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Abstract. We study nonlocal conservation laws with a discontinuous flux function of regularity L∞(R) in the
spatial variable and show existence and uniqueness of weak solutions in C

(
[0,T ];L1

loc

)
, as well as related

maximum principles. We achieve this well-posedness by a proper reformulation in terms of a fixed-point
problem. This fixed-point problem itself necessitates the study of existence, uniqueness and stability of
a class of discontinuous ordinary differential equations. On the ODE level, we compare the solution type
defined here with the well-known Carathéodory and Filippov solutions.

Résumé. Nous étudions des lois de conservation non locales avec une fonction de flux discontinue de
régularité spatiale L∞(R) dans la variable spatiale et montrons l’existence et l’unicité de solutions faibles dans
C

(
[0,T ];L1

loc

)
, ainsi que les principes de maxima connexes des principes de maximum correspondants. Nous

obtenons ce caractère bien posé par une reformulation appropriée en termes d’un problème de point fixe.
Nous obtenons ce caractère bien posé en reformulant de façon appropriée le problème comme un problème
de point fixe. Ce problème de point fixe nécessite lui-même l’étude de l’existence, de l’unicité et de la stabilité
d’une classe d’équations différentielles ordinaires discontinues. Au niveau des ODE EDO, nous comparons le
type de solution défini ici avec les solutions bien connues de Carathéodory et de Filippov.
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1. Introduction

In this contribution we study nonlocal conservation laws with a discontinuous part of the velocity
in space. The discontinuity enters the equation as a multiplicative term and is assumed to be
bounded away from zero. The only additional requirement is that it possesses the regularity L∞.
Nonlocal refers to the fact that the flux of the conservation law at a given space-time point not
only depends on the solution at this point, but also on a spatial averaging around this position by
means of a convolution, in equations

qt +
(
v(x)V (γ∗q) q

)
x = 0, (1)

with discontinuous part of the velocity v ∈ L∞(R;R>v ) for v ∈ R>0, Lipschitz-continuous part of
the velocity V ∈W1,∞

loc (R) and nonlocal weight γ ∈BV(R;R≥0). For details see Definition 2.
A variety of results for nonlocal conservation laws have been provided over the last few

years [1, 8, 11, 12, 16, 17, 19, 21, 25, 26, 30, 31, 34, 35, 37, 38, 40–46, 48–50, 52–54, 60, 63–65, 67, 68, 70,
73–80, 83, 85, 87, 90, 94, 96, 103], but only in recent publications [32, 33] has a discontinuity been
considered exactly as denoted in (1). The authors use entropy methods together with a type of
Godunov discretization scheme and a viscosity approximation to demonstrate well-posedness.
They also present a maximum principle for a discontinuity with one jump, where the disconti-
nuity is monotonically chosen so that the solution cannot increase. This can be envisioned by
considering a nonlocal version of the classical LWR model in traffic ([89]) and assuming that traf-
fic flows to the right. Then, if the discontinuous part of the velocity is monotonically increasing,
the velocity is faster after each jump, meaning that no increase of density can appear around the
discontinuities.

Describing our approach in more general terms, we consider the discontinuous velocity as
an L∞(R) function that is positive and bounded away from zero, and we then deal with the
dynamics introduced in (1) and detailed in Definition 2. We show that weak solutions exist
and are unique without an Entropy condition, and present several maximum principles under
which the solution exists semi-globally. In contrast to the DiPerna Lions ansatz [55], where the
existence of ODEs is shown by studying the corresponding (linear) conservation law, we tackle the
problem by formulating the characteristics of the conservation law as a fixed-point problem (as
we first described in [74] based on the idea proposed in [47]) and dealing with the corresponding
discontinuous ODE. This emerging nonlinear discontinuous ODE, then reads as

x ′(t ) = v(x(t )) ·λ(t , x(t )) (2)

with discontinuous v ∈ L∞(R;R>v ) for v ∈ R>0 and λ ∈ L∞(
(0,T );W1,∞(R)

)
, i.e. Lipschitz-

continuous w.r.t. the spatial variable. For details see Definition 1.
For the broad theory on discontinuous ODEs and initial value problems we refer the reader

to [7, 20, 23, 24, 39, 56–58, 69, 91]. As the solution to the discontinuous ODE is later subject to the
aforementioned fixed-point problem, we not only show existence and uniqueness of solutions,
but also stability and continuity results. This is not covered by the established theory of discontin-
uous ODEs and requires the specific structure of the discontinuous ODE considered here. Having
established these stability estimates and results, demonstrating the existence and uniqueness of
discontinuous nonlocal conservation laws on small time horizons is straightforward following
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the approaches adopted in [74]. This is supplemented by an approximation result in a “weak”
topology, which ultimately enables us to present different types of maximum principles resulting
in semi-global well-posedness.

1.1. Outline

In Section 1, we introduce the problem and compare our results with those in the literature. We
conclude the section with some basic definitions in Section 1.2, which specify what we mean by
“solutions to the introduced problem class.”

Section 2 is dedicated to the well-posedness and stability properties of solutions to the class of
discontinuous ODEs introduced. Having defined what we mean by solutions and stated required
assumptions, we then concentrate in Section 2.1 on the existence and uniqueness of solutions
and how they compare to Carathéodory and Filippov solutions. For the existence theory for
nonlocal conservation laws in Section 3 we require stability of the characteristics with regard to
input datum, In Section 2.2 we thus consider the stability of the solutions to the discontinuous
ODE with respect to initial datum, Lipschitz velocity and discontinuous velocity in a suitable
topology. Section 2.3 considers the regularity of the derivative of solutions of the discontinuous
ODE with respect to the initial datum in the topology induced by C

(
[0,T ];L1

loc(R)
)
, another

important ingredient for the well-posedness of the discontinuous nonlocal conservation law
studied later.

In Section 3 we finally study the described class of discontinuous nonlocal conservation laws,
beginning by presenting the assumptions on the data involved. In broad terms, for the initial
datum and the discontinuous velocity we assume only L∞ regularity. This is identical to the
assumption described for the discontinuous ODE in Section 2. In Section 3.1 we then study the
well-posedness of the discontinuous nonlocal conservation law via formulating a fixed-point
problem in the Banach space L∞((0,T );L∞(R)) and using the method of characteristics. We first
establish well-posedness of solutions on small time horizons, followed by stability results for the
solution with respect to the discontinuous and continuous part of the velocity. We also establish
stability for the initial datum in a weak topology, enabling the approximation of solutions by
smooth solutions of the corresponding “smoothed” nonlocal conservation law. Under relatively
mild additional assumptions on the nonlocal kernel and the Lipschitz-continuous velocity, for
nonnegative initial datum we show different versions of maximum principles in Section 3.2.
One version states that the L∞ norm of the solution can only decrease over time providing the
discontinuity is monotonically decreasing, while another only gives uniform upper bounds on
the solutions for a general discontinuity. These results also imply the semi-global well-posedness
of the solutions. We conclude the contribution in Section 4 with some open problems.

Perspective from (local) conservation laws

From the perspective of approximating local conservation laws by nonlocal conservation
laws [25, 26, 37, 40, 41, 75], we consider the nonlocal approximations of the following discontinu-
ous (local) conservation laws:

qt +
(
v(x) · f (q)

)
x = 0,

with f ≡V ·Id for V ∈W1,∞
loc (R) and v ∈ L∞(R;R≥v ), v ∈R>0. Thus, we are dealing with the nonlocal

approximation of a multiplicative discontinuous – in space – velocity field. However, we will not
be studying this limiting behaviour in this work.

Discontinuous conservation laws have been considered in terms of questions of existence and
uniqueness, and the need to prescribe the proper Entropy condition at the discontinuity in order
to single out the proper (and potentially physical reasonable) solution among the infinite number
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of weak solutions. A vast number of papers on these topics have been published. For the sake of
brevity, we refer the reader to [2–6, 13–15, 28, 29, 61, 62, 71, 72, 81, 82, 92, 99, 100] and note that this
list is by no means exhaustive.

Simplified results covered by the developed theory

The results obtained can also be applied to special cases of nonlocal conservation law, i.e.
nonlocal dynamics with Lipschitz continuous velocity function (setting v ≡ 1)

qt +
(
V (γ∗q) q

)
x = 0.

This case (including source terms on the right hand side) has been intensively studied in [74] and,
indeed, we recover the same results also obtained in Section 3. Thus, the theory proposed here
generalizes the results presented in [74].

Discontinous linear conservation laws represent another specific case. Choosing V ≡ 1 we
have

qt +
(
v(x)q

)
x = 0

and enriching this with a Lipschitz-continuous (in space) velocity λ :ΩT → (this is covered by our
later analysis on discontinuous ODEs in Section 2), for the Cauchy problem we obtain

qt +
(
v(x)λ(t , x)q

)
x = 0.

This is supplemented by an initial condition in L∞ that there is a unique weak solution. Sur-
prisingly, linear conservation laws with discontinuous velocities have not been considered inten-
sively. We refer the reader to [51], where the author studies

ρt +
(

f (t , x)ρ
)

x
= 0

with

• f continuous and nonnegative,
• f of such a form that the solutions to the corresponding ODEs do not blow up in finite

time (for instance assuming that f can grow at most linearly with regard to the spatial
variable)

• the sets of points where f is zero are somewhat “nice” (see [51, (A1)-(A3), p. 3138]).

However, this setup differs from our considered class of equations as we allow L∞ regularity
and have no sign restrictions for the Lipschitz-part. [18] obtains results for velocities of regularity
L∞ with the additional assumption that div( f ) ∈ L∞. The second assumption is weak for multi-
D equations as considered in that publication. However, in the scalar case this assumption
boils down to a Lipschitz-continuous velocity field, so the presented result can be seen as a
generalization in the 1D case. The multi-D case is also considered in [9, 10] where the velocity
field is assumed to be in BV or admits other Sobolev regularity.

For the characteristics, [93] uses Filippov solutions [57] (see [93, Eq. 2.5 and Eq. 2.6]) and con-
siders the transport equation (not the conservation law) with a one-sided Lipschitz-continuous
velocity processing unique solutions when assuming a continuous initial datum due to the
uniqueness of backward characteristics in the sense of Filippov [56]. Similar results are obtained
in [22]. Finally, [36] considers again the multi-D case and states conditions on the vector field
for existence and uniqueness of solutions. Thereby, the vector field is assumed to be continuous
and for existence and uniqueness a “weakened” Lipschitz-condition based on the modulus of
continuity is required. Solutions are thought of in the space of signed Borel measures.
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1.2. Basic definitions

In this section, we rigorously state the problems that we will tackle. Starting with the discontinu-
ous IVP, the problem reads as:

Definition 1 (Discontinuous IVP). Let T ∈ R>0 and v ∈ R>0 be given. For a discontinuous
v ∈ L∞(R;R≥v ), a smooth λ ∈ L∞(

(0,T );W1,∞(R)
)

and x0 ∈ R, we consider the following discon-
tinuous IVP

x ′(t ) = v(x(t ))λ(t , x(t )), t ∈ [0,T ]

x(0) = x0.
(3)

Thereby, v is called discontinuous part of the velocity, λ the Lipschitz continuous part of the
velocity and x0 the initial value.

As outlined above, the existence, uniqueness and regularity of solutions to the discontinuous
IVP are strongly related to the existence and uniqueness of solutions to the following nonlocal
conservation law:

Definition 2 (The discontinuous (in space) nonlocal conservation law). Let T ∈ R>0 be given
and ΩT := (0,T ) ×R. For q : ΩT → R, initial datum q0 ∈ L∞(R), Lipschitz-continuous velocity
V ∈W1,∞

loc (R), discontinuous part of the velocity v ∈ L∞(R;R≥v ) with v ∈R>0 and nonlocal weight
γ ∈BV(R;R>0), we call the following Cauchy problem

qt (t , x)+∂x
(
v(x)V

((
γ∗q(t , · ))(x)

)
q(t , x)

)= 0 (t , x) ∈ΩT

q(0, x) = q0(x) x ∈R
a discontinuous nonlocal conservation law.

The stated results can naturally be extended, as outlined in the following Remark 3.

Remark 3 (Generalizations – Extensions). For the sake of a type of “completeness or generality”
of the developed theory, we mention that the results established in this work can be extended to
general nonlocal terms and explicitly space- and time-dependent velocity functions, as well as
balance laws, i.e., it is also possible to obtain the well-posedness of the more general discontinu-
ous nonlocal balance law in (t , x) ∈ΩT

qt (t , x)+∂x
(
v(x)Ṽ

(
t , x,W [q, γ̃](t , x)

)
q(t , x)

)= h
(
t , x, q(t , x),W [q, γ̃](t , x)

)
q(0, x) = q0(x)

W [q, γ̃] :=
∫
R
γ̃(t , x, y)q(t , y)dx,

with Ṽ : [0,T ] × R2 → R also Lipschitz in the explicit spatial variable, γ̃ : [0,T ] × R2 → R≥0

Lipschitz in the second component and TV in the third component (compare [17, 74, 76]), and
h :ΩT ×R2 → R Lipschitz in the third and fourth component and of corresponding regularity in
(t , x) ∈ΩT . We do not go into details here. For smooth kernels, it is even possible to extend results
to measure-valued solutions (for measure-valued initial datum) similarly to [52, 65].

For both problem classes Definitions 1 and 2, we will present proper definitions of solutions in
Definitions 5 and 26 and demonstrate the existence and uniqueness in Theorems 7 and 27. It is
worth underlining once more that in particular for the discontinuous nonlocal conservation law
no Entropy condition is required to obtain uniqueness of weak solutions. This has already been
proven in [74] for Lipschitz-continuous velocities.
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2. Existence, uniqueness and stability of the discontinuous IVP

In this section, we study the existence, uniqueness and stability (with regard to all input param-
eters and functions) of the discontinuous ODE introduced in Definition 1. Let us first recall the
assumptions on the involved datum in the following Assumption 4.

Assumption 4 (Involved datum). For a T ∈R>0 denoting the considered time horizon, we assume

• Discontinuous part: v ∈ L∞(
R;R≥v

)
with v ∈R>0,

• Lipschitz-continuous part: λ ∈ L∞(
(0,T );W1,∞(R)

)
.

