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Abstract. We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a
height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits
of points in a generalised Hecke orbit in terms of this height function, assuming the “weakly adelic Mumford–
Tate hypothesis” and prove the generalised André–Pink–Zannier conjecture (a special case of the Zilber-Pink
conjecture) under this assumption using the Pila–Zannier strategy.

Résumé. On introduit et étudie la notion d’orbite de Hecke généralisée dans une variété de Shimura. On
définit une notion de hauteur sur une telle orbite et étudie ses properiétés. On obtient une borne inférieure
pour la taille des orbites Galoisiennes de points dans une orbite de Hecke généralisee en termes de cette
fonction hauteur en admettant « la conjecture de Mumford–Tate faiblement adélique » et on démontre la
conjecture de André–Pink–Zannier généralisée (un cas particulier de la conjecture de Zilber-Pink) en utilisant
la stratégie de Pila–Zannier.
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This note describes the results of [21]. We refer to [5] for the language of Shimura varieties, and
to [23, §3] for the notion of weakly special subvarieties.

1. Generalised André–Pink–Zannier conjecture and Main results

Let (G , X ) be a Shimura datum, let K ≤ G(A f ) be a compact open subgroup, and let S =
ShK (G , X ) = G(Q)\X ×G(A f )/K be the associated Shimura variety. Let x0 ∈ X (which we view
as a morphism S→GR) and let M ≤G be its Mumford–Tate group.

In the following definition Hom(M ,G)(Q) denotes the set of algebraic group morphisms
defined overQ.
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Definition 1. We define the Generalised Hecke orbit H (x0) of x0 in X as

H (x0) := X ∩ {φ◦x0 :φ ∈ Hom(M ,G)(Q)}

and the Generalised Hecke orbit H ([x0, g0]) of [x0, g0] in ShK (G , X ) as

H ([x0, g0]) := {[x, g ] : x ∈H (x0), g ∈G(A f )}.

This notion of Hecke orbit is the most general; we refer to [21, §2.5] for a comparison with
some other notions of Hecke orbits. For instance, if A is an abelian variety with Mumford–Tate
group M ≤ G := GSp(2dim(A)), every abelian variety B isogenous to A can be obtained from a
morphism M → G ∈ H (x0). Definition 1 is also readily1 at least as general than the notion of
generalised Hecke orbit defined by [16, §3].

The following conjecture extends questions of [1] of André, [25] of the second author and [16]
of Pink. Similar questions have been considered by Zannier [26] in the context of abelian
schemes. An argument of Orr ([12]) shows that it is a special case of the Zilber-Pink conjecture
for pure Shimura varieties.

Conjecture 2 (Generalised André–Pink–Zannier, [21, Conj. 1.1]). Let S be a Shimura variety and
Σ a subset of a generalised Hecke orbit in S. Then the irreducible components of the Zariski closure
of Σ are weakly special subvarieties.

For a sufficiently large field E of finite type over Q we have the following (cf. [24]): S and s0 =
[x0,1] are defined over E and there exists a Galois representation ρx0 : Gal(E/E) → M(A f )∩K such
that

∀σ ∈ Gal(E/E), g ∈G(A f ), σ([x0, g ]) = [x0,ρx0 (σ) · g ].

Our main result is the following.

Theorem 3 ([21, Thm. 1.2]). In the above situation, let U = ρx0 (Gal(E/E)). We assume:

∃C > 0,∀ p, [K ∩M(Qp ) : U ∩M(Qp )] ≤C . (1)

Then, for any Σ⊆H (x0), every irreducible component of ΣZ ar is weakly special.

We call (1) the weakly adelic Mumford–Tate hypothesis. It is related to a weak form of the
conjecture [22, 11.4?] due to Serre. The assumption (1) is known in many cases. This leads to
the following unconditional results.

1.1.

