

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Christopher S. Withers and Saralees Nadarajah

A note on bias reduction

Volume 358, issue 6 (2020), p. 641-644

Published online: 2 October 2020

https://doi.org/10.5802/crmath.49

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569 Comptes Rendus Mathématique 2020, 358, n° 6, p. 641-644 https://doi.org/10.5802/crmath.49

Statistics / Statistiques

A note on bias reduction

Christopher S. Withers^{*a*} and Saralees Nadarajah^{*, *b*}

 $^{\it a}$ Industrial Research Limited, Lower Hutt, New Zealand

^b University of Manchester, Manchester M13 9PL, UK

E-mails: kit.withers@gmail.com, mbbsssn2@manchester.ac.uk

Abstract. Let \hat{w} be an unbiased estimate of an unknown $w \in R$. Given a function t(w), we show how to choose a function $f_n(w)$ such that for $w^* = \hat{w} + f_n(w)$, $E t(w^*) = t(w)$. We illustrate this with $t(w) = w^a$ for a given constant *a*. For a = 2 and \hat{w} normal, this leads to the convolution equation $c_r = c_r \otimes c_r$.

Manuscript received 10th January 2019, accepted 9th April 2020.

1. Introduction

Let \hat{w} be an unbiased estimate of an unknown $w \in R$. Given a function t(w), we show how to choose a function $f_n(w)$ such that $E t(w^*) = t(w)$ for $w^* = \hat{w} + f_n(w)$. We illustrate this in Section 2 with \hat{w} normal and $t(w) = w^a$ for some constant *a*. For a = 2 this gives the convolution equation $c_r = c_r \otimes c_r$ to solve.

 w^* is not an estimate since it depends on the unknown w. The method extends to $\hat{\mathbf{w}}$ any *standard estimate* of an unknown $\mathbf{w} \in \mathbb{R}^p$ with respect to a given parameter n. That is, $E \hat{\mathbf{w}} \to \mathbf{w}$ as $n \to \infty$ and, for $r \ge 1$, its rth order cumulants have magnitude n^{1-r} and can be expanded as power series in n^{-1} :

$$\kappa\left(\widehat{w}_{i_1},\ldots,\widehat{w}_{i_r}\right) = \sum_{e=r-1}^{\infty} n^{-e} k_e^{i_1,\ldots,i_r} \tag{1}$$

for $1 \le i_1, ..., i_r \le p$ and $k_0^{i_1} = w_{i_1}$, where w_i is the *i*th component of **w**, and the *cumulant coefficients* $k_0^{i_1,...,i_r}$ are bounded as $n \to \infty$, but may depend on **w**. For p = 1, (1) can be written

$$\kappa\left(\widehat{w}\right) = \sum_{e=r-1}^{\infty} n^{-e} k_{r,e}$$

for $r \ge 1$, where $k_{1,0} = w$. Cumulant coefficients are the building blocks of analytic methods for statistical inference. For example, methods for constructing estimates of low bias for any smooth function $t(\mathbf{w}) : \mathbb{R}^p \to \mathbb{R}$ were given in Mynbaev et al. [3] and Withers and Nadarajah [4–14].

^{*} Corresponding author.

Given a sequence a_1, a_2, \ldots , the exponential partial Bell polynomial $B_{i,k}(\mathbf{a})$ is defined by

$$\left(\sum_{j=1}^{\infty} a_j t^j / j!\right)^k / k! \equiv \sum_{j=k}^{\infty} B_{j,k}(\mathbf{a}) t^j / j!$$

for $t \in R$ and k = 0, 1, ... It is tabled on p. 307–308 of Comtet [2] for $1 \le r \le 12$. Given two sequences $a_1, a_2, ...$ and $b_1, b_2, ...$, their discrete convolution is defined by

$$a_r \otimes b_r = \sum_{i=1}^r a_i b_{r-i}$$

Set $\delta_{i,1} = I(i = 1)$ and $(a)_j = a!/(a - j)!$.

2. Adding bias to \hat{w} to reduce the bias of $t(\hat{w})$

Suppose that $\hat{w} \sim \mathcal{N}(w, v(w)/n)$, a normal estimate. Set

$$v = v(w), \quad f_n(w) = \sum_{i=1}^{\infty} k_i n^{-i},$$
 (2)

where $k_i = b_i / i!$ may depend on *w*. Theorems 1 and 3 show how to choose k_i or b_i so that for any given *a*,

$$E(w^*)^a = w^a, \ w^* = \hat{w} + f_n(w).$$
 (3)

Theorem 2.1 considers the case a = 2. Theorem 3 considers the case a = 3. Throughout, we set

$$\delta = \hat{w} - w, \quad v = v/w^2, \quad m_n = E \ w^* = w + f_n(w). \tag{4}$$

Theorem 1. Take $w^* = \hat{w} + f_n(w)$ with

$$k_r = -c_r v^r / D^{2r-1}$$

where D = 2w and, for $r \ge 2$,

$$c_1 = 1, \quad c_r = c_r \otimes c_r. \tag{5}$$

Then $E(w^*)^2 = w^2$.