For the considered class of discontinuous initial value problems in Definition 1, we must first
define what we mean by a solution. This becomes clear when recalling that v ◦x is not necessarily
measurable for x ∈ W1,∞((0,T )) since x could be locally constant and, as a L∞ function, v does
not possess significantly “good representatives” with respect to the Lebesgue measure. However,
due to the positive lower bound on v and its time-independence, we can divide the strong form
of solution by v and by integration obtain the following integral definition of a solution:

Definition 5 (Solutions for Definition 1). For x0 ∈R and the data as in Assumption 4, a solution
to the discontinuous IVP in Definition 1 is defined as a function x ∈C([0,T ]) such that∫ x(t )

x0

1

v(y)
dy =

∫ t

0
λ(s, x(s))ds, ∀ t ∈ [0,T ]. (4)

A solution is denoted by X [v,λ](x0; · ), with x0 indicating the considered initial datum at time t = 0,
v the discontinuous part of the velocity and λ the Lipschitz-continuous part.

Remark 6 (Reasonability of Definition 5). The definition of solutions in (4) is more usable than
the “classical” Carathéodory introduced later. It enables the existence – and later also stability
properties – to be tackled without prescribing additional regularity assumptions on x (such as
measurability of v(x( · ))λ( · , x( · ))). Compare in particular with Definition 8.

The introduced notation X [v,λ](x0; · ) is later justified in Section 2.1, where we prove existence
and uniqueness of solutions.

2.1. Existence/Uniqueness of solutions and their relation to “classical” Carathéodory and
Filippov solutions

In the following Theorem 7, we prove the existence and uniqueness of solutions by decomposing
the problem into two problems that possess “nicer” properties and can be studied separately:

Theorem 7 (Existence and uniqueness of solution in Definition 5). Let T ∈ R>0 be given and
Assumption 4 hold. Then, in the sense of Definition 5 there exists a unique solution

X [v,λ](x0; · ) ∈W1,∞((0,T )).

In addition, defining the following surrogate expression

Z [v](x0;∗) :≡
∫ ∗

x0

1

v(s)
ds on R, (5)

it holds that R ∋ x 7→Z [v](x0; x) is invertible for all (x0, v) ∈ R×L∞(
R;R≥v

)
and for the inverse we

write Z [v]−1(x0; · ) :R→R.
Finally, calling C [λ,Z [v](x0; · )] the solution c of the integral equation

c(t ) =
∫ t

0
λ
(
s,Z [v]−1(x0;c(s))

)
ds, ∀ t ∈ [0,T ], (6)

the identity “X ≡Z −1 ◦C ” holds – in full notation –

X [v,λ](x0; · ) ≡Z [v]−1(x0;C [λ,Z [v](x0;∗)]( · )) on [0,T ]. (7)
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Proof. (5) is well defined and by construction Z [v](x0; · ) ∈W1,∞
loc (R) so that

1

∥v∥L∞(R)
≤ ∂xZ [v](x0; x) ≤ 1

v
∀ x ∈R (8)

and thus ∂3Z [v](x0; · ) ∈ L∞(R). Additionally, as x 7→ Z [v](x0; x) is strictly monotone, the inverse
mapping Z [v]−1(x0; · ) is well defined and, thanks to (8),

Z [v]−1(x0; · ) ∈W1,∞
loc (R) : ∂3Z [v]−1(x0; · ) ∈ L∞(R).

Next, considering the definition of C [λ,Z [v](x0; · )] in (6) and the fact that λ ∈
L∞(

(0,T );W1,∞(R)
)
, the composition x 7→ λ

(
s,Z [v]−1(x0; x)

)
, is – thanks to the previous esti-

mates – globally Lipschitz-continuous for each (s, x0) ∈ (0,T )×R and thus, there exists a unique
Carathéodory solution (see for instance [39]) C [λ,Z [v](x0; · )] ∈W1,∞((0,T )).

We now need to check whether the X [v,λ](x0; · ) ∈ W1,∞((0,T )) as in (7) indeed satisfies
Definition 5. We have by the very definition of X [v,λ](x0; · ) ∀ t ∈ [0,T ]

C [λ,Z [v](x0; · )](t ) =
∫ t

0
λ
(
s,Z [v]−1(x0;c(s))

)
ds =

∫ t

0
λ
(
s,X [v,λ](x0; s)

)
ds

and, as Z [v](x0; · )◦X [v,λ](x0; · ) ≡C [λ,Z [v](x0; · )], by assumption

Z [v]
(
x0;X [v,λ](x0; t )

)= ∫ X [v,λ](x0;t )

x0

1

v(s)
ds,

which is the definition of a solution in Definition 5. This demonstrates the existence of solutions.
For the uniqueness, assume that we have two solutions X ,X̃ ∈ C([0,T ]) satisfying Definition 5.
Then, the difference satisfies∫ X (t )

X̃ (t )

1

v(z)
dz =

∫ t

0
λ
(
s,X (s)

)−λ(
s,X̃ (s)

)
ds ∀ t ∈ [0,T ]

and, as λ ∈ L∞(
(0,T );W1,∞(R)

)
, we obtain

|X (t )−X̃ (t )|
∥v∥L∞((0,T ))

≤
∣∣∣∫ X (t )

X̃ (t )

1

v(z)
dz

∣∣∣= ∣∣∣∫ t

0
λ
(
s,X (s)

)−λ(
s,X̃ (s)

)
ds

∣∣∣
≤ ∥∂2λ∥L∞((0,T );L∞(R))

∫ t

0
|X (s)−X̃ (s)|ds.

Applying Grönwall’s inequality [101, Chapter I, III Gronwall’s inequality] yields

|X (s)−X̃ (s)| = 0, ∀ s ∈ [0, t ],

thus the two solutions must be identical. This concludes the proof. □

In the following, we show that the unique solution of the discontinuous IVP in Definition 1 in
the sense of Definition 5 is also a “classical” Carathéodory solution in the following sense:

Definition 8 (Carathéodory solutions for Definition 1). Let Assumption 4 hold. Then, for the
initial datum x0 ∈ R we call a function X ∈ C([0,T ]) a Carathéodory solution for Definition 1 iff
t 7→ v

(
X (t )

)
λ
(
t ,X (t )

)
is Lebesgue measurable and

X (t ) = x0 +
∫ t

0
v
(
X (s)

)
λ
(
s,X (s)

)
ds, ∀ t ∈ [0,T ]. (9)

Notice the difference to the usual definition of a Carathéodory solution, where the measura-
bility of the integrand is given by construction (either by being continuous or having a right hand
side which is strictly bounded away from zero so that solutions are strictly monotone).

Lemma 9 (Equivalence Carathéodory solution and solutions as in Definition 5). There exists a
unique Carathéodory solution as in Definition 8 iff there exists a unique solution as in Definition 5.
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Proof. We start by showing that solutions in the sense of Definition 5 are also Carathéodory
solutions as in Definition 8. Similar to the steps in Theorem 7, we will show in the following that

Z [v]−1(x0; s) = x0 +
∫ s

0
v
(
Z [v]−1(x0;u)

)
du ∀ s ∈R (10)

holds which is crucial in the later part of proof. To this end, chose s ∈ R (for the sake of briefer
notation we write Z ,Z −1 and suppress the dependencies on v and x0) and derive

Z −1(Z (s)) = x0 +
∫ ∫ s

x0
1

v(x) dx

0
v
(
Z −1(u)

)
du. (11)

Substituting Z −1(u) = w (which is possible according to (8)),

= x0 +
∫ s

x0

v(w)Z ′(w)dw = x0 +
∫ s

x0

dw = s. (12)

As this holds for all s ∈ [0,T ], we have proven that Z [v]−1 indeed satisfies (10).
To show that X , which is constructed via Theorem 7, satisfies (9), we next apply Z −1 to (4)

and obtain

Z −1
(∫ t

0
λ
(
s,X (s)

)
ds

)
= x0 +

∫ ∫ t
0 λ

(
s,X (s)

)
ds

0
v
(
Z −1(u)

)
du = x0 +

∫ C (t )

C (0)
v
(
Z −1(u)

)
du.

Substituting u =C (τ) for τ ∈R chosen accordingly,

= x0 +
∫ t

0
v
(
Z −1(C (τ))

)
C ′(τ)dτ

(∗)= x0 +
∫ t

0
v(X (τ))λ(τ,X (τ))dτ.

As the left hand side of (4) is given by Z ◦X in terms of Z (as defined in (5)), by applying Z −1 we
obtain

Z −1(Z (X (t ))
)=X (t ), ∀ t ∈ [0,T ].

Thus, if X is a solution in the sense of Definition 5, it is also a Carathéodory solution. For showing
the equivalence we mention that all of the previous manipulations are equivalent transforms,
and we can start with the identity (9) and go backwards in the presented proof. In detail the only
crucial step is in (∗): Let X be a Carathéodory solution as defined in Definition 8. We chose

C ′(t ) =λ(t ,X (t )) =⇒ C (t ) =
∫ t

a
λ(s,X (s))ds

with a ∈R arbitrary but fixed. Then we need to identify Z s.t. the following holds∫ t

b
λ(s,X (s))ds =Z (X (t )) ∀ t ∈ [0,T ].

As we want to determine Z we assume Z being differentiable and get – recalling that λ is
Lipschitz and X as a Carathéodory solution weakly differentiable – by differentiating both sides

λ(t ,X (t ))ds =Z ′(X (t ))v(X (t ))λ(t ,X (t )) t ∈ [0,T ] a.e.

and thus can chose Z ′ ≡ 1
v . The remaining steps consist then of going further backwards in the

proof. □

Finally, we want to close the gap to Filippov solutions [56,57]. We first define what we mean by
Filippov solutions, sticking with [57, 2: Definition of the solution]:

Definition 10 (Filippov solution for a differential equation). We call a function X ∈W1,1((0,T ))
for T ∈R>0 a Filippov solution of the discontinuous initial value problem in Definition 1 iff

X (0) = x0

X ′(t ) ∈ K [ f (t , · )](X (t )), ∀ t ∈ [0,T ] a.e.
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with f ≡ v ·λ, K being defined as

K [ f (t , · )] := ⋂
δ∈R>0

⋂
N⊂R:
µ(N )=0

conv f
(
t ,Bδ(X (t )) \ N

)
, (13)

where µ denotes the Lebesgue measure on R and conv the convex hull.

Given this definition, we have the existence of Filippov solutions according to the following

Theorem 11 (Existence of solutions). Given Assumption 4, there exists a Filippov solution as in
Definition 10.

Proof. This is a direct consequence of [57, Theorem 4, Theorem], recalling that v ·λ is essentially
measurable and essentially bounded and thus satisfies Condition B as well as the boundedness
of any solutions on any finite time horizon. □

In the next Lemma 12, we make a connection between the solutions in Definition 5 and general
Filippov solutions.

Lemma 12 (Relation of Definition 5 to Filippov solutions). Solutions in the sense of Definition 5
are Filippov solutions as defined in Definition 10.

Proof. According to Theorem 7, the solution x ∈ C([0,T ]) to Definition 5 exists and it is both
unique and Lipschitz. Thus, x ∈W1,1((0,T )). As Definition 5 is invariant with regard to the choice
of representative of f in the Lebesgue measure, we can choose f̃ as follows (ε ∈R>0):

f̃ (t , · ) ≡ lim
ε→0

1

2ε

∫ ·+ε

·−ε
f (t , y)dy

for t ∈ [0,T ] a.e.. According to the Lebesgue differentiation theorem [59, 3.21 The Lebesgue
Differentiation Theorem], we have f ≡ f̃ a.e.. As it also holds that⋂

N⊂R:
µ(N )=0

conv f̃
(
t ,Bε(x(t )) \ N

)
=

[
ess-inf
y∈Bε(x)

f̃ (t , y) , ess-sup
y∈Bε(x)

f̃ (t , y)

]
,

we can estimate uniformly in ε ∈R>0 for x ∈R
1

2ε

∫ x+ε

x−ε
f̃ (t , y)dy ∈

[
ess-inf
y∈Bε(x)

f̃ (t , y) , ess-sup
y∈Bε(x)

f̃ (t , y)

]
and obtain

X ′(t ) ∈ K
[

f̃ (t , · )](X (t )) ∀ t ∈ [0,T ] a.e.,

with K as in (13). This is the definition of a Filippov solution, concluding the proof. □

However, uniqueness results for Filippov solutions are only presented for right hand sides of
specific structure ([57, Theorem 10] (too strong for our setup)) or for autonomous right hand
sides [58] where the famous Osgood condition plays a crucial role [91]. We detail this in the
following for our setup, but need to restrict ourselves to the fully autonomous case (as this is
where [58] is applicable). We thus assume that the Lipschitz part of the velocity, i.e. λ, does not
explicitly depend on time.

Theorem 13 (Uniqueness of Filippov solutions for scalar autonomous discontinuous ODEs as
presented in [58]). Let Assumption 4 hold. Moreover, let λ̃ ∈ W1,∞(R) : λ(t , · ) ≡ λ̃ on R (i.e., the
discontinuous IVP is autonomous) and{

x ∈R : λ̃(x) ̸= 0 and v discontinuous at x
}

have Lebesgue measure zero. Then, the Filippov solution to the discontinuous IVP in Definition 1
is unique.
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Proof. We take advantage of the result in [58] and repeat what is stated there: Recall the definition
of K in (13) and assume that

• the set {
x ∈R : 0 ∉ K [v · λ̃](x) and v · λ̃ discontinuous at x

}
⊂R

has Lebesgue measure zero,
• for every x ∈Rwith 0 ∈ K [v · λ̃](x), the function

g [v · λ̃] :

{
R 7→R

z 7→ limδ→0 ess-supy∈Bδ(x)

(
(v · λ̃)(y + z)sgn(z)

)+ (14)

is an Osgood function, i.e. g [v · λ̃] is non-negative, Borel measurable, and for a δ ∈R>0 satisfies∫ 0

−δ̃
1

g [v · λ̃](u)
du =∞=

∫ δ̃

0

1

g [v · λ̃](u)
du ∀ δ̃ ∈ (0,δ]. (15)

Then there exists a unique Filippov solution to the considered discontinuous IVP.

Both conditions are satisfied as we will detail in the following:

• The first point is satisfied by construction as f ≡ v · λ̃, λ̃ is Lipschitz and v ≧ v .
• For the second point, we first recall that the definition of solution does not vary with respect

to the representative (here f ) in the Lebesgue-measure. Instead of f ≡ v · λ̃, we can therefore
choose a Borel measurable function v̂ ∈ L∞(R;R≥v ), with

v(x) = v̂(x), x ∈R a.e.

(For this, use Lusin’s theorem [59, 44. Lusin’s Theorem, p. 64] to approximate v by a continuous
function up to a set of arbitrarily small Lebesgue measure). Then, the corresponding function
g [v̂ · λ̃] defined in (14) is by construction non-negative and Borel measurable. We now prove
the so-called Osgood condition in (15). To accomplish this, we estimate as follows for δ̃ ∈ (0,δ)
and z ∈R:

ess-sup
y∈Bδ(x)

(
(v · λ̃)(y + z)sgn(z)

)+ ≤ ∥v̂∥L∞(R) ess-sup
y∈Bδ(x)

∣∣∣λ̃(x)+
∫ y+z

x
λ̃′(s)ds

∣∣∣
and as λ(x) = 0 as we are in the case 0 ∈ K [v · λ̃(x)] and v̂ ≧ v

≤ ∥v̂∥L∞(R)|z +δ|∥λ̃′∥L∞(R).