Combining Theorem 3 with [4, Thm. A(i)] we have the following, which strictly contains a 2005
result of Pink [16, §7] (and [3, Thm. B]).

Theorem 4 ([21]). The conjecture 2 is true if S is of abelian type, and Σ contains a point s which
satisfies the Mumford–Tate conjecture (at some ℓ, in the sense of [24]).

The assumptions of Theorem 4 are satisfied in the case where S = Ag and Σ contains a
point [A], where the abelian variety A satisfies the Mumford–Tate conjecture (at some prime ℓ).
Examples of such abelian varieties include: dim(A) ≤ 3; or when dim(A) is odd and End(A) ≃ Z.
More examples are given in [15], and many examples are mentioned in [10, §2.4].

1Or combine [16, Prop. 3.6] and [21, Prop. 2.15].
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1.2.

The following is not restricted to Shimura varieties of abelian type.

Theorem 5 ([2, Thm. 1.2]). We decompose the adjoint datum (M ad , XM ad ) of (M , XM ) :=
(M , M(R) · x0) as a product

(p1, . . . , p f ) : (M ad , XM ad ) ≃ (M1, X1)× . . .× (M f , X f )

with respect to theQ-simple factors Mi of M ad .
Assume that for some compact open subgroups Ki ≤ Mi (A f )

∀ i ∈ {1; . . . ; f }, [pi ◦adM (x0)] ∈ ShKi (Mi , Xi )(C)∖ShKi (Mi , Xi )(Q).

Then U = ρx0 (Gal(E/E)) satisfies (1).

Theorems 6 and 7 follow from the combination of Theorem 3 with Theorem 5.

Theorem 6 ([21]). The conjecture 2 is true if Σ contains a Q-Zariski generic point s of a special
subvariety Z ⊆ S, namely: for every proper subvariety V ⊊ Z defined overQ, we have s ̸∈V (C).

Theorem 7 ([21]). The conjecture 2 is true if M ad is Q-simple and Σ contains a point s in S(C)∖
S(Q).

In the case M ad = {1} we recover a result of [6] and [9].

Theorem 8 ([6] and [9]). The conjecture 2 is true if Σ contains a special point.

1.3. Previous results towards Conjecture 2

For the history of the Conjecture and previous results, see the introduction of [21].
The results [16, 17] towards Conjecture 2, based on equidistribution of Hecke points, are

limited to the case where s is Hodge generic, and to an assumption similar to (1) ([16, Def. 6.3],
[17, §6-7, pp. 57–59]). The case of general S, in the Hodge generic case Z = S, can be treated using
the results of [17] and an extension of [18, Prop 3.5].

For general Z and S, Conjecture 2 was obtained, under an assumption substantially weaker
than (1), but for a much more restrictive notion of Hecke orbits (the “S -Hecke orbit” for a finite
set of primes S ). See [20] for an approach of based on Ratner’s theorems, and see [11] for an
approach based on the Pila–Zannier strategy.

2. Some useful results

The proof of Theorem 3 in Section 3 relies on the following results, which are of independent
interest.

2.1. Geometric Hecke orbits

We define W =G ·φ0 ⊆ Hom(M ,G) the conjugacy class of the injectionφ0 : M ,→G , as an algebraic
variety. We define the geometric Hecke orbit as

H g (x0) = X ∩ {φ◦x0 :φ ∈W (Q)} ⊂H (x0).

The following is an essential tool in reduction steps in the proof of Theorem 3.

Theorem 9 ([21, §2.4]). The generalised Hecke orbit H (x0) is a union of finitely many geometric
Hecke orbits.
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2.2. Height functions and estimates

Letm and gbe Lie algebras overQ, and chooseZ-structures onm and g. We denote bymẐ ≤m⊗A f

and gẐ ≤ g⊗A f the corresponding Ẑ-structures and define

HA f : Hom(m,g)⊗A f →Z≥1 by Φ 7→ min{n ∈Z≥1 : n ·Φ(mẐ) ⊆ gẐ}.