Proof. For w^* of (3),

$$E(w^*)^2 = m_n^2 + v/n = w^2 + 2wf_n(w) + f_n(w)^2 + v/n = w^2 + \sum_{i=1}^{\infty} T_i n^{-i},$$

where $T_i = Dk_i + s_i + v\delta_{i,1}$, $s_1 = 0$, and for $i \ge 2$,

$$s_i = k_i \otimes k_i = \sum_{j=1}^{i-1} k_j k_{i-j}.$$

So, $T_i = 0$ if we take $k_i = -(s_i + v\delta_{i,1})/D$ for $i \ge 1$. This gives the result.

Corollary 2 gives an explicit form for c_r in (5).

Corollary 2. For $r \ge 2$,

$$c_r = -\binom{1/2}{r} (-4c_1)^r / 2 = 2^{r-1} 1 \ 3 \ \cdots (2r-3)/r!.$$

Proof. Set

$$C(t) = \sum_{r=1}^{\infty} c_r t^r,$$

where c_1 is now arbitrary. By (5), $C(t) = c_1 t + C(t)^2$. Since C(0) = 0, this gives

$$C(t) = \left[1 - (1 - 4c_1 t)^{1/2}\right]/2 = -\sum_{r=1}^{\infty} {\binom{1/2}{r}} (-4c_1 t)^r/2$$

which implies the result.

Theorem 3. Take $w^* = \hat{w} + f_n(w)$ with

$$f_n(w) = w \sum_{j=0}^{\infty} A_j (c/n^3)^j / j! + w u \sum_{j=0}^{\infty} B_j (c/n^3)^j / j! - w$$

where $c = 4v^3$, $a_j = (1/2)_j/2$, $u = -vn^{-1}$, $B_k = a_{k+1}/a_1(k+1)$ and

$$A_j = \sum_{k=0}^{J} (1/3)_k B_{j,k}(\mathbf{a})$$

Then $E(w^*)^3 = w^3$.

Proof. For w^* of (3),

$$E(w^*)^3 = m_n^3 + 3m_nv/n = w^3$$

if $m_n^3 + 3m_nv/n - w^3 = 0$. Set $\gamma = (v/n)^3 + w^6/4$. Since $\gamma > 0$, this cubic has one real root given by Equation (3.8.2) of Abramowitz and Stegun [1]:

$$m_n = S_1^{1/3} + S_2^{1/3},$$

where $S_j = w^3/2 \pm \gamma^{1/2}$. Suppose that w > 0. (If not, replace w by |w|.) Then for v of (4), $\gamma^{1/2} = w^3(1+d)^{1/2}/2,$

where $d = cn^{-3}$. Furthermore,

$$(1+d)^{1/2} = \sum_{j=0}^{\infty} {\binom{1/2}{j}} d^j, \quad S_1 = 1+D$$

for

$$D = \sum_{j=1}^{\infty} {\binom{1/2}{j}} d^j / 2 = \sum_{j=1}^{\infty} a_j d^j / j!.$$

Furthermore,

$$D^k/k! = \sum_{j=k}^{\infty} B_{j,k}(\mathbf{a}) d^j/j!$$

implies

$$S_1^{1/3} = \sum_{k=0}^{\infty} {\binom{1/3}{k}} D^k = \sum_{j=0}^{\infty} A_j d^j / j!.$$

Also

$$S_2 = 1/2 - (1+d)^{1/2}/2 = -\sum_{j=1}^{\infty} a_j d^j / j! = -a_1 d(1+U)$$

for

$$U = \sum_{k=1}^{\infty} B_k d^k / k!$$

and

$$U^j/j! = \sum_{k=j}^{\infty} B_{k,j}(\mathbf{B}) d^k/k!.$$

Then

$$S_2^{1/3} = u(1+U)^{1/3} = u \sum_{j=0}^{\infty} {\binom{1/3}{j}} U^j = u \sum_{j=0}^{\infty} (1/3)_j U^j / j! = \sum_{k=0}^{\infty} C_k d^k / k!,$$

where

$$C_k = \sum_{j=0}^k (1/3)_j B_{k,j}(\mathbf{B}).$$

Hence, for the choice of $f_n(w)$, $E(w^*)^3 = w^3$.