Letting δ→ 0, for z ∈Rwe obtain

g [v̂ · λ̃](z) ≤ ∥v̂∥L∞(R)∥λ̃′∥L∞(R)|z|,
from which (15) follows. This concludes the proof. □

The previous Theorem 13 has made a connection between our discontinuous IVP and Filippov
theory, and has established the necessary uniqueness for the fully autonomous IVP. However,
it does not directly apply to the general non-autonomous case. More importantly, although
continuous dependency of the solution with regard to the input datum might be obtained, we
require rather strong stability or continuity results, which can be obtained with our definition of
solution Definition 5 by taking advantage of the surrogate system in Theorem 7. This is detailed
in the next section.
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2.2. Stability of the solutions with respect to initial datum and velocities

In this section, we deal with the stability of the discontinuous IVP introduced in Definition 1.
To this end, we use the surrogate system introduced in Theorem 7 and study its components (5)
and (6) in detail.

Proposition 14 (Auxiliary stability results). Given Assumption 4 and T ∈ R>0, the surrogate
ODEs defined in (5) and (6) are stable with respect to the initial datum, smooth velocity λ and
discontinuous velocity v, i.e., the following stability results hold: For all (u, x0, x̃0, v, ṽ) ∈ R3 ×
L∞(

R;R≥v
)2 :∣∣Z [v0](x0;u)−Z [ṽ0](x̃0;u)

∣∣≤ 1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1((min{x0,x̃0,u},max{x0,x̃0,u})) (16)

∀ t ∈ [0,T ] ∀ (λ, λ̃, x0, x̃0, v, ṽ) ∈ L∞(
(0,T );W1,∞(R)

)2 ×R2 ×L∞(
R;R≥v

)2

∣∣C [
λ,Z [v0](x0; · )](t )−C

[
λ̃,Z [ṽ0](x̃0; · )](t )

∣∣
≤ et∥v∥L∞(R)L2

(∫ t

0

∥∥λ(s, · )− λ̃(s, · )∥∥L∞(X (x0,v,λ)) ds

+ t∥ṽ∥L∞(R)L2∥Z [v](x0; · )−Z [ṽ](x̃0; · )∥L∞(X (x0,v,λ))

)
(17)

with

L := max
{∥λ∥L∞((0,T );L∞(R)),∥λ̃∥L∞((0,T );L∞(R))

}
L2 := max

{∥∂2λ∥L∞((0,T );L∞(R)),∥∂2λ̃∥L∞((0,T );L∞(R))
}

X (x0, v,λ) := x0 +T ∥v∥L∞(R)∥λ∥L∞((0,T );L∞(R)) · [−1,1] ⊂R.

(18)

Proof. We start by proving (16). To achieve this, recall the definition of Z in (5). From this
definition, we can make the following estimate for u ∈R:∣∣Z [v0](x0;u)−Z [ṽ0](x̃0;u)

∣∣= ∣∣∣∣∫ u

x0

1

v(s)
ds −

∫ u

x̃0

1

ṽ(s)
ds

∣∣∣∣
≤

∣∣∣∣∫ x̃0

x0

1

v(s)
ds

∣∣∣∣+∫ max{x0,x̃0,u}

min{x0,x̃0,u}

∣∣∣∣ v(s)− ṽ(s)

ṽ(s)v(s)

∣∣∣∣ds (19)

≤ 1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1((min{x0,x̃0,u},max{x0,x̃0,u})).

This proves the first claim. For the second, namely the estimate in (17), we first show that

1

∥v∥L∞(R)
|x − x̃| ≤ |Z [v](x0; x)−Z [v](x0; x̃)| ∀ x, x̃ ∈R2. (20)

Recalling again (5) we end up with

|Z [v](x0; x)−Z [v](x0; x̃)| =
∣∣∣∣∫ x

x̃

1

v(s)
ds

∣∣∣∣= ∫ max{x,x̃}

min{x,x̃}

1

v(s)
ds

≥ (
max{x, x̃}−min{x, x̃}

) 1

∥v∥L∞(R)
,

which is exactly (20).
Finally, focusing on (17), we recall the definition of C in (6) as well as that of X (x0, v,λ) in (18)

and thus estimate for t ∈ [0,T ]∣∣∣C [
λ,Z [v](x0, · )](t )−C

[
λ̃,Z [ṽ](x̃0; · )](t )

∣∣∣
=

∣∣∣∣∫ t

0
7λ

(
s,Z [v]−1(x0;C

[
λ,Z [v]

(
x0; · )](s)

))− λ̃(
s,Z [ṽ]−1(x̃0;C

[
λ̃,Z [ṽ](x̃0; · )](s)

))
ds

∣∣∣∣
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≤L2

∫ t

0

∣∣∣Z [v]−1(x0;C
[
λ,Z [v]

(
x0; · )](s)

)−Z [ṽ]−1(x̃0;C
[
λ̃,Z [ṽ](x̃0; · )](s)

)∣∣∣ds

+
∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds

≤L2

∫ t

0

∣∣∣Z [v]−1(x0;C
[
λ,Z [v]

(
x0; · )](s)

)−Z [ṽ]−1(x̃0;C
[
λ,Z [v](x0; · )](s)

)∣∣∣ds (21)

+L2

∫ t

0

∣∣∣Z [ṽ]−1(x̃0;C
[
λ,Z [v]

(
x0; · )](s)

)−Z [ṽ]−1(x̃0;C
[
λ̃,Z [ṽ](x̃0; · )](s)

)∣∣∣ds (22)

+
∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds.

For the term in (22), we now apply (20). As ∥v∥L∞(R) is then an upper bound on the derivative of
Z [v]−1 (recall the estimate in (8)), we obtain

(22) ≤L2∥ṽ∥L∞(R)

∫ t

0

∣∣C [λ,Z [v](x0; · )](s)−C [λ̃,Z [ṽ(x̃0, · )](s)
∣∣ds.

For the term in (21), we get the following estimate by substitution:

(21) ≤L2t
∥∥Z [v]−1(x0;C

[
λ,Z [v](x0; · )])−Z [ṽ]−1(x̃0;C

[
λ,Z [v](x0; · )])∥∥L∞((0,T ))

≤L2t
∥∥Z [v]−1(x0; · )−Z [ṽ]−1(x̃0; · )∥∥L∞((−T ∥λ∥L∞((0,T );L∞(R)),T ∥λ∥L∞((0,T );L∞(R))))

≤L2t
∥∥∗−Z [ṽ]−1(x̃0;Z [v](x0;∗)

)∥∥
L∞(X (x0,v,λ)),

with X (x0, v,λ) defined in (18)

≤L2t
∥∥∥Z [ṽ]−1(x̃0;Z [ṽ](x̃0;∗)

)−Z [ṽ]−1(x̃0;Z [v](x0;∗)
)∥∥∥

L∞(X (x0,v,λ))
.

Applying once more (20), as well as ∥ṽ∥L∞(R), there is then an upper bound on the derivative of
Z [ṽ]−1 when recalling once more (8)

≤L2t∥ṽ∥L∞(R)
∥∥Z [ṽ](x̃0; · )−Z [v](x0; · )∥∥L∞(X (x0,v,λ)).

Thus, all together we obtain∣∣∣C [
λ,Z [v](x0, · )](t )−C

[
λ̃,Z [ṽ](x̃0; · )](t )

∣∣∣
≤L2t∥ṽ∥L∞(R)

∥∥Z [ṽ](x̃0; · )−Z [v](x0; · )∥∥L∞(X (x0,v,λ)) +
∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds

+L2∥ṽ∥L∞(R)

∫ t

0

∣∣C [λ,Z [v](x0; · )](s)−C [λ̃,Z [ṽ(x̃0, · )](s)
∣∣ds.

The claimed inequality in (17) then follows by applying Grönwall’s inequality [101, Chapter I, III
Gronwall’s inequality], concluding the proof. □

Having obtained the previous stability results on the “surrogate system”, we can apply these
results to obtain the stability of solutions to the original discontinuous ODE in Definition 1 in the
sense of Definition 5:

Theorem 15 (Stability for initial datum and velocities). For (x0, x̃0) ∈ R2, (v, ṽ) ∈ L∞(
R;R≥v

)2

and (λ, λ̃) ∈ L∞(
(0,T );W1,∞(R)

)
, the following stability result holds for the corresponding solutions

X as in Definition 5 for all t ∈ [0,T ]:∣∣X [v,λ](x0; t )−X [ṽ , λ̃](x̃0; t )
∣∣

≤ ∥v∥L∞(R)e
t∥v∥L∞(R)L2

∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds

+
(
∥v∥L∞(R)e

t∥v∥L∞(R)L2 tL2 +1
)∥ṽ∥L∞(R)

v

(
|x0 − x̃0|+ 1

v
∥v − ṽ∥L1(Y (x0,x̃0,v,L ))

)
, (23)
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where

L2 := max
{∥∂2λ∥L∞((0,T );L∞(R)),∥∂2λ̃∥L∞((0,T );L∞(R))

}
(24)

L := max
{∥λ∥L∞((0,T );L∞(R)),∥λ̃∥L∞((0,T );L∞(R))

}
(25)

Y (x0, x̃0, v,L ) :=
[

min
{

x0 −T ∥v∥L∞(R)L , x̃0
}
,max

{
x0 +T ∥v∥L∞(R)L , x̃0

}]
(26)

X (x0, v,λ) := x0 +T ∥v∥L∞(R)∥λ∥L∞((0,T );L∞(R)) · [−1,1] ⊂R. (27)

Proof. This is a direct application of the previous stability results for the surrogate system of
ODEs in Proposition 14. We detail the required steps in the following and start by estimating for
t ∈ [0,T ] using (7)∣∣∣X [v,λ](x0; t )−X

[
ṽ , λ̃

]
(x̃0; t )

∣∣∣ (28)

=
∣∣∣Z [v]−1(x0;C [λ,Z [v](x0; · )](t )

)−Z [ṽ]−1(x̃0,C
[
λ̃,Z [ṽ](x̃0; · )](t )

)∣∣∣ (29)

≤
∣∣∣Z [v]−1(x0;C [λ,Z [v](x0; · )](t )

)−Z [v]−1(x0;C [λ̃,Z [ṽ](x̃0; · )](t )
)∣∣∣

+
∣∣∣Z [v]−1(x0;C [λ̃,Z [ṽ](x̃0; · )](t )

)−Z [ṽ]−1(x̃0;C [λ̃,Z [ṽ](x̃0; · )](t )
)∣∣∣,

applying (20) so that we can estimate the derivative of the inverse of Z [v](x0; · ) by ∥v∥L∞(R),

≤ ∥v∥L∞(R)
∣∣C [λ,Z [v](x0; · )](t )−C [λ̃,Z [ṽ](x̃0; · )](t )

∣∣
+

∣∣∣Z [v]−1(x0;C [λ̃,Z [ṽ](x̃0; · )](t )
)−Z [ṽ]−1(x̃0;C [λ̃,Z [ṽ](x̃0; · )](t )

)∣∣∣. (30)

Focusing on the second term, we have with y := Z [v]−1
(
x0;C [λ̃,Z [ṽ](x̃0; · )](t )

)
and thus

Z [v](x0; y) =C [λ̃,Z [ṽ](x̃0; · )](t )

(30) =
∣∣∣y −Z [ṽ]−1(x̃0;Z [v](x0; y))

)∣∣∣. (31)

Applying y =Z [ṽ]−1(x̃0;Z [ṽ](x̃0; y))

=
∣∣∣Z [ṽ]−1(x̃0;Z [ṽ](x̃0; y))−Z [ṽ]−1(x̃0;Z [v](x0; y))

)∣∣∣. (32)

Again using (20) to obtain a Lipschitz-estimate from above for the inverse mapping

≤ ∥ṽ∥L∞(R)|Z [ṽ](x̃0; y)−Z [v](x0; y)|. (33)

Next, estimating y we have by the definitions of Z [v] and C [·,∗] as in (5) and (6) (and by (20) to
once more obtain an upper bound on the Lipschitz constant of Z [v]−1)

|y −x0| =
∣∣Z [v]−1(x0;C [λ̃,Z [ṽ](x̃0; · )](t )

)−Z [v]−1(x0;0
)∣∣

≤ ∥v∥L∞(R)|C [λ̃,Z [ṽ](x̃0; · )](t )| ≤ T ∥v∥L∞(R)∥λ̃∥L∞((0,T );L∞(R)).

In the last estimate we have used the identity for C given by (6), which implies the upper bounds
used. Altogether, this implies that y ∈ X (x0, v, λ̃) with X as in (18). Continuing the estimate, we
have

(30) ≤ (33) = ∥ṽ∥L∞(R)|Z [ṽ](x̃0; y)−Z [v](x0; y)|
≤ ∥ṽ∥L∞(R)∥Z [ṽ](x̃0; · )−Z [v](x0; · )∥L∞(X (x0,v,λ̃)) (34)

and applying the stability estimate in Z in Proposition 14

(16)≤ ∥ṽ∥L∞(R)

(
1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1(Y (x0,x̃0,v,L ))

)
,

with Y as defined in (26).



1736 Alexander Keimer and Lukas Pflug

Continuing the original estimate, we take advantage of the stability in C in (17) and have

(28) ≤ ∥v∥L∞(R)e
t∥v∥L∞(R)L2

∫ t

0

∥∥λ(s, · )− λ̃(s, · )∥∥L∞(X (x0,v,λ)) ds

+∥v∥L∞(R)e
t∥v∥L∞(R)L2 t∥ṽ∥L∞(R)L2

∥∥Z [v](x0; · )−Z [ṽ](x̃0; · )∥∥L∞(X (x0,v,λ))

+∥ṽ∥L∞(R)

(
1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1(Y (x0,x̃0,v,L ))

)
.

Using the stability estimate for Z [ · ] in (16)

≤ ∥v∥L∞(R)e
t∥v∥L∞(R)L2

(∫ t

0

∥∥λ(s, · )− λ̃(s, · )∥∥L∞(X (x0,v,λ)) ds

+ t∥ṽ∥L∞(R)L2

(
1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1(Y (x0,x̃0,v,L )

))
+∥ṽ∥L∞(R)

(
1

v
|x0 − x̃0|+ 1

v2 ∥v − ṽ∥L1(Y (x0,x̃0,v,L ))

)
= ∥v∥L∞(R)e

t∥v∥L∞(R)L2

∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds

+
(
∥v∥L∞(R)e

t∥v∥L∞(R)L2 tL2 +1
)∥ṽ∥L∞(R)

v

(
|x0 − x̃0|+ 1

v
∥v − ṽ∥L1(Y (x0,x̃0,v,L ))

)
.