2.2.1.

We choose Z-structures in such a way that gẐ is invariant under the adjoint action of K
and mẐ =m⊗A f ∩gẐ.

Proposition 10 ([21, §4.3]). There is a well defined function H[x0,1] : H ([x0,1]) →Z≥1 given by

[φ◦x0, g ] 7→ HA f (d(g−1 ·φ · g )).

This function is constant on the orbits of Gal(E/E) in H ([x0,1]).

For a set A and two functions f , g : A →R≥0, we write f ≼ g , resp. f ≈ g when

∃ b,c,d ∈R>0,∀ a ∈ A, f (a) ≤ d +b · g (a)c , resp. f ≼ g and g ≼ f .

The following estimate requires the assumption (1).

Theorem 11 ([21, Thm. 6.4 and Prop. 3.6]). As s = [φ◦x0, g ] ranges through H ([x0,1]), we have

|Gal(E/E) · s| ≈ HA f (d(g−1 ·φ · g )). (2)

2.2.2.

Only the lower bound HA f (d(g−1 ·φ · g ))≼ |Gal(E/E) · s| is needed for the proof of Theorem 3.
This lower bound is derived from the following.

Theorem 12 ([21, Thm. B.1]). Let M ≤ GL(N ) be a linear algebraic subgroup defined over Q,
denote by φ0 : M → GL(N ) the identity morphism and W the GL(N )-conjugacy class of φ0. We
choose a basis of m such that mẐ =m⊗A f ∩gl(N , Ẑ), and define M(Ẑ) = M(A f )∩GL(N , Ẑ).

There exists c = c(φ0) ∈R>0 such that, as φ ranges through W (A f ), we have

[φ(M(Ẑ)) :φ(M(Ẑ))∩GL(N , Ẑ)] ≥ 1

c
ω(HA f

(dφ))
·HA f (dφ). (3)

(Where ω(n) is the number of prime factors of n.)

A main tool in proving (3) is Theorem 13. We establish Theorem 13 using estimates [21,
Prop. A.1] on p-adic norms of exponentials of a matrix X ∈ Md (Qp ).

Theorem 13 (Lemma of the exponentials, [21, Thm. A.3]). Let X ∈ Md (Qp ) be such that
exp(X ) converges and denote by exp(X )Z the subgroup generated by exp(X ) in GLd (Qp ). We de-
fine Hp (X ) = max{1;∥X ∥}. Then we have

[exp(X )Z : exp(X )Z∩GLd (Zp )] ≥ Hp (X )/d .

If p > d, we have [exp(X )Z : exp(X )Z∩GLd (Zp )] ≥ Hp (X ).

2.3. Comparison with the global height

Let S⊆G(R)+ be a finite union of Siegel sets, and denote by S ·φ0 ⊆W (R) its image.
There exists a closed affine embedding W → An defined over Q, say ι : φ 7→ dφ : W →

Hom(m,g). For (q1, . . . , qn) ∈Qn , we denote by HQ(q1, . . . , qn) ∈Z≥1 the usual height of (q1, . . . , qn)
and we denote by H f (q1, . . . , qn) ∈Z≥1 the lowest common multiple of the denominators of the qi .
We recover HA f (dφ) = H f (ι(φ)) on W (Q).
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Theorem 14 ([21, Thm. 5.16]). As φ ranges through S ·φ0 ∩W (Q), we have

H f (ι(φ)) ≈ HQ(ι(φ)). (4)

Theorem 14 was [13, Thm. 1.1] obtained by M. Orr, in the case W = G . This is insufficient for
us. We replaced the “block version of Pila–Wilkie” (used by Orr) by Theorem 15.

The above (4) is used to relate the height used in (2) with the height used in Theorem 15. We
deduce Theorem 15 from [14, Thm. 1.7]. The referee informed us that Theorem 15 can also be
deduced from [7, Cor. 7.2]. Theorem 15 and its proof in [21] are both much simpler.

