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1. Introduction

Let f be a nondegenerate C-polynomial in the sense of Kouchnirenko (cf. Section 3.1) vanishing
at the origin O of Cd . The problem of computing the motivic Milnor fiber S f ,O in terms of
the Newton polyhedron Γ of f was early mentioned in the works [1] and [6] with materials
coming from [4] (see also [7] for a generalization). Recently, Steenbrink and Bultot–Nicaise obtain
solutions in terms of toric geometry ([14]), or of log smooth models ([3]). Their formula for S f ,O

together with the additivity of the Hodge spectrum operator allows to reduce the computation
of the Hodge spectrum of ( f ,O) to that of quasi-homogeneous singularities. In this article, we
will show that the formula also provides a way to explore the following problem for Newton
nondegenerate polynomials.

Problem 1. Let f be in C[x1, . . . , xd ] with f (O) = 0, and let H be a linear hyperplane in Cd . What
is the relation between S f ,O and S f |H ,O?

The question concerns a motivic analogue of a monodromy relation of a complex singularity
and its restriction to a generic hyperplane studied early in [9, 10]. For n ∈ N∗, the n-iterated
contact locus Xn,O( f ) (cf. Section 2.3) admits a decomposition as a disjoint union into its µn-
invariant C-subvarieties X (n)

J ,a along a ∈ (N∗)J and J ⊆ [d ] := {1, . . . ,d}. The nondegeneracy of f

allows to describe X (n)
J ,a via Γ, as in Theorem 9, which is the key step to compute the motivic zeta

function Z f ,O(T ) and the motivic Milnor fiber S f ,O , which yields a proof of Theorem 12. Note
that this theorem is well known as mentioned above (see [1, 6, 7]). For every face γ of Γ, let Jγ be
the unique subset of [d ] such that γ is contained in the hyperplanes x j = 0 for all j ̸∈ Jγ and not
contained in the other coordinate hyperplanes, and let Xγ(0) (resp. Xγ(1)) be the C-subvariety of

G
Jγ
m,C defined by the face function fγ (resp. fγ−1).

Theorem (see Theorem 12). Let f be in C[x1, . . . , xd ] with O ∈ X0 := f −1(0), let d1 and d2 be in N
such that d = d1 +d2. The below hold in M

µ̂

X0
for (i), in M

µ̂

A
d1
C

for (ii), and in M
µ̂

C
for (iii).

(i) If f is Newton nondegenerate, then

S f =− ∑
γ∈F \F̃

λγ
[

Xγ(1) → X0
]+ ∑

γ∈F
λγ

[
Xγ(0) → X0

]
.

(ii) If f is Newton nondegenerate and ι :Ad1
C

≡Ad1
C

×C {0}d2 ,→ X0 is an inclusion, then

ι∗S f =− ∑
γ∈F (d1)\F̃

λγ

[
Xγ(1)×X0 A

d1
C

→A
d1
C

]
+ ∑
γ∈F (d1)

λγ

[
Xγ(0)×X0 A

d1
C

→A
d1
C

]
.

(iii) If f is nondegenerate in the sense of Kouchnirenko, then

S f ,O = ∑
γ∈K

(−1)|Jγ|+1−dim(γ) ([Xγ(1)]− [Xγ(0)]
)

.

Here, ι∗, F , F̃ , F (d1), K , and λγ are defined in Sections 2.1, 3.1 and 3.3.

We choose the hyperplane defined by xd = 0 to be H in Problem 1, and consider for any
n ≥ m in N∗ the so-called (n,m)-iterated contact locus Xn,m,O( f , xd ) of the pair ( f , xd ). It is a
µn-invariant C-subvariety of Xn,O( f ). Then we show in this article that the formal series

Z∆
f ,xd ,O(T ) := ∑

n≥m≥1

[
Xn,m,O( f , xd )

]
L−(n+m)d T n

is rational and it can be described via data of Γ. Here, ∆ stands for {(n,m) ∈ (R>0)2 | n ≥ m}
and the sum runs over ∆∩ (N∗)2. Put S ∆

f ,xd ,O := − limT→∞ Z∆
f ,xd ,O(T ). Using the description of

S ∆
f ,xd ,O together with Theorem 12, a solution to Problem 1 for the nondegeneracy in the sense of

Kouchnirenko can be realized as in the following theorem.
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Theorem (see Theorem 17). With f as previous, the identity S f ,O = S f |H ,O +S ∆
f ,xd ,O holds in

the monodromic Grothendieck ring of C-varieties with µ̂-action. A similar result also holds for the
motivic nearby cycles.