This is indeed the claimed estimate and thus the proof is concluded. □

The previous result in Theorem 15 gives Lipschitz-continuity for the solution with regard to
the initial datum. As the existence of an explicit solution formula for smooth velocities (v,λ) for
∂3X is important for several later results, we detail it in the following:

Remark 16 (An “explicit” formula for ∂x0X [v,λ](x0; · ) if v is smooth). Let Assumption 4 hold
and also v ∈C1(R) and λ ∈C1([0,T ]×R). Then we have for (x0, t ) ∈R×(0,T ) a solution formula for
the derivative of X [v,λ](x0, · ) with regard to x0 ∈R, namely for t ∈ [0,T ]

∂3X [v,λ](x0; t ) = v(X [v,λ](x0; t ))

v(x0)
e

∫ t
0 ∂2λ

(
s,X [v,λ](x0;s)

)
v
(
X [v,λ](x0;s)

)
ds . (35)

To show this, we can differentiate through the integral form of the – now – continuously differen-
tiable IVP in Definition 1. We thus take the derivative of X with regard to x0 and have – following
the Carathéodory solution in Definition 8 – for t ∈ [0,T ]

∂3X [v,λ](x0; t ) = 1+
∫ t

0

(
v ′(X [v,λ](x0; s))λ(s,X [v,λ](x0; s))

+ v(X [v,λ](x0; s))∂2λ(s,X [v,λ](x0; s))
)
∂3X [v,λ](x0; s)ds, (36)

which we can explicitly solve to obtain

∂3X [v,λ](x0; t ) = e
∫ t

0 a(s)+v(X [v,λ](x0;s))∂2λ(s,X [v,λ](x0;s))ds

with a(s) := v ′(X [v,λ](x0; s))λ(s,X [v,λ](x0; s)). Focusing on the first factor we have

e
∫ t

0 a(s)ds = e
∫ t

0 v ′(X [v,λ](x0;s))
v(X [v,λ](x0;s))
v(X [v,λ](x0;s))λ(s,X [v,λ](x0;s))ds

and by Definition 8, i.e. ∂4X [v,λ]( · ;∗) ≡ v
(
X [v,λ]( · ;∗)

)
λ
(∗,X [v,λ]( · ;∗)

)
= e

∫ t
0

v ′(X [v,λ](x0;s))
v(X [v,λ](x0;s)) ∂4X [v,λ](x0;s)ds = e

[
ln

(
v
(
X [v,λ](x0;s)

))]s=t

s=0 = v
(
X [v,λ](x0; t )

)
v(x0)

.

In the latter manipulation, we also employed the fact that, according to Definition 8,
X [v,λ](x0;0) = x0. Together with (36), the solution formula for ∂3X in (35) follows. Although the
solution formula in (35) does not require any regularity on the derivative of v , there is a problem



Alexander Keimer and Lukas Pflug 1737

in its interpretation if ∂2λ and v are not continuous in the time integration in the exponent. For
instance, assume that the characteristic curve X [v,λ](x0; · ) is constant over a small time horizon.
It is not clear how to interpret the integral in (35) over this specific time horizon.

To obtain an improved estimate for ∂3X , we take advantage of Remark 16 for smooth datum
(v,λ) and use an approximation argument. This is performed in the following Corollary 17:

Corollary 17 (Improved bounds on the Lipschitz constant of X ). Let velocities v,λ satisfy
Assumption 4. Then, the solution of the discontinuous IVP as in Definition 5 satisfies for all
(t , x0, x̃0) ∈ [0,T ]×R2

v

∥v∥L∞(R)
e−tL2∥v∥L∞(R) ≤ |X [v,λ](x0; t )−X [v,λ](x̃0; t )|

|x0 − x̃0|
≤ ∥v∥L∞(R)

v
etL2∥v∥L∞(R) (37)

with L2 := ∥∂2λ∥L∞((0,T );L∞(R)).

Proof. We recall the surrogate system in (5) and (6), use the approximation result in Corollary 20
with vε,λε smoothed, and assume w.l.o.g. x0 > x̃0. Then, we can estimate for t ∈ [0,T ]

X [v,λ](x0; t )−X
[
v,λ

]
(x̃0; t )

≥X [vε,λε](x0; t )−X
[
vε,λε

]
(x̃0; t )−

∣∣∣X [v,λ](x0; t )−X
[
vε,λε

]
(x0; t )

∣∣∣
−

∣∣∣X [vε,λε](x̃0; t )−X
[
v,λ

]
(x̃0; t )

∣∣∣.
According to Corollary 20, the last two terms in the latter estimate vanish if ε→ 0. So we only
focus on the first term and continue – for given ε ∈R>0 – the estimate

X [vε,λε](x0; t )−X
[
vε,λε

]
(x̃0; t ) ≥ inf

x∈R
∂3X [vε,λε](x; t )(x0 − x̃0). (38)

As X [vε,λε] is the classical solution of an ODE with a smooth right hand side in space, the
“explicit” solution formula for ∂3X in Remark 16, (35), applies and we have

(38) ≥ (x0 − x̃0) inf
y∈R

vε(X [vε,λε](y ; t ))

vε(y)
e

∫ t
0 ∂2λε

(
u,X [vε,λε](y ;u)

)
vε

(
X [vε,λε](y ;u)

)
du

≥ (x0 − x̃0)
v

∥v∥L∞(R)
exp

(
− t∥∂2λ∥L∞((0,T );L∞(R))∥v∥L∞(R)

)
.

Here we have also used the fact that it holds by construction

∥∂2λε∥L∞((0,T );L∞(R)) ≤ ∥∂2λ∥L∞((0,T );L∞(R)), v ≤ vε(x) ≤ ∥v∥L∞(R) ∀ x ∈R a.e..

Letting ε→ 0 we obtain the lower bound when also taking into account the previous arguments
on the approximation. For the upper bound, almost the same arguments can be made. □

In the following example, we illustrate the obtained result by means of numerics.

Example 18 (Numerical illustration of the results for X and ∂3X ). We consider the following
data

v ≡ sgn(sin(π∗−1))+2, λ( · ,∗) ∈ {1, 1−∗, cos(2π · )}, x0 ∈ {−1,−0.5,0}

and solve the discontinuous initial value problem in Definition 1 by an explicit Runge-Kutta
scheme [84, 97] with adaptive time stepping. As can be seen in Figure 1, the numerical approxi-
mations are highly accurate as the blue circles (which represent the exact value at the considered
time) match the blue line. In the different cases, the impact of the discontinuities that accumulate
at x = 0 can be observed. The pictures on the right illustrate the finite difference approximation
of ∂3X . The solid lines represent the derived bounds, and the dashed lines are the named nu-
merical approximations. Clearly, these bounds are satisfied. It is worth mentioning that the green
lines represent the bounds for the blue and yellow cases and that these estimates are somewhat
sharp.
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Figure 1. Left: Numerical approximation of the solutions of the discontinuous IVP for v ≡
sgn(sin(π∗−1))+2 andλ≡ 1 (blue)λ( · ,∗) ≡ 1−∗ (red) andλ( · ,∗) ≡ cos(2π · ) (yellow), as well
as initial datum x0 ∈ {−1,−0.5,0} (dash-dotted, dashed and solid respectively), over time.
The blue circles denote analytical solutions for the autonomous and piecewise constant
case, i.e. λ ≡ 1, showing the high accuracy of the numerical approximation. Right: Finite
difference analog to Corollary 17 (thin dashed lines) and the bounds derived therein (thick
solid lines; solid green lines for the blue and yellow case).

Though not a classical stability result, the result presented in the following Remark 19 will
enable us later in Section 2 to obtain a more general approximation result when measuring the
differences in the discontinuous velocities in a weak topology.

Remark 19 (Stability of the solution for v close in a weak topology). Given the assumptions of
Theorem 15, the difference in the characteristics can actually be estimated for t ∈ [0,T ] as∣∣X [v,λ](x0; t )−X [ṽ , λ̃](x̃0; t )

∣∣
≤ ∥v∥L∞(R)e

t∥v∥L∞(R)L2

∫ t

0
∥λ(s, · )− λ̃(s, · )∥L∞(X (x0,v,λ)) ds

+
(
∥v∥L∞(R)e

t∥v∥L∞(R)L2 tL2 +1
)∥ṽ∥L∞(R)

v
|x0 − x̃0|

+
(
∥v∥L∞(R)e

t∥v∥L∞(R)L2 tL2 +1
)∥ṽ∥L∞(R)

v2

∣∣∣∣∫
Y (x0,x̃0,v,L )

v(s)− ṽ(s)ds

∣∣∣∣, (39)

with Y (x0, x̃0, v,L ), X (x0, v,λ) as in (26). The proof consists of improving the estimate (19) and
using this estimate in Theorem 15, in particular after (34).

This result is significantly stronger than the result in Theorem 15 as the term v−ṽ goes into the
estimate integrated and not in “norm difference”. The estimate is not as canonical as a classical
L1-norm estimate, but is required – particularly in Section 3 in Theorem 28, a stability result with
regard to the input datum.

The previous stability result in Theorem 15 and Remark 19 enables us to approximate the
discontinuous IVP by a sequence of continuous IVPs:

Corollary 20 (Approximating the discontinuous IVP by a smooth IVP). Let v ∈ L∞(
R;R≥v

)
and

λ ∈ L∞(
(0,T );W1,∞(R)

)
be given. Take

{vε :≡φε∗ v}ε∈R>0 ⊂C∞(R)∩L∞(
R;R≥v

)
,

{λε :≡φε∗λ(t , · )}ε∈R>0 ⊂C∞(R)∩W1,∞(R) ∀ t ∈ [0,T ] a.e.



Alexander Keimer and Lukas Pflug 1739

with {φε}ε∈R>0 ⊂C∞(R) the standard mollifier as in [86, Remark C.18, ii]. Then, for the solutions X

to the corresponding discontinuous IVP as in Definition 5, it holds

lim
ε→0

∥∥X [v,λ]−X [vε,λε]
∥∥

L∞((0,T );L∞(R)) = 0.

Proof. Thanks to the used mollifier we have that

lim
ε→0

sup
y∈R

∣∣∣∣∫ y

0
vε(x)− v(x)dx

∣∣∣∣= 0 and lim
ε→0

∥λε−λ∥L∞((0,T );L∞(R)) = 0 (40)

(where the second part follows directly by[86, Theorem 13.9 & Remark 13.11]). We prove the first
approximation result. To that end, let y ∈R be given. We can estimate for ε ∈R>0∣∣∣∣∫ y

0

(
v ∗φε

)
(x)− v(x)dx

∣∣∣∣= ∣∣∣∣∫ ε

−ε
φε(z)

(∫ z+y

z
v(x)dx −

∫ y

0
v(x)dx

)
dz

∣∣∣∣
=

∣∣∣∣∫ ε

−ε
φε(z)

(
−

∫ z

0
v(x)dx +

∫ z+y

y
v(x)dx

)
dz

∣∣∣∣
≤ 2

∫ ε

−ε
φε(z)|z|∥v∥L∞(R) dz ≤ 2ε∥v∥L∞(R).

As this is uniform in y we indeed obtain the claim in (40). Thus, we can recall Remark 19 and
obtain for given x0 ∈R and x̃0 = x0 and t ∈ [0,T ]∣∣X [v,λ](x0; t )−X [vε,λε](x0; t )

∣∣
≤ ∥v∥L∞(R)e

t∥v∥L∞(R)L2

∫ t

0
∥λ(s, · )−λε(s, · )∥L∞(X (x0,v,λ)) ds

+
(
∥v∥L∞(R)e

t∥v∥L∞(R)L2 tL2 +1
)∥vε∥L∞(R)

v2

∣∣∣∣∫
Y (x0,x0,v,L )

v(s)− ṽε(s)ds

∣∣∣∣, (41)

with

Y (x0, x0, v,L ) = x0 +T ∥v∥L∞(R)L · [−1,1]

X (x0, v,λ) = x0 +T ∥v∥L∞(R)∥λ∥L∞((0,T );L∞(R)) · [−1,1] ⊂R
as in (27). Making this uniform in x0 and t , we have∥∥X [v,λ]−X [vε,λε]

∥∥
L∞((0,T );L∞(R))

≤ ∥v∥L∞(R)e
T ∥v∥L∞(R)L2 T ∥λ−λε∥L∞((0,T );L∞(X (x0,v,λ)))

+
(
∥v∥L∞(R)e

T ∥v∥L∞(R)L2 T L2 +1
)∥v∥L∞(R)

v2 sup
y∈R

∣∣∣∣∫ y+T ∥v∥L∞(R)L

y−T ∥v∥L∞(R)L
v(s)− ṽε(s)ds

∣∣∣∣.
For ε → 0, the last two terms go to zero thanks to (46). Thus, we have shown the claimed
approximation result. □

In the following remark we explain why the result in Theorem 15 needs to be strengthened by
a regularity result connecting the dependency of X with the initial datum and the considered
time.

Remark 21 (∂3X [v,λ]( · , t ) as a function). Thanks to Theorem 15, the mapping y 7→
∂yX [v,λ](y, t ) is well-defined for each t ∈ [0,T ] in the sense that we have by Theorem 15
that X [v,λ](y, t ) is Lipschitz with regard to y . Thus for all t ∈ [0,T ] it holds that

X [v,λ]( · , t ) ∈W1,∞
loc (R) : ∂3X [v,λ]( · , t ) ∈ L∞(R)

(also compare with Remark 16).
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However, the regularity discussed in Remark 21 does not tell us anything about how the
solution changes over time. As we later require a continuity in time, the most natural choice in
space for this continuity to hold is L1

loc. Then, the continuity can be proven under no additional
assumptions on the discontinuous velocity. This is detailed and shown in the Section 2.3, and in
particular in Proposition 23.

2.3. Time-continuity/properties of the derivative of the solutions with respect to the initial
datum in L1

loc(R)

As previously mentioned, in this section we study the regularity of ∂3X in time when measuring
space in L1

loc(R). This is particularly important for our later analysis of the discontinuous nonlocal
conservation law in Definition 2 (see Section 3). Before detailing the claimed continuity, we
require a convergence result for a composition of functions in L1

loc(R) with locally Lipschitz-
continuous functions.