Theorem 15 ([21, Thm. 7.1]). Let W ⊆AN be a closed subvariety defined over Q, let X be a semi-
algebraic set, and let p : W (R) → X be a semialgebraic map.

Let Z ⊆ X be a definable subset, and denote Z alg be the union of the semialgebraic subsets of X
which are contained in Z and of non-zero dimension.

Then, for every ϵ ∈R>0, there exists C (ϵ, Z ) ∈R>0, such that

∀ T ≫ 0, |(Z ∖Z alg)∩p({w ∈W (Q) : HQ(w) ≤ T })| ≤C (ϵ, Z ) ·T ϵ.

3. Outline of the proof of Theorem 3

We reduce the Conjecture 2 to the case where V :=Σ= {s0; s1; . . .} is irreducible, G is adjoint and V
is Hodge generic in S. We rely on functoriality properties of geometric and generalised Hecke
orbits.2 Theorem 9 allows us to use geometric and generalised Hecke orbits interchangeably. We
also prove, cf. [21, §6.3], functoriality properties of the assumption (1).

The final objective of the proof is to apply the geometric part of the André–Oort conjecture [23]
(or [19]), and use induction on the number of simple factors of M ad . For every n large enough,
we construct a weakly special subvariety Zn ⊆ V of non-zero dimension such that sn ∈ Zn .
Then [19, 23] describes

⋃
Zn , and we deduce Conjecture 2.

In order to construct the non-zero dimensional Zn , we use the Pila–Zannier strategy. The
generalised Hecke orbit is naturally related to W (Q) where W = G · φ0 ≃ G/ZG (M) (cf. [21,
Lem. 2.5].)

The goal is to apply the variant Theorem 15 of the Pila–Wilkie theorem, after constructing
many rational points of small height in some set definable in an o-minimal structure. This
definable set is

Ṽ =
(
−1
π (V )∩S

)
/ZG(R)(M) ⊆W (R)

where π : G(R) → X → S is the uniformisation map, and S ⊆ G(R) is a finite union of Siegel sets
such that S =π(S).

Let E be field of definition of V . Then V contains the Galois orbits Gal(E/E)·sn . Each point s′ ∈
Gal(E/E) · sn lifts to a rational point s̃′ ∈ Ṽ ∩W (Q).

By Proposition 10, the value of H[x0,1] is constant as s′ ranges through Gal(E/E) · sn . It follows
from (2) that there are #Gal(E/E) · sn ≈ H[x0,1](sn) such points.3 By (4), we have H[x0,1](sn) ≈
HQ(s̃n). We introduce

Qn := {φ ∈S ·φ0 ∩W (Q) : [φ◦x0 : 1] ∈ Gal(E/E) · sn} ⊆ Ṽ .

For φ ∈Qn , we have HA f (dφ) = H[x0,1]([φ◦x0,1]) = H[x0,1](sn) ≈ HQ(s̃n).
Denote by p the map G(R) ·φ0 → X with G(R) ·φ0 ⊆W (R). We have surjections Qn → p(Qn) →

Gal(E/E) · sn . Thus #Qn ≥ #Gal(E/E) · sn ≈ HQ(s̃n).
Thus Ṽ contains #Qn ≈ HQ(s̃n) points of height ≈ HQ(s̃n).

2This avoids one difficulty in the approach [12] of Orr.
3This is where the assumption (1) is needed.
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By Theorem 15, for sufficiently large n, there exist φn in Qn such that p(φn) ∈ Z alg, with Z =
p(Ṽ ). By Ax–Lindemann–Weierstrass theorem [8], it follows that s′n = [φn ,1] ∈ Zn ⊆ V , for a non-
zero dimensional weakly special subvariety Zn . Using Galois action, we may assume s′n = sn .

This concludes the proof of Theorem 3.
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