According to [2, Conjecture 1.5], it is expected that the singular cohomology groups with
compact support of theC-points of the contact loci are nothing but the Floer cohomology groups
of the powers of the monodromy of the singularity (cf. [11]). Here, we are interested in a smaller
problem on the computation of cohomology groups of Xn,O( f ) (the reader may compare this
with [2, Theorem 1.1]).

Problem 2. Let f be a polynomial over C vanishing at the origin O. Compute the cohomology
groups with compact support H m

c (Xn,O( f ),C) for all n ∈N∗ and m ∈N.

We devote Section 4 to study this problem for nondegenerate singularities in the sense of
Kouchnirenko not only using sheaf cohomology with compact support but also the Borel–Moore
homology H BM∗ . Write Xn,O( f ) = ⊔

(J ,a)∈P̃n
X (n)

J ,a as in (2) with P̃n described in Lemma 8(ii). Let

η : P̃n →Z be the function defined by η(J , a) = dimCX (n)
J ,a .

Theorem (see Theorems 20, 22). For f as in Problem 2 and nondegenerate in the sense of
Kouchnirenko, for every p, q ∈N, there exist spectral sequences

E 1
p,q := ⊕

η(J ,a)=p
H BM

p+q (X (n)
J ,a ) =⇒ H BM

p+q (Xn,O( f )),

E p,q
1 := ⊕

η(J ,a)=p
H p+q

c (X (n)
J ,a ,F ) =⇒ H p+q

c (Xn,O( f ),F ),

for any sheaf of abelian groups F on Xn,O( f ).

In particular, by applying the second spectral sequence with F being a constant sheaf, we
obtain a spectral sequence converging to the compact support cohomology groups of contact loci
with complex coefficients whose first page is a direct sum of (singular) homology of the spaces
defined by the vanishing of the functions fγ and fγ−1 (see Corollary 26).

2. Preliminaries

2.1. Monodromic Grothendieck ring of varieties

Let S be an algebraic C-variety. Let VarS be the category of S-varieties, with objects being
morphisms of algebraic C-varieties X → S and a morphism in VarS from X → S to Y → S
being a morphism of algebraic C-varieties X → Y commuting with X → S and Y → S. Denote
by µ̂ the limit of the projective system µnm → µn given by x 7→ xm , with for any n ≥ 1, µn =
Spec C[ξ]/(ξn −1) the group scheme over C of nth roots of unity. Notice that any action of µ̂ on a
variety X in the present article is assumed to factorize through an action of µn for some n ∈N∗.
An action on X is good if every orbit is contained in an affine open subset of X . By definition, an
action of µ̂ on an affine Zariski bundle X → B is affine if it is a lifting of a good action on B and its
restriction to all fibers is affine.

The Grothendick group K µ̂
0 (VarS ) is defined to be an abelian group generated by symbols

[X → S], X endowed with a good µ̂-action and X → S in VarS , such that:

(i) [X → S] = [Y → S] if X and Y are µ̂-equivariant S-isomorphic;
(ii) [X → S] = [Y → S]+ [X \ Y → S] if Y is a µ̂-invariant closed subvariety in X ; and

(iii) [X ×An
C

,σ] = [X ×An
C

,σ′] if σ and σ′ are liftings of the same µ̂-action on X to X ×An
C

.
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There is a natural ring structure on K µ̂
0 (VarS ) in which the product is induced by the fiber product

over S. The unit 1S for the product is the class of the identity morphism S → S with S endowed
with trivial µ̂-action. Denote by L (or LS ) the class of the trivial line bundle S×A1 → S, and define
the localized ring M

µ̂

S to be K µ̂
0 (VarS )[L−1].