Lemma 22 (Convergence of a composition of sequences of functions). Let
{

fε
}
ε∈R>0

⊂ L1
loc(R) ∋

f be given, as well as {gε}ε∈R>0 ⊂W 1,∞
loc (R) ∋ g so that there exists C ∈R>0 for which for all ε ∈R>0 it

hold that C ≤ g ′
ε. Then, it holds that

lim
ε→0

∥ fε− f ∥L1
loc(R) = 0 = lim

ε→0
∥gε− g∥L∞

loc(R) =⇒ lim
ε→0

∥ fε ◦ gε− f ◦ g∥L1
loc(R) = 0. (42)

Proof. Let X ⊂ R be open and bounded. With the standard mollifier as in [86, Remark C.18, ii]{
ψδ

}
δ∈R>0

⊂C∞(R) we estimate as follows:

∥ fε ◦ gε− f ◦ g∥L1
loc(X ) ≤ ∥ fε ◦ gε− f ◦ gε∥L1

loc(X ) +∥ f ◦ gε− ( f ∗ψδ)◦ gε∥L1
loc(X )

+∥( f ∗ψδ)◦ gε− ( f ∗ψδ)◦ g∥L1
loc(X ) +∥( f ∗ψδ)◦ g − f ◦ g∥L1

loc(X ).

Letting ε→ 0, the first term goes to zero due to the uniform Lipschitz bound of gε from below.
The third term converges to zero by the dominated convergence [59, 2.24 The Dominated
Convergence Theorem]. Eventually, second and fourth term vanish for δ→ 0 as ψδ is a standard
mollifier. □

In the following Proposition 23, we present the main result of this section, the continuity
of ∂3X in time when measuring space in L1

loc. To this end, we take advantage of the derived
solutions formula in Remark 16 for smooth velocities and the stability of solutions X with regard
to different velocities (see Theorem 15).

Proposition 23 (Stability spatial derivative of X in time assuming TVloc regularity in v). Given
x0 ∈ R and (v,λ) ∈ L∞(R;R≥v )×L∞(

(0,T );W1,∞(R)
)

as in Assumption 4, then, for X [v,λ](x0; · ) as
in Definition 5, it holds that

[0,T ] ∋ t 7→ (
R ∋ y 7→ ∂yX [v,λ](y, t )

) ∈C
(
[0,T ];L1

loc(R)
)
,

i.e.
lim
t→t̃

∥∥∂3X [v,λ]( · ; t )−∂3X [v,λ]( · ; t̃ )
∥∥

L1
loc(R) = 0.

In addition, if we have

v ∈TVloc(R) which is equivalent to |v |TV(Ω) <∞ ∀Ω⊂R compact,

we obtain Lipschitz-continuity in time, i.e., the following estimate holds for all (t , t̃ ) ∈ [0,T ]2 and
∀ X ⊂R open and bounded:

∥∂3X [v,λ]( · ; t )−∂3X [v,λ]( · ; t̃ )∥L1(X )

≤
|t − t̃ |∥v∥2

L∞(R)e
T L2∥v∥L∞(R)

v

(
L2|X |+

∥v∥2
L∞(R)∥L ∥

v
eT L2∥v∥L∞(R) |v |TV(X+∥v∥L∞(R)T L (−1,1))

)
,
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with

L := ∥λ∥L∞((0,T );L∞(R)), L2 := ∥∂2λ∥L∞((0,T );L∞(R)). (43)

Proof. We show the claim by a finite difference approximation in the initial value and approx-
imate the discontinuous velocity v by a smoothed velocity, as well as the Lipschitz-continuous
velocity λ by a smoothed velocity. Now, let (ε,h) ∈ R2

>0 be given, in the notation suppress the de-
pendency of x with regard to the velocities, i.e., for now write (recall Definition 5)

x :≡X [v,λ] and xε :≡X [vε,λε] on R× (0,T ).

Consider for X ⊂R compact and (t , t̃ ) ∈ [0,T ]2:

∥∂1x( · ; t̃ )−∂1x( · ; t )∥L1(X ) =
∫

X
lim
h→0

∣∣∣∣ x(z +h; t̃ )−x(z; t̃ )

h
− x(z +h; t )−x(z; t )

h

∣∣∣∣dz (44)

= lim
h→0

∫
X

∣∣∣∣ x(z +h; t̃ )−x(z; t̃ )

h
− x(z +h; t )−x(z; t )

h

∣∣∣∣dz, (45)

where changing the order of the limit with the integration follows by the dominated convergence
theorem [59, 2.24 The Dominated Convergence Theorem]. Adding several zeros – the smoothed
version of the previous terms – we estimate

(45) ≤ lim
h→0

1

h

(
∥x( ·+h; t̃ )−xε( ·+h; t̃ )∥L1(X ) +∥x( · ; t̃ )−xε( · ; t̃ )∥L1(X )

+∥x( ·+h; t )−xε( ·+h; t )∥L1(X ) +∥x( · ; t )−xε( · ; t )∥L1(X )

)
+ lim

h→0

∫
X

∣∣∣∣ xε(z +h; t̃ )−xε(z; t̃ )

h
− xε(z +h; t )−xε(z; t )

h

∣∣∣∣dz.

Concentrating on the last term, we have for h ∈ R>0, h ≤ 1 and by defining gε( · ,∗) :=
∂2λε( · ,∗)vε(∗) fixed:

∫
X

∣∣∣ xε(z +h; t̃ )−xε(z; t̃ )

h
− xε(z +h; t )−xε(z; t )

h

∣∣∣dz (46)

(35)= 1

h

∫
X

∣∣∣∫ h

0

vε(xε(z + s; t ))

vε(z + s)
e

∫ t
0 gε(u,xε(z+s;u))du − vε(xε(z + s; t̃ ))

vε(z + s)
e

∫ t̃
0 gε(u,xε(z+s;u))du ds

∣∣∣dz

≤ 1

hv

∫
X×(0,h)

∣∣∣vε(xε(z + s; t ))e
∫ t

0 gε(u,xε(z+s;u))du − vε(xε(z + s; t̃ ))e
∫ t̃

0 gε(u,xε(z+s;u))du
∣∣∣ds dz, (47)

where the last two estimates used the identity in Remark 16 for smooth data and the fact that
v ≤ vε(x) ∀ ε ∈R>0,∀ x ∈R a.e.. Again recalling that it holds

∥vε∥L∞(R) ≤ ∥v∥L∞(R) as well as ∂2∥λε∥L∞((0,T );L∞(R)) ≤ ∥∂2λ∥L∞((0,T );L∞(R))
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and once more adding zeros yields

(47) ≤ ∥v∥L∞(R)

hv
eT ∥∂2λ∥L∞∥v∥L∞(R)

∫
X

∫ h

0

∣∣∣∣∫ t

t̃
gε(u, xε(z + s;u))du

∣∣∣∣ds dz

+ eT ∥∂2λ∥L∞∥v∥L∞(R)

hv

∫
X

∫ h

0

∣∣vε(xε(z + s; t ))− vε(xε(z + s; t̃ ))
∣∣ds dz

≤ ∥v∥L∞(R)

v
eT ∥∂2λ∥L∞∥v∥L∞(R)∥∂2λ∥L∞∥v∥L∞(R)|X ||t − t̃ |

+ eT ∥∂2λ∥L∞∥v∥L∞(R)

hv

∫
X

∫ h

0

∣∣vε(xε(z + s; t ))− vε(xε(z + s; t̃ ))
∣∣ds dz

≤ ∥v∥L∞(R)

v
eT ∥∂2λ∥L∞∥v∥L∞(R)∥∂2λ∥L∞∥v∥L∞(R)|X ||t − t̃ |

+ eT ∥∂2λ∥L∞∥v∥L∞(R)

v
sup

s∈(0,h)

∫
X

∣∣vε(xε(z + s; t ))− vε(xε(z + s; t̃ ))
∣∣dz

≤ ∥v∥L∞(R)

v
eT ∥∂2λ∥L∞∥v∥L∞(R)∥∂2λ∥L∞∥v∥L∞(R)|X ||t − t̃ |

+ eT ∥∂2λ∥L∞∥v∥L∞(R)

v

∫
X̃ (h)

∣∣vε(xε(z; t ))− vε(xε(z; t̃ ))
∣∣dz,

with

X̃ (h) := (0,h)+X ⊂R.

Letting ε→ 0 the first term remains the same, while by Lemma 22 the second yields

lim
ε→0

∫
X̃ (h)

∣∣vε(xε(z; t ))− vε(xε(z; t̃ ))
∣∣dz =

∫
X̃ (h)

∣∣v(x(z; t ))− v(x(z; t̃ ))
∣∣dz.

It is worth noting that this last term is well-defined as v(x(z; t )) is integrated over z, for which
the ODE solution x := X [v,λ] is strictly monotone according to Corollary 17. Recalling all the
previous estimates starting from (44), for h → 0 we have:

∥∂1x( · ; t̃ )−∂1x( · ; t )∥L1(X )

≤ eT ∥∂2λ∥L∞∥v∥L∞(R)

v

(
∥v∥2

L∞(R)∥∂2λ∥L∞ |X ||t − t̃ |+
∫

X

∣∣v(x(z; t ))− v(x(z; t̃ ))
∣∣dz

)
(48)

Now, distinguish the two considered cases:

Case v ̸∈TVloc(R). Then, when letting t → t̃ , the first term in (48) converges to zero. This is also
the case for the second term by Lemma 22 as we have ∥x( · ; t )−x( · ; t̃ )∥L∞(R) → 0 for t → t̃ and ∂1x
bounded away from zero by Corollary 17.

Case v ∈TVloc(R). Since we then want to obtain the Lipschitz-continuity in time, we need to
study the second term in (48) in more detail. To this end, we reformulate as follows and use the
standard mollifier for vε to have∫

X

∣∣v(x(z; t ))− v(x(z; t̃ ))
∣∣dz

≤
∫

X

∣∣v(x(z; t ))− vε(x(z; t ))
∣∣dz +

∫
X

∣∣vε(x(z; t ))− vε(x(z; t̃ ))
∣∣dz +

∫
X

∣∣vε(x(z; t̃ ))− v(x(z; t̃ ))
∣∣dz.
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Focusing only on the second term, we have∫
X

∣∣vε(x(z; t ))− vε(x(z; t̃ ))
∣∣dz

≤
∫

X

∣∣∣∣∫ x(z;t̃ )

x(z;t )
|v ′
ε(y)|dy

∣∣∣∣dz

≤ ∥∥x−1( · , t )−x−1( · , t̃ )
∥∥

L∞(x(X ;t )∪x(X ;t̃ ))

∫
x(X ;t )∪x(X ;t̃ )

|v ′
ε(y)|dy, (49)

With x−1 the inverse of x w.r.t. its first argument. It exists and is unique according to Corollary 17.
To continue our estimate, we need to estimate ∥x−1( · , t ) − x−1( · , t̃ )∥L∞ in terms of ∥x( · , t ) −
x( · , t̃ )∥L∞ . To this end, consider a y ∈ x(X , t )∪x(X , t̃ ) and y = x(z, t ) with z ∈R compute as follows

x−1(y, t )−x−1(y, t̃ ) = x−1(x(z, t ), t )−x−1(x(z, t ), t̃ )

= z −x−1(x(z, t ), t̃ )

= x−1(x(z, t̃ ), t̃ )−x−1(x(z, t ), t̃ )

and taking the L∞ norm on both sides, we obtain∥∥x−1( · , t )−x−1( · , t̃ )
∥∥

L∞((x(X ;t )∪x(X ;t̃ ))) ≤
∥∥x−1(x( · , t̃ ), t̃ )−x−1(x( · , t ), t̃ )

∥∥
L∞(R)

≤ ∥∥∂1x−1( · ,∗)
∥∥

L∞(R×(0,T ))∥x( · , t̃ )−x( · , t )∥L∞(R).

Thus, we require a bound on ∂1x−1( · ,∗). However, recalling that we have the identity for all y ∈R
and t ∈ [0,T ]

x
(
x−1(y, t ), t

)= y =⇒ ∂1x
(
x−1(y, t ), t

)= 1

∂y x−1(y, t )

we thus can upper bound ∂1x−1 with the estimates in (37) on ∂1x from below and arrive at

(49) ≤ ∥v∥L∞(R)

v
eT L2∥v∥L∞(R)∥x( · ; t̃ )−x( · ; t )∥L∞(R)

∫
x(X ;t )∪x(X ;t̃ )

|v ′
ε(y)|dy

≤
∥v∥2

L∞(R)∥λ∥L∞((0,T );L∞(R))

v
eT L2∥v∥L∞(R) |t − t̃ |

∫
∪s∈[0,T ]x(X ;s)

|v ′
ε(y)|dy

ε→0≤
∥v∥2

L∞(R)∥λ∥L∞((0,T );L∞(R))

v
eT L2∥v∥L∞(R) |t − t̃ ||v |TV(∪s∈[0,T ]x(X ,s))

≤
∥v∥2

L∞(R)∥λ∥L∞((0,T );L∞(R))

v
eT L2∥v∥L∞(R) |t − t̃ ||v |TV

(
X+T ∥v∥L∞(R)L (−1,1)

).

Using this in the estimate in (48) yields the claim. □

The previous statement used an approximation result to derive the required regularity of ∂3X .
However, at least for v ∈ TVloc(R) it is possible to obtain this directly with the surrogate system
introduced in Theorem 7.

Corollary 24 (An alternative proof of Proposition 23 using Theorem 7). Given x0 ∈ R and
(v,λ) ∈ L∞(R;R≥v )×L∞(

(0,T );W1,∞(R)
)

as in Assumption 4, assume in addition

v ∈TVloc(R).
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Then, we have for X [v,λ](x0; · ) as in Definition 5 that ∀ (t , t̃ ) ∈ [0,T ]2

∥∂3X [v,λ]( · ; t )−∂3X [v,λ]( · ; t̃ )∥L1(X )

≤
∥v∥2

L∞(R)

v
L2|X ||t − t̃ |eT L2∥v∥L∞(R)

+
(
1+ t∥v∥L∞(R)L2et∥v∥L∞(R)L2

)∥v∥2
L∞(R)

v2 L |t̃ − t | |v |TV(X+∥v∥L∞(R)L (−1,1)),

with

L := ∥λ∥L∞((0,T );L∞(R)), L2 := ∥∂2λ∥L∞((0,T );L∞(R)). (50)

In particular, it holds that

[0,T ] ∋ t 7→ (
R ∋ y 7→ ∂yX [v,λ](y, t )

) ∈C
(
[0,T ];L1

loc(R)
)
.