C. R. Mathématique, 2020, 358, nº 6, 641-644

The method of Theorems 1 and 3 will not work for $t(w) = w^5$ since there is no explicit solution to a quintic. However, we now show how to obtain an unbiased or bias-reduced estimate of w^a for *any* a > 0. Set $\Delta = \hat{w} - w = w^* - m_n$. Then

$$E(w^*)^a = E(m_n + \Delta)^a = \sum_{j=0}^{\infty} {a \choose j} m_n^{a-j} \mu_j(\widehat{w}) = \sum_{j=0}^{\infty} {a \choose 2j} m_n^{a-2j} \mu_{2j}(\widehat{w}),$$

where

$$\mu_{2j}(\widehat{w}) = N_j v^j, \quad N_0 = 1, \quad N_j = 1 \ 3 \cdots (2j-1)$$

for $j \ge 1$. By (2),

$$f_n(w)^k / k! = \sum_{i=k}^{\infty} B_{i,k}(\mathbf{b}) n^{-i} / i!.$$

So,

$$(m_n/w)^a = \left[1 + f_n(w)/w\right]^a = \sum_{k=0}^{\infty} (a)_k w^{-k} f_n(w)^k/k! = \sum_{i=0}^{\infty} D_{a,i} n^{-i}/i!$$

for

$$D_{a,i} = \sum_{k=0}^{i} (a)_k w^{-k} B_{i,k}(\mathbf{b}).$$

This implies

$$E(w^*)^a / w^a = \sum_{k=0}^{\infty} n^{-k} E_k$$

for

$$E_k = \sum_{i+j=k} \binom{a}{2j} N_j v^j D_{a-2j,i} / i!$$

$$b_1 = -(a-1)w/2, \qquad E_1 = 0, \qquad E(w^*)^a = w^a + O(n^{-2}), b_2 = w(a-1)[-(a-1)^2 + (a-1)_2wv - (a-2)_2v^2], \qquad E_2 = 0, \qquad E(w^*)^a = w^a + O(n^{-3}).$$

In this way, we can construct $f_n(w)$ so that for any given a > 0 and $k \ge 1$, $E[\widehat{w} + f_n(w)]^a = w^a + O(n^{-k})$.

References

- [1] M. Abramowitz, I. A. Stegun (eds.), *Handbook of mathematical functions with formulas, graphs and mathematical tables*, Applied Mathematics Series, vol. 55, U.S. Department of Commerce, 1964.
- [2] L. Comtet, Advanced combinatorics: the art of finite and infinite expansions, Springer, 1974.
- [3] K. T. Mynbaev, S. Nadarajah, C. S. Withers, A. S. Aipenova, "Improving bias in kernel density estimation", *Stat. Probab. Lett.* **94** (2014), p. 106-112.
- [4] C. S. Withers, S. Nadarajah, "Analytic bias reduction for k-sample functionals", Sankhyā, Ser. A 70 (2008), no. 2, p. 186-222.
- [5] _____, "The bias and skewness of M-estimators in regression", Electron. J. Stat. 4 (2010), p. 1-14.
- [6] —, "Bias-reduced estimates for skewness, kurtosis, L-skewness and L-kurtosis", J. Stat. Plann. Inference 141 (2011), no. 12, p. 3839-3861.
- [7] _____, "Bias reduction for the ratio of means", J. Stat. Comput. Simulation 81 (2011), no. 12, p. 1799-1816.
- [8] _____, "Estimates of low bias for the multivariate normal", Stat. Probab. Lett. 81 (2011), no. 11, p. 1635-1647.
- [9] _____, "Reduction of bias and skewness with applications to second order accuracy", *Stat. Methods Appl.* **20** (2011), no. 4, p. 439-450.
- [10] _____, "Nonparametric estimates of low bias", *REVSTAT* 10 (2012), no. 2, p. 229-283.
- [11] _____, "Calibration with low bias", Stat. Pap. 54 (2013), no. 2, p. 371-379.
- [12] ______, "Delta and jackknife estimators with low bias for functions of binomial and multinomial parameters", *J. Multivariate Anal.* **118** (2013), p. 138-147.
- [13] _____, "Density estimates of low bias", Metrika 76 (2013), no. 3, p. 357-379.
- [14] _____, "Bias reduction when data are rounded", Stat. Neerl. 69 (2015), no. 3, p. 236-271.