
\mathcal{B}(k) = \{ W_q(\xi) \mid \xi \in (\mathbb{R}^d \oplus 0)^{\otimes k} \}.
\]

It is proved in [1, Equation (3.2)] that for \(b, c \in \mathcal{B}(k) \) we have

\[
\langle bW_q(f_j)\xi, f_i \rangle_q = \langle b\xi^{op}, f_i \rangle_q = q^k\langle b\xi^{op}, \Omega \rangle_q.
\]

Then for finitely many \(b_j, c_j \in \mathcal{B}(k) \) we have

\[
\left\| Q_0 \left(\sum_j b_j c_j^{op} \right) \right\|_{\mathcal{B}(M_{q,i}, L^2(M_{q,i})))} \geq \left\| \sum_j b_j W_q(f_j) c_j \right\|_{L^2(M_{q,i})} \geq \left| \sum_j \langle b_j W_q(f_j) c_j \Omega, f_i \rangle_q \right| = \left| \sum_j q^k \langle b_j \xi^{op}, \Omega \rangle_q \right|.
\]

Now (4) yields that for all \(k \geq 1 \) and all \(i \),

\[
\left\| Q_0 \left(\sum_{j \in J_k} W_q(\xi_j)^* W_q(\xi_j)^{op} \right) \right\|_{\mathcal{B}(M_{q,i}, L^2(M_{q,i})))} \geq \sum_{j \in J_k} q^k \langle W_q(\xi_j)^* \Omega W_q(\xi_j), \Omega \rangle_q = \sum_{j \in J_k} q^k \langle \Omega W_q(\xi_j), W_q(\xi_j) \Omega \rangle_q = \sum_{j \in J_k} q^k \langle \xi_j, \xi_j \rangle_q = q^k d^k.
\]

From [11, Proof of Theorem 2] (or see [1, Proof of Theorem 3.3]) we find,

\[
\left\| \sum_{j \in J_k} W_q(\xi_j)^* \otimes W_q(\xi_j)^{op} \right\|_{B_{\min}B^{op}} \leq \left(\prod_{i=1}^{\infty} (1 - q^{-i})^{-1} \right)^{3} (k + 1)^2 d^{k/2}.
\]

Therefore, as \(q^2 d > 1 \) there exists \(\delta > 0 \) such that for \(k \) large enough we have for every \(i \),

\[
\left\| Q_0 \left(\sum_{j \in J_k} W_q(\xi_j)^* W_q(\xi_j)^{op} \right) \right\|_{\mathcal{B}(M_{q,i}, L^2(M_{q,i})))} \geq (1 + \delta) \left\| \sum_{j \in J_k} W_q(\xi_j)^* \otimes W_q(\xi_j)^{op} \right\|_{B_{\min}B^{op}}.
\]

Hence the assumptions of Theorem 5 are witnessed which shows that \(W^{*}A^{o} \) does not hold. \(\square \)

Corollary 7. Let \(H_\mathbb{R} \) be an infinite dimensional real separable Hilbert space. The von Neumann algebras \(\Gamma_0(H_\mathbb{R}) \) and \(\Gamma_q(H_\mathbb{R}) \) with \(-1 < q < 1, q \neq 0 \) are non-isomorphic.

Proof. This is a consequence of Theorem 6 and Remark 4 as \(W^{*}A^{o} \) is preserved under isomorphism. \(\square \)

References