Proof. This time, we prove the claim (with slightly different bounds) for discontinuous v ∈
TVloc(R) by taking advantage of the surrogate system in Theorem 7. Following the first steps in
the previous proof of Proposition 23, we now only smooth the discontinuous velocity and use the
notation

x :≡X [v,λ] and xε :≡X [vε,λε] on R× (0,T ).

Then, it holds that

(46) =
∫

X

∣∣∣ xε(z +h; t̃ )−xε(z +h; t )

h
− xε(z; t̃ )−xε(z; t )

h

∣∣∣dz.

Using that the solution is a Carathéodory solution as in Lemma 9

= 1

h

∫
X

∣∣∣∫ t̃

t
vε(xε(z +h; s))λ(s, xε(z +h; s))− vε(xε(z; s))λ(s, xε(z; s))ds

∣∣∣dz

and applying the Fundamental theorem of integration

= 1

h

∫
X

∣∣∣∫ t̃

t

∫ xε(z+h;s)

xε(z;s)
v ′
ε(y)λ(s, y)+ vε(y)∂2λ(s, y)dy ds

∣∣∣dz

≤ 1

h

∫
X

∣∣∣∫ t̃

t

∫ xε(z+h;s)

xε(z;s)
v ′
ε(y)λ(s, y)ds

∣∣∣dz (51)

+ 1

h

∫
X

∣∣∣∫ t̃

t

∫ xε(z+h;s)

xε(z;s)

∣∣vε(y)∂2λ(s, y)dy ds
∣∣∣∣∣dz. (52)

The second term in the previous estimate, (52), is estimated as follows

1

h

∫
X

∣∣∣∣∫ t̃

t

∫ xε(z+h;s)

xε(z;s)

∣∣vε(y)∂2λ(s, y)dy ds
∣∣∣∣∣∣dz

≤ ∥vε∥L∞(R)∥∂2λ∥L∞((0,T );L∞(R))|X ||t − t̃ |
h

ess-sup(z,s)∈R×(0,T ) |xε(z +h; s)−xε(z; s)|.
By applying the stability estimate in Corollary 17 and recalling that ∥vε∥L∞(R) ≤ ∥v∥L∞(R), we
obtain

≤
∥v∥2

L∞(R)

v
L2|X ||t − t̃ |eT L2∥v∥L∞(R) .

Clearly, for t → t̃ the previous term converges to zero uniformly in h and ε.
The term in (51) is however more involved. However, thanks to the smoothing of v by vε, for

now we can take advantage of this higher regularity and have

(51) = 1

h

∫
X

∣∣∣∫ t̃

t

∫ xε(x0+h;s)

xε(x0;s)
v ′
ε(y)λ(s, y)dy ds

∣∣∣dx0
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and using (5) and (6) and (7): xε(x0; · ) ≡Z [vε]−1
(
x0;C [λ,Z [vε](x0;∗)]( · ))

= 1

h

∫
X

∣∣∣∫ t̃

t

∫ Z [vε]−1
(

x0+h;C [λ,Z [vε](x0+h;∗)](s)
)

Z [vε]−1
(

x0;C [λ,Z [vε](x0;∗)](s)
) v ′

ε(y)λ(s, y)dy ds
∣∣∣dx0.

Substituting y=Z [vε]−1(x0;u)⇒u=Z [vε](x0; y), we have d
du Z [vε]−1(x0;u)=vε

(
Z [vε]−1(x0;u)

)
.

Thus

= 1

h

∫
X

∣∣∣∫ t̃

t

∫ Z [vε]
(

x0;Z [vε]−1
(

x0+h;C [λ,Z [vε](x0+h;∗)](s)
))

C [λ,Z [vε](x0;· )](s)
a(u, s, x0)du ds

∣∣∣dx0, (53)

with

a(u, s, x0) := v ′
ε

(
Z [vε]−1(x0;u)

)
λ
(
s,Z [vε]−1(x0;u)

)
vε

(
Z [vε]−1(x0;u)

)
. (54)

Recalling that for x ∈Rwe can estimate

Z [vε]
(
x0;Z [vε]−1(x0 +h; x)

)=Z [vε]
(
x0;Z [vε]−1(x0 +h; x)

)
−Z [vε]

(
x0 +h;Z [vε]−1(x0 +h; x)

)
(55)

+Z [vε]
(
x0 +h;Z [vε]−1(x0 +h; x)

)
=Z [vε]

(
x0;Z [vε]−1(x0 +h; x)

)
−Z [vε]

(
x0 +h;Z [vε]−1(x0 +h; x)

)+x

and by (16) in Proposition 14

≤ x + h

v
. (56)

In addition, by (17) together with (16) in Proposition 14, we have for s ∈ [0,T ]

C [λ,Z [vε](x0 +h; · )](t )−C [λ,Z [vε](x0; · )](t )

≤ t
∥vε∥L∞(R)

v
L2 exp

(
t∥vε∥L∞(R)L2

)
h ≤ t

∥v∥L∞(R)

v
L2 exp

(
t∥v∥L∞(R)L2

)
︸ ︷︷ ︸

=:C (v,L2,t )

h (57)

=C (v,L2, t )h. (58)

Continuing the previous estimate, assuming without loss of regularity that t̃ ≥ t yields

(53)
(55),(56)≤ 1

h

∫
X

∫ t̃

t

∫ C [λ,Z [vε](x0+h;· )](s)+ h
v

C [λ,Z [vε](x0;· )](s)

∣∣a(u, s, x0)
∣∣du ds dx0 (59)

(58)≤ 1

h

∫
X

∫ t̃

t

∫ C [λ,Z [vε](x0;· )](s)+ h
v (1+C (v,L2,s))

C [λ,Z [vε](x0;· )](s)

∣∣a(u, s, x0)
∣∣du ds dx0. (60)

By (6)
∣∣C [λ,Z [vε](x0; · )](s)

∣∣≤ T ∥λ∥L∞((0,T );L∞(R)) ∀ (x0, s) ∈R× (0,T )

≤ 1

h

∫
X

∫ t̃

t
sup

y∈(−L T,L T )

∫ y+ h
v (1+C (v,L2,s))

y

∣∣a(u, s, x0)
∣∣du ds dx0 (61)

≤ |t̃ − t | (1+C (v,L2,T ))∥vε∥L∞(R)L

v
sup

u∈Z (v,L ,L2,T,h)

∫
X

∣∣v ′
ε

(
Z [vε]−1(x0;u)

)∣∣dx0, (62)

with Z (v,L ,L2,T,h) := h
(

1
v +C (v,L2,T )

)
+L T · [−1,1] ⊂R

≤ |t̃ − t |
(1+C (v,L2,T ))∥vε∥2

L∞(R)L

v2 sup
u∈Z (v,L ,L2,T,h)

∫
Z [vε]−1(X ;u)

∣∣v ′
ε(y)

∣∣dy. (63)
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In the previous estimate we have used the substitution

y =Z [vε]−1(x0;u) ⇒Z [vε](x0; y) = u

⇒ d

dy
Z [vε](x0; y) = 1

vε(y)
− d

dy
x0(y)

1

vε(x0(y))
= 0 ⇒

∣∣∣∣ d

dy
x0(y)

∣∣∣∣≤ ∥vε∥L∞(R)

v
.

Thus, for x ∈ X and u ∈ Z (v,L ,L2,T,h) we can estimate∣∣Z [v]−1(x;u)−x
∣∣= ∣∣Z [v]−1(x;u)−Z [v]−1(x;0)

∣∣≤ ∥v∥L∞(R)|u|

≤ ∥v∥L∞(R)

(
L T + h

v

(
1+C (v,L2,T )

))
.

Consequently for h → 0

Z [vε]−1(X ;u) ⊂ X +∥v∥L∞(R)L T · [−1,1].

Using this to further estimate in (63), we have

(63) ≤
(
1+C (v,L2,T )

)∥vε∥2
L∞(R)

v2 L |t̃ − t | |vε|TV(X+∥v∥L∞(R)L (−1,1))

≤
(
1+C (v,L2,T )

)∥v∥2
L∞(R)

v2 L |t̃ − t | |v |TV(X+∥v∥L∞(R)L (−1,1)).

As the terms are all bounded, we can let t̃ → t and obtain – together with the previous estimates –
the claimed continuity in time. □

3. Analysis of discontinuous nonlocal conservation laws

In this section, we leverage the theory established in Section 2 to obtain existence and uniqueness
of weak solutions for the following class of nonlocal conservation laws with discontinuous (in
space) velocity (as stated in Definition 2). First, we state the assumptions on the involved datum:

Assumption 25 (Input datum – discontinuous nonlocal conservation law). For T ∈R>0 it holds
that for ∥ ·∥BV(R) := ∥·∥L1(R) +| · |TV(R)

• q0 ∈ L∞(R)
• γ ∈BV(R;R≥0),

• V ∈W1,∞
loc (R)

• v ∈ L∞(R;R≥v ) for a v ∈R>0.

As can be seen, the assumptions on V and v are identical to those for the discontinuous IVP
in Definition 1 (compare with Assumption 4 for λ ≡ V ) and are not restrictive. The assumptions
on the initial datum q0 ∈ L∞(R) are relatively standard in the theory of conservation laws and the
assumptions on the nonlocal kernel γ are also minimal (compare in particular with [38]). We use
the classical definition of weak solutions as follows

Definition 26 (Weak solution). For the initial datum q0 ∈ L∞(R), a function q ∈
C

(
[0,T ];L1

loc(R)
)∩L∞(

(0,T );L∞(R)
)

with datum as in Assumption 25 is called a weak solution of
Definition 2 iff ∀φ ∈C1

c ((−42,T )×R) it holds that∫
ΩT

q(t , x)
(
φt (t , x)+ v(x)V

((
γ∗q(t , · ))(x)

)
φx (t , x)

)
dx dt +

∫
R
φ(0, x)q0(x)dx = 0.
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3.1. Well-posedness of solutions

In this section, we will establish the existence and uniqueness of the weak solution to discontin-
uous nonlocal conservation laws. We start with existence for sufficiently small time horizons and
use a reformulation in terms of a fixed-point problem. Such a reformulation has been used in var-
ious contributions dealing with nonlocal conservation laws, including [47,49,52,68,73–77,79,98].

Theorem 27 (Existence/uniqueness of weak solutions on small time horizon). There exists
a time horizon T ∈ R>0 such that the nonlocal, discontinuous conservation law in Definition 2
admits a unique weak solution (as in Definition 26)

q ∈C
(
[0,T ];L1

loc(R)
)∩L∞(

(0,T );L∞(R)
)
.

The solution can be stated as

q(t , x) = q0(ξw (t , x;0))∂2ξw (t , x;0), (t , x) ∈ΩT (64)

where ξw :ΩT × [0,T ] →R is the unique solution of the IVP in Definition 5 for (t , x) ∈ΩT

∂3ξw (t , x;τ) = v
(
ξw (t , x;τ)

)
V

(
w(τ,ξ(t , x;τ))

)
, τ ∈ (0,T )

ξw (t , x; t ) = x
(65)

and w is the solution of the fixed-point equation in L∞(
(0,T );L∞(R)

)
w(t , x) =

∫
R
γ
(
x −ξw (0, y ; t )

)
q0(y)dy, (t , x) ∈ΩT .

Proof. Define the fixed-point mapping

F :

{
L∞(

(0,T );W1,∞(R)
) → L∞(

(0,T );W1,∞(R)
)

w 7→
(
(t , x) 7→ ∫

Rγ
(
x −ξw (0, y ; t )

)
q0(y)dy

) (66)

with ξw the characteristics as defined in (65). Note that ξw (τ, y ; t ) for (τ, y, t ) ∈ΩT × (0,T ) is the
characteristics curve satisfying as well the identity

ξw (τ,ξw (t , y ;τ); t ) = y ∀ (τ, y, t ) ∈ΩT × (0,T ),

i.e. ξw (t , y ;τ) is the spatially inverse characteristics to ξw (τ, y ; t ) explaining particularly the
emergence of ξw (0, y ; t ) in (66). The identity is in greater depth studied in (75) and we thus refer
forward to that point.

Let us first look into the well-posedness of these characteristics. Given that w ∈
L∞(

(0,T );W1,∞(R)
)

and recalling Assumption 25, we can invoke Theorem 7 to demonstrate
that ξw is uniquely determined by w . Next, we show that F is a fixed-point mapping on the
proper subset of L∞(

(0,T );W1,∞(R)
)
. To this end, define

M := 42∥γ∥L1(R)∥q0∥L∞(R)
∥v∥L∞(R)

v
, (67)

M ′ := 42|γ|TV(R)∥q0∥L∞(R)
∥v∥L∞(R)

v
,

ΩM ′
M (T ) :=

{
w ∈ L∞(

(0,T );W1,∞(R)
)

: ∥w∥L∞((0,T );L∞(R)) ≤ M ∧∥∂2w∥L∞((0,T );L∞(R)) ≤ M ′
}

. (68)

Self-mapping. Taking w ∈ΩM ′
M (T1) for a T1 ∈ (0,T ], we estimate for t ∈ (0,T1]

∥F [w]∥L∞((0,t );L∞(R)) ≤ ∥q0∥L∞(R)∥γ∥L1(R)∥∂2ξw (t , · ;0)∥L∞(R)

(37)≤ ∥q0∥L∞(R)∥γ∥L1(R)
∥v∥L∞(R)

v
et∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′.
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Here we have used the stability estimate in Corollary 17 to uniformly estimate the spatial deriva-
tive of the characteristics. Thus, ∥F [w]∥L∞((0,T1);L∞(R)) ≤ M holds if

eT1∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′ ≤ 42. (69)

We then pick the maximal T1 ∈ (0,T ] satisfying this inequality.
Next, consider the spatial derivative of F on the time interval [0,T2], T2 ∈ (0,T1] and this time

choose w ∈ΩM ′
M (T2). Analogous to the previous estimate, we estimate for t ∈ (0,T2]

∥∂2F [w]∥L∞((0,t );L∞(R)) ≤ ∥q0∥L∞(R)|γ|TV(R)∥∂2ξw (t , · ;0)∥L∞(R)

(37)≤ ∥q0∥L∞(R)|γ|TV(R)
∥v∥L∞(R)

v
et∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′.

Here we have used the stability estimate of the IVP in Corollary 17 to uniformly estimate the
spatial derivative of the characteristics. Thus, ∥∂2F [w]∥L∞((0,T2);L∞(R)) ≤ M ′ holds if

eT2∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′ ≤ 42. (70)

As this is identical to the condition in (69), we can indeed pick T2 = T1 as our considered
time horizon. Based on the previous estimates, we have a self-mapping on the considered time
horizon, i.e.

F
(
ΩM ′

M

(
T1

))⊆ΩM ′
M

(
T1

)
.

Of course, with the exactly same reasoning, we even have

F
(
ΩM ′

M

(
T̃

))⊆ΩM ′
M

(
T̃

) ∀ T̃ ∈ (0,T1]. (71)

Contraction. Next, we show that the mapping F is a contraction for a yet to be determined
T3 ∈ (0,T1] in L∞((0,T3);L∞(R)). To this end, take w, w̃ ∈ΩM ′

M (T3) and estimate for (t , x) ∈ [0,T1]×R
|F [w](t , x)−F [w̃](t , x)| (72)

≤ ∥q0∥L∞(R)

∫
R
|γ(x −ξw (0, y ; t ))−γ(x −ξw̃ (0, y ; t ))|dy (73)

≤ ∥q0∥L∞(R)|γ|TV(R)∥v∥L∞(R)

v
∥ξw −ξw̃∥L∞((0,t )×R×(0,t )). (74)

In the last estimate we have used the following: For f ∈TV(R)∩L∞(R) and diffeomorphisms g ,h
it holds (for the proof see for instance [48, Lemma 2.4])

∥ f ◦ g − f ◦h∥L1(R) ≤ | f |TV(R)
∥∥g−1 −h−1∥∥

L∞(R).

It also holds for the characteristics that

ξ(t ,ξ(τ, x; t );τ) = x ∀ (t , x,τ) ∈ΩT × (0,T ), (75)

meaning that the inverse of the mapping x 7→ ξ(t , x;τ) is the mapping x 7→ ξ(τ, x; t ). This can be
shown by approximating ξ by ξε with smooth vε,λε and the claim that for ε ∈R>0 it holds that

ξε(t ,ξε(τ, x; t );τ) = x ∀ x ∈R, (t ,τ) ∈ [0,T ].

However, this result was carried out in [74, Lemma 2.6 Item 1]. As we have the strong convergence
of ξε to ξ by Theorem 15, this carries over to (75).

To obtain an estimate of ∥ξw − ξw̃∥L∞((0,t )×R×(0,t )) in terms of ∥w − w̃∥L∞((0,T3);L∞(R)), we can
again take advantage of Theorem 15, which yields

(74) ≤ M ′∥ξw −ξw̃∥L∞((0,t )×R×(0,t ))

(23)≤ M ′∥v∥L∞(R)e
t∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′

∫ t

0
∥V (w(s, · ))−V (w̃(s, · ))∥L∞(R) ds

≤ M ′∥v∥L∞(R)t∥V ′∥L∞((−M ,M))e
t∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′∥w − w̃∥L∞((0,t );L∞(R)).
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Reconnecting to (73), we thus have for small enough time T3 ∈ (0,T1] (recall that in the previous
estimate the right hand side consists of constants except for the term ∥w − w̃∥L∞((0,t );L∞(R)))

∥F [w]−F [w̃]∥L∞((0,T3);L∞(R)) ≤
1

2
∥w − w̃∥L∞((0,T3);L∞(R)),

i.e., F is a contraction in L∞((0,T3);L∞(R)).

Concluding the fixed-point argument. As M , M ′ ∈ R>0 are fixed, we have proven F to be a self-
mapping onΩM ′

M (T3) taking into account in particular (71), andΩM ′
M (T3) – thanks to the uniform

bound M on the functions and M ′ on their spatial derivatives – is closed in the topology induced
by L∞((0,T3);L∞(R)), we can apply Banach’s fixed-point theorem [102, Theorem 1.a] and obtain

∃! w∗ ∈ΩM ′
M (T3) : F [w∗] ≡ w∗ on (0,T3)×R. (76)

Constructing a solution. Having obtained the existence and uniqueness of w∗ as a fixed-point
on a small time horizon, we use the method of characteristics as carried out in [74, Theorem 2.20]
to state the solution of the conservation law as

q(t , x) = q0(ξw∗ (t , x;0))∂2ξw∗ (t , x;0), (t , x) ∈ (0,T3)×R. (77)

Note that due to Theorem 15, x 7→ ξw∗ (t , x;0) is Lipschitz-continuous and strictly mono-
tone increasing by Corollary 17. By Proposition 23 ∂2ξw∗ (∗, · ;0) ∈ C

(
[0,T3];L1

loc(R)
)

so that q ∈
C

(
[0,T3];L1

loc(R)
)
. The fact that q ∈ L∞(

(0,T3);L∞(R)
)

is a direct consequence of (64). It can easily
be checked that q as in (77) is a solution by plugging it into the definition of weak solutions in
Definition 26 and applying the substitution rule.

The uniqueness of solutions is more involved, but ultimately only an adaption of the proof
in [47] and adjusted in [74, Theorem 3.2]. Therefore, we only sketch the idea: In a first step we
show by a proper choice of test functions in Definition 26 that each weak solution can be stated
in the form of (77) with a proper nonlocal term w . The next step is then to show that for the thus
constructed solution, the nonlocal term satisfies the same fixed-point mapping as introduced in
(66). However, as this mapping has a unique fixed-point as we have proven previously, we have
shown the uniqueness and are done. □

The previous result only demonstrates the existence of solutions on a small time horizon.
Given the later Assumption 31, we can show that even for general discontinuities in v , i.e., v ∈
L∞(R;R≥v ), the solution remains bounded on every finite time horizon. This is a key ingredient
for extending the solution from small time in Theorem 27 to arbitrary times.

To prove a weakened form of a maximum principle, we require the solutions to be smooth.
Consequently, we first introduce the following (weak) stability result:

Theorem 28 (Weak stability of q w.r.t. discontinuous velocity v , velocityV and initial datum q0).
Let Assumption 25 hold. Denote by

{vε}ε∈R>0 ⊂C∞(R),
{
Vε

}
ε∈R>0

⊂C∞(R) and {q0,ε}ε∈R>0 ⊂C∞(R)

the mollified versions of v,V , q0 convoluted with the standard mollifier outlined as in Corollary 20.
Denote by T ∗ ∈ (0,T ] the minimal time horizon of existence for the solution q, {qε}ε∈R>0 (where q
is the solution to initial datum q0, discontinuous velocity v and Lipschitz velocity V and qε the
solution to initial datum q0,ε, discontinuous velocity vε and Lipschitz velocity Vε) as guaranteed
in Theorem 27. Then, it holds that

∀ g ∈Cc(R) : lim
ε→0

max
t∈[0,T ∗]

∣∣∣∣∫
R

(
q(t , x)−qε(t , x)

)
g (x)dx

∣∣∣∣= 0. (78)
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Proof. We start by showing that such a time horizon T ∗ exists uniformly in ε. Recalling the proof
of Theorem 27, the properties of the standard mollifier for each ε ∈ R>0 enable us to define the
upper bounds on the nonlocal term as in (67)

Mε := 42∥γ∥L1(R)∥q0,ε∥L∞(R)
∥vε∥L∞(R)

v
≤ 42∥γ∥L1(R)∥q0∥L∞(R)

∥v∥L∞(R)

v
=: M

M ′
ε := 42|γ|TV(R)∥q0,ε∥L∞(R)

∥vε∥L∞(R)

v
≤ 42|γ|TV(R)∥q0∥L∞(R)

∥v∥L∞(R)

v
=: M ′.

(79)

However, this means that we can take as upper bounds uniformly M , M ′. Looking into the self-
mapping condition in (69), it then reads in our case

exp
(
T1∥vε∥L∞(R)∥V ′

ε∥L∞((−M ,M))M ′)≤ 42,

which can also be replaced by the stronger form

exp
(
T1∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′)≤ 42.

Now choosing T1 to satisfy the previous inequality this is by construction ε invariant. The
identical argument can be made for the estimate in (70), so that for the chosen T1 the mapping F
in (66) is a self-mapping onΩM ′

M (T1), as in (68). So the only point that remains is to check whether
the fixed-point mapping is also a contraction uniformly in ε ∈ R>0 for a small time horizon.
Recollecting the contraction estimate starting in (73), we have for T2 ∈ (0,T1]

∥F [w]−F [w̃]∥L∞((0,T2);L∞(R))

≤ ∥vε∥L∞(R)T2∥V ′
ε∥L∞((−M ,M))M ′eT2∥vε∥L∞(R)∥V ′

ε∥L∞((−M ,M))M ′∥w − w̃∥L∞((0,T2);L∞(R))

≤ ∥v∥L∞(R)T2∥V ′∥L∞((−M ,M))M ′eT2∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′∥w − w̃∥L∞((0,T2);L∞(R)).

Again choosing T2 ∈ (0,T1] so that

∥v∥L∞(R)T2∥V ′∥L∞((−M ,M))M ′eT2∥v∥L∞(R)∥V ′∥L∞((−M ,M))M ′ ≤ 1

2

is invariant on ε ∈ R>0, we can set T ∗ := T2 ∈ R>0 and have found the time horizon on which the
existence of solutions is guaranteed for all ε ∈R>0 simultaneously.

Next, we prove the claimed continuity as stated in (78). We recall the solution formula in (64)
and obtain for a g ∈Cloc(R) and t ∈ [0,T ∗] and for ε ∈R>0∣∣∣∣∫

R

(
q(t , x)−qε(t , x)

)
g (x)dx

∣∣∣∣ (80)

=
∣∣∣∣∫
R

(
q0(ξw (t , x;0))∂2ξw (t , x;0)−q0,ε(ξε,wε (t , x;0))∂2ξε,wε (t , x;0)

)
g (x)dx

∣∣∣∣
=

∣∣∣∣∫
R

q0(y)g
(
ξw (0, y ; t )

)−q0,ε(y)g
(
ξε,wε (0, y ; t )

)
dy

∣∣∣∣
≤

∣∣∣∣∫
R

(
q0(y)−q0,ε(y)

)
g
(
ξw (0, y ; t )

)
dy

∣∣∣∣+ ∣∣∣∣∫
R

q0,ε(y)
(
g
(
ξw (0, y ; t )

)− g
(
ξε,wε (0, y ; t )

))
dy

∣∣∣∣
≤ ∥g∥L∞(R)∥q0 −q0,ε∥L1(supp(g )+∥v∥L∞(R)L T (−1,1))

+∥q0∥L∞(R)
∥∥g ◦ξw (0, · ; t )− g ◦ξε,wε (0, · ; t )

∥∥
L1(R). (81)
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Recalling the bounds on the nonlocal term in (79) as detailed in (68) for s ∈ [0,T ∗], it holds by
Remark 19 and in particular (39) together with Theorem 15 that

∥ξε,wε (s, · ;∗)−ξw (s, · ;∗)∥L∞((0,T ∗);L∞(R))

≤ ∥v∥L∞(R)e
T ∗∥v∥L∞(R)L2

∫ T ∗

0
∥V (w(s, · ))−Vε(wε(s, · ))∥L∞(R) ds

+
(
∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2 T ∗L2 +1
)2∥v∥L∞(R)

v2 sup
y∈R

∣∣∣∣∫ y

0
v(s)− vε(s)ds

∣∣∣∣
≤ ∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2∥V ′∥L∞((−M ,M))

∫ T ∗

0
∥w(s, · )−wε(s, · )∥L∞(R) ds (82)

+∥v∥L∞(R)e
T ∗∥v∥L∞(R)L2 T ∗∥V −Vε∥L∞((−M ,M))

+
(
∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2 T ∗L2 +1
)2∥v∥L∞(R)

v2 sup
y∈R

∣∣∣∣∫ y

0
v(s)− vε(s)ds

∣∣∣∣.
Applying the fixed-point identity (66) and (76), we end up with∫ T ∗

0
∥w(s, · )−wε(s, · )∥L∞(R) ds

=
∫ T ∗

0

∥∥∥∥∫
R
γ
( ·−ξw (0, y ; s)

)
q0(y)−γ( ·−ξε,wε (0, y ; s)

)
q0,ε(y)dy

∥∥∥∥
L∞(R)

ds

≤
∫ T ∗

0

∥∥∥∥∫
R
γ
( ·−ξw (0, y ; s)

)
(q0(y)−q0,ε(y))dy

∥∥∥∥
L∞(R)

+
∥∥∥∥∫

R

(
γ
( ·−ξw (0, y ; s)

)−γ( ·−ξε,wε (0, y ; s)
))

q0,ε(y)dy

∥∥∥∥
L∞(R)

ds

≤
∫ T ∗

0

∥∥∥∥∫
R
γ′

( ·−ξw (0, y ; s)
)
∂2ξw (0, y ; s)

∫ y

0
(q0(z)−q0,ε(z))dz dy

∥∥∥∥
L∞(R)

+∥q0∥L∞(R)|γ|TV(R)

∫ T ∗

0

∥∥ξw (s, · ;∗)−ξε,wε (s, · ;∗)
∥∥

L∞((0,T );L∞(R)) ds

≤ |γ|TV(R)T
∗ sup

y∈R

∣∣∣∣∫ y

0
q0(y)−q0,ε(y)dy

∣∣∣∣
+∥q0∥L∞(R)|γ|TV(R)

∫ T ∗

0

∥∥ξw (s, · ;∗)−ξε,wε (s, · ;∗)
∥∥

L∞((0,T );L∞(R)) ds.

In the last estimate we have again used what was described in Section 3.1 in the proof of
Theorem 27 and the assumptions on the involved datum Assumption 25, particularly γ ∈BV(R).

As T ∗ was arbitrary (but small enough so that solutions still exist), we can apply Grönwall’s
inequality [101, Chapter I, III Gronwall’s inequality] and, recollecting all previous terms, obtain

∥ξε,wε −ξw∥L∞((0,T ∗)2,L∞(R))

≤
((
∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2 T ∗L2 +1
)2∥v∥L∞(R)

v2 sup
y∈R

∣∣∣∣∫ y

0
v(s)− vε(s)ds

∣∣∣∣
+∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2∥V ′∥L∞((−M ,M))∥γ∥L∞(R)T
∗ sup

y∈R

∣∣∣∣∫ y

0
q0(z)−q0,ε(z)dz

∣∣∣∣
+∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2 T ∗∥V −Vε∥L∞((−M ,M))

)
· ∥v∥L∞(R)e

T ∗∥v∥L∞(R)L2∥V ′∥L∞((−M ,M))∥q0∥L∞(R)|γ|TV(R).

However, this means that ξw −ξε,wε is small in the uniform topology for ε ∈R>0 small.
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Thanks to the lower bounds on the spatial derivatives on ξw ,ξε,wε , i.e., thanks to the fact
that they are diffeomorphisms in space with a Lipschitz constant from below which is greater
than zero (see Corollary 17), we can apply Lemma 22 on (81) and obtain the claimed continuity
in (78). □

The previous theory enables to have smooth solutions when assuming smooth initial datum
and smooth velocities. Even more, we can later use the previous approximation to derive bounds
on the smoothed solution (as considered in the following Lemma 29). These bounds carry over to
the weak solutions. Let us also state that this smoothness of solutions is in line with the regularity
results in [74].

Lemma 29 (Smooth solutions for smooth datum). Let Assumption 25 hold. In addition,

q0 ∈C∞(R), v ∈C∞(R), V ∈C∞(R).

Then, there exists T ∗ ∈R>0 so that the weak solution

q ∈C
(
[0,T ∗];L1

loc(R)
)∩L∞(

(0,T ∗);L∞(R)
)

in Definition 26 of the (now continuous) nonlocal conservation law in Definition 2 is a classical
solution and

q ∈C∞(ΩT ∗ ).

Proof. From Theorem 27 we know that there exists a solution on an assured time horizon
[0,T ∗] with a sufficiently small T ∗ ∈ R>. Due to the regularity of the involved functions, we can
take advantage of the fixed-point equation in (66) as follows. As q0 is smooth, the convolution
means that the solution of the fixed-point problem is smooth provided the characteristics ξw

do not destroy regularity. However, ξw as in (65) is – for given w a smooth solution to the fixed-
point problem – the solution of an IVP with a smooth right hand side and is thus smooth. This
explains why the nonlocal term w is smooth, the characteristics are smooth in each component
and finally, looking at the solution formula in (77), the solution q is also smooth. This solution
therefore satisfies the PDE point-wise and is a classical solution. □

Remark 30 (Regularity of solutions). It is possible – similar to the results in [74, Section 5] –
to obtain regularity results in Wk,p for properly chosen initial datum and velocities and (k, p) ∈
N≥0 ×

(
R≥1 ∪ {∞}

)
instead of C∞ solutions as in Lemma 29. However, we do not go into details as

we only require smooth solutions in the following analysis.

3.2. Maximum principles

First we will list some assumptions that are particularly interesting for traffic flow modelling. They
are inspired by classical maximum principles as laid out in [64, 74]:

Assumption 31 (Initial datum, velocity, and nonlocal weight). In addition to Assumption 25,
we assume

• V ′ ≦ 0
• supp(γ) ⊂R≥0

• γ monotonically decreasing on R>0

• q0 ∈ L∞(R;R≥0), i.e., nonnegative.

The assumption that V is monotonically decreasing is very common in traffic flow (compare
with the classical LWR model in traffic [66,88,95]) as it states that the velocity must decrease with
higher density. The assumption that q0 is nonnegative and essentially bounded is inspired by
interpreting solutions as traffic densities on roads that have limited capacity.



Alexander Keimer and Lukas Pflug 1753

Finally, the assumptions on the kernel γ ensure that density further ahead does not impact
the nonlocal term as much as density immediately ahead. Traffic density behind generally does
not matter. However, new models are emerging that incorporate nudging (looking behind) (see
for example [70]). General maximum principles cannot be expected for looking behind nonlocal
terms.

Theorem 32 (A maximum principle/uniform bounds). Let Assumption 31 hold, and consider
the following two cases for the weak solution (in the sense of Definition 26) of the discontinuous
nonlocal conservation law in Definition 2.

Case (1) Monotonically increasing v . The weak solution exists for each T ∈ R>0 and satisfies the
classical maximum principle

0 ≤ q(t , x) ≤ ∥q0∥L∞(R) ∀ (t , x) ∈ (0,T )×R a.e. (83)

Case (2) Initial datum L1 integrable and γmore regular. In detail, assuming

q0 ∈ L1(R;R≥0)∩L∞(R;R≥0) ∧ γ ∈W1,∞(R>0;R≥0)∩L1(R>0;R≥0) ∧ γ′ ≦ 0,

the weak solution exists for every T ∈R>0 with the following bounds for any δ ∈R>0:

(2a) if ess-sups∈X (q0,γ) V ′(s) < 0 it holds for all (t , x) ∈ΩT a.e.

0 ≤ q(t , x) ≤ max

{∥v ·q0∥L∞(R)

v
;
∥v∥L∞(R)

v

∥V ′∥L∞(X (q0,γ)+(−δ,δ))

−ess-sups∈X (q0,γ)+(−δ,δ) V ′(s)
∥q0∥L1(R)

}
(2b) if ess-sups∈X (q0,γ)+(−δ,δ) V ′(s) = 0 it holds for all (t , x) ∈ΩT a.e.

0 ≤ q(t , x) ≤ ∥vq0∥L∞(R)

v
exp

(
t∥v∥L∞(R)∥V ′∥L∞(X (q0,γ)+(−δ,δ))γ(0)∥q0∥L1(R)

)
,

with

X (q0,γ) := (
0,∥q0∥L1(R)∥γ∥L1(R)

)⊂R. (84)

Proof. The non-negativity of the solution immediately follows from the representation of the
solution in Theorem 27, specifically in (77). Thus we only need to focus on the upper bounds
in all the presented cases. To this end, approximate q0, v,V by a smooth q0,ε, vε,Vε according
to Theorem 28. As the solutions for ε ∈ R>0 are smooth (and thus, classical solutions), we
can work on the classical form and have for (t , x) ∈ ΩT using the abbreviation W [q](t , x) :=(
γ∗q(t , · ))(x), (t , x) ∈ΩT

∂t qε(t , x) =−∂x

(
vε(x)Vε

(
W [qε](t , x)

)
qε(t , x)

)
=−v ′

ε(x)Vε
(
W [qε](t , x)

)
qε(t , x)− vε(x)Vε

(
W [qε](t , x)

)
∂x qε(t , x)

− vε(x)V ′
ε

(
W [qε](t , x)

)
∂xW [qε](t , x)qε(t , x).

For any x ∈R s.t qε(t , x) is maximal (and thus ∂x qε(t , x) = 0)

=
(
− v ′

ε(x)Vε
(
W [qε](t , x)

)− vε(x)V ′
ε

(
W [qε](t , x)

)
∂xW [qε](t , x)

)
qε(t , x).

Consider now Case (1), i.e., assume v ′ ≧ 0 and by construction v ′
ε≧ 0, as well as Vε≧ 0. Then, we

obtain with the previous computation at the x ∈Rwhere qε(t , x) is maximal

∂t qε(t , x) ≤−vε(x)V ′(W [qε](t , x)
)
∂xW [qε](t , x).

However, thanks to V ′
ε ≦ 0 according to Assumption 31 and ∂xW [qε](t , x) ≦ 0 for the (t , x) ∈ΩT

where qε(t , x) is maximal, the last term is non-positive. This implies that the maxima can only
decrease, i.e.,

qε(t , x) ≤ ∥q0,ε∥L∞(R) ≤ ∥q0∥L∞(R) ∀ (t , x) ∈ΩT .



1754 Alexander Keimer and Lukas Pflug

According to Theorem 28, we have

∀ g ∈Cc(R) : lim
ε→0

max
t∈[0,T ]

∣∣∣∣∫
R

(
q(t , x)−qε(t , x)

)
g (x)dx

∣∣∣∣= 0

so that this upper bound carries over from qε to q , completing Case (1). For Case (2a) by some
“scaling with vε” and defining the new variable ρε :≡ vεqε we obtain

∂tρε(t , x) =−vε(x)∂x

(
Vε

(
W [qε](t , x)

)
ρε(t , x)

)
=−vε(x)V ′

ε

(
W [qε](t , x)

)
∂xW [qε](t , x)ρε(t , x)

− vε(x)Vε
(
W [qε](t , x)

)
∂xρε(t , x).

Taking any x ∈ R s.t. ρε(t , x) = ∥ρε(t , · )∥L∞(R), we thus have ∂xρε(t , x) = 0 and by the previous
computations

∂tρε(t , x) =−vε(x)V ′
ε

(
W [qε](t , x)

)
∂xW [qε](t , x)ρε(t , x).

As we have by assumption γ ∈ W1,∞(R≥0;R≥0) with γ′ ≦ 0, this yields for x ∈ R where ρε(t , x) =
∥ρε(t , · )∥L∞(R),

∂tρε(t , x) = vε(x)V ′
ε

(
W [qε](t , x)

)(
γ(0)qε(t , x)+

∫
R>0

γ′(y −x)qε(t , y)dy

)
ρε(t , x)

≤ ess-inf
s∈

(
−ε,∥q0∥L1(R)∥γ∥L1(R)+ε

)V ′
ε

(
s
)
γ(0)ρ2

ε(t , x)

+∥v∥L∞(R)∥V ′∥L∞
((
−ε,∥q0∥L1(R)∥γ∥L1(R)+ε

))γ(0)∥q0∥L1(R)ρε(t , x). (85)

The latter estimate holds due to |γ|TV(R>0) = γ(0), as γ′ ≦ 0 and γ ∈ BV(R>0). We have also used
Young’s convolution inequality [27, Theorem 4.15 (Young)] several times to estimate W and ∂xW .
In detail, it holds that

0 ≤
∫
R>0

γ(x − y)qε(t , y)dy ≤ ∥γ∥L1(R)∥qε∥L1(R) = ∥γ∥L1(R)∥q0,ε∥L1(R) ≤ ∥γ∥L1(R)∥q0∥L1(R)∣∣∣∣∫
R>0

γ′(x − y)qε(t , y)dy

∣∣∣∣≤ |γ|TV(R>0)∥qε∥L1(R) ≤ γ(0)∥q0∥L1(R),

by construction of q0,ε, the conservation of mass of q , and the fact that γ is monotonically
decreasing on R>0. Collecting the latter estimates, we obtain for the time derivative in ρ(t , x) for
fixed x ∈R s.t. ρ(t , x) is maximal, the following structure

ρt = aρ−bρ2

with a,b ∈ R>0 chosen accordingly from (85). We consequently obtain ρt ≤ 0 for ρ > ab−1 and
thus obtain for (t , x) ∈ΩT a.e.

ρε(t , x) ≤ max

{
∥v ·q0∥L∞(R) ,

∥v∥L∞(R)∥V ′∥L∞(X (q0,γ)+(−ε,ε))∥q0∥L1(R)

−ess-infs∈(X (q0,γ)+(−ε,ε)) V ′
ε(s)

}
.

With the identical argument as before, once more using Theorem 28, we obtain the stated bounds
for ε→ 0 when later recalling that ρ ≡ v ·q and v ≧ v .

Case (2b) follows immediately when reconnecting to (85) and noticing that

∂tρε(t , x) ≤ ∥v∥L∞(R)∥V ′∥L∞
((
−ε,∥q0∥L1(R)∥γ∥L1(R)+ε

))γ(0)∥q0∥L1(R)ρε(t , x),

which leads to at most exponential growth of ∥ρε∥L∞((R)). □
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Figure 2. Evolution of the solution q in space-time with discontinuities v ≡ 1 (no disconti-
nuity) (top left), v ≡ 1+χR>0 (top middle) and v ≡ 1− 1

2χR>0 (top right). The solutions at time
t = 0 (solid), t = 0.5 (dashed) and t = 1 (dash-dotted) are shown in the lower row.

Corollary 33 (Compatible initial datum). In contradiction to the concluding remarks in [33], we
can state that for any given discontinuity v, V ′ ∈ L∞(R) with ess-supx∈RV ′(x) < 0 and desired up-
per bound C ∈R>0, there exists q0 ̸≡ 0 such that the corresponding solution q to the discontinuous
nonlocal conservation law as in Definition 2 satisfies

q ≦C onΩT

for each T ∈ R>0. This is still possible for the case that ess-supx∈RV ′(x) = 0. However, the time
horizon must be fixed.

We illustrate the discontinuous nonlocal conservation law by means of the following

Example 34 (Some numerical illustrations). In order to visualize the effect of a discontinuity in
space (demonstrated via v), we consider the following modelling archetypes:

q0 := 1

2
χ[−0.5,−0.1](x), V ( · ) ≡ 1−· , γ≡ 10χ[0,0.1], v ∈

{
1, 1+χR>0 , 1− 1

2
χR>0

}
,

which are illustrated in Figure 2. As can be seen, for v ≡ 1 and v ≡ 1+χR>0 , i.e. the monotonically
increasing cases, the first statement of Figure 2 applies, and indeed the proposed maximum
principle holds. Moreover, a jump downwards is evident at position x = 0 in density q , when
the velocity jumps from 1 to 2 in the second case. This is in line with intuition that an increased
speed reduces the density accordingly, in equations roughly

∀ t ∈ [0,T ] : lim
x↗0

q(t , x)v(x)V (W [q](t , x)) = lim
x↘0

q(t , x)v(x)V (W [q](t , x))

assume V ̸≡0⇐⇒ lim
x↗0

q(t , x) = 2 lim
x↘0

q(t , x).

In the third case, the velocity is halved at x = 0 and the density is doubled. This is – for specific
times t ∈ {0,0.5,1} – also illustrated in the bottom row of Figure 2.
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Figure 3. The evolution of the maximum (solid) of the solution as well as its total variation
(dash-dotted) are visualized. Blue represents the case with v ≡ v0 ≡ 1, orange the case with
v ≡ v1 ≡ 1+χR>0 and, finally, green the case with v ≡ v2 ≡ 1− 1

2χR>0 .

In Figure 3, the evolution of the maximum of the solution, in equations the term ∥q(t , · )∥L∞(R),
is illustrated. This reflects our previous remarks. The total variation for the different cases is
also shown and as can be seen, it changes significantly when the discontinuity comes into play.
Clearly, an upper bound will depend on the total variation of q0 as well as v .

4. Conclusions and open problems

In this contribution, we have studied nonlocal conservation laws in C
(
[0,T ];L1

loc(R)
) ∩

L∞(
(0,T );L∞(R)

)
with general multiplicative discontinuities (L∞-type) in space. By employ-

ing the method of characteristics and a reformulation as a fixed-point problem, we could instead
consider specific discontinuous ODEs, which we studied for existence, uniqueness and stability.
The results obtained were then applied to the discontinuous nonlocal conservation law to prove
existence and uniqueness of weak solutions on a small time horizon. These results were supple-
mented by several “maximum principles” guaranteeing the semi-global existence of solutions.
We have thus generalized the existing theory on (purely) nonlocal conservation laws to include
discontinuities in space, and have proven that Entropy conditions are – once more – obsolete
(compare with [74]) although still used in literature [32, 33]. The established theory sets the stage
for several future directions:

(1) similar to [37], consideration of the convergence to the local discontinuous conservation
law when we let the convolution kernel in the nonlocal part of the velocity converge to a
Dirac distribution,

(2) the bounded domain case similar to [78],
(3) measure-valued solutions similar to [52], assuming that the kernel is in W1,∞(R),
(4) discontinuous (in space) multi-dimensional nonlocal conservation laws.
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