Let f : S → S′ be a morphism of algebraicC-varieties. Then we have two important morphisms
associated to f , which are the ring homomorphism f ∗ : M

µ̂

S′ → M
µ̂

S induced from the fiber

product (the pullback morphism) and the MC-linear homomorphism f! : M
µ̂

S → M
µ̂

S′ defined
by the composition with f (the push-forward morphism).

2.2. Rational series and limit

Let A be either Z[L,L−1] or M
µ̂

S as a ring. Let A �T �sr be the A -submodule of A �T � generated

by 1 and by finite products of elements of the form La T b

1−La T b with (a,b) in Z×N∗. Each element of
A �T �sr is called a rational series. By [5], there is a unique A -linear morphism limT→∞ : A �T �sr →
A which sends La T b

1−La T b to −1.
For J contained in [d ], we denote by (R≥0)J the set of (a j ) j∈J with a j in R≥0 for all j ∈ J , and by

(R>0)J the subset of (R≥0)J consisting of (a j ) j∈J with a j > 0 for all j ∈ J . Similarly, one can define
the sets (Z≥0)J , (Z>0)J and (N∗)J . Let σ be a rational polyhedral convex cone in (R>0)J and let
σ denote its closure in (R≥0)J with J a finite set. Let ℓ and ℓ′ be two integer linear forms on ZJ

positive on σ\ {(0, . . . ,0)}. Then the series

Sσ,ℓ,ℓ′ (T ) := ∑
a∈σ∩(N∗)J

L−ℓ
′(a)T ℓ(a)

is in Z[L,L−1]�T �sr and limT→∞ Sσ,ℓ,ℓ′ (T ) = χ(σ), the Euler characteristic with compact supports
of σ. If σ is relatively open, then limT→∞ Sσ,ℓ,ℓ′ (T ) = (−1)dim(σ) (see [6, Lemma 2.1.5]). We have
the following technique lemma.

Lemma 3. Let σ be a relatively open rational polyhedral convex cone in (R>0)I . Let K and L be
disjoint nonempty subsets of I . Consider half spaces H j (with j ∈ L) in RI defined by

x j ≤
∑
i∈K

αi xi ,

where αi ≥ 0 for all i ∈ K , such that for any disjoint subsets L1,L2 of L and any j ∈ L \ (L1 ∪L2), the
set

σ∩ ⋂
s∈L1

{
(xi )i∈I ∈RI

∣∣∣∣∣xs <
∑
i∈K

αi xi

}
∩ ⋂

t∈L2

{
(xi )i∈I ∈RI

∣∣∣∣∣xt =
∑
i∈K

αi xi

}
either is empty or has nonempty intersection with RI \ H j .

Then the Euler characteristic with compact supports of the set

σL :=σ∩ ⋂
j∈L

H j

is equal to zero.

Proof. We prove this lemma by induction on |L|. For L = { j } a one-point set, we have

σ=σL ⊔
{

(xi )i∈I ∈σ
∣∣∣∣∣x j >

∑
i∈K

αi xi

}
.

Since the second term on the right hand side and σ have the same Euler characteristic with
compact supports (−1)|I |, we get χ(σL) = 0. For the case |L| > 1, let j0 ∈ L and L′ := L \ { j0}. Then
σL is the disjoint union of the following two sets

σL′ ∩
{

(xi )i∈I ∈RI

∣∣∣∣∣x j0 <
∑
i∈K

αi xi

}
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and

σL′ ∩
{

(xi )i∈I ∈RI

∣∣∣∣∣x j0 =
∑
i∈K

αi xi

}
.

By induction, the lemma holds true for L′, thus the Euler characteristic with compact supports of
these two sets is zero. □

2.3. Motivic nearby cycles of regular functions

For any C-variety X , let Ln(X ) be the space of n-jets on X , and L (X ) the arc space on X , which
is the limit of the projective system of spaces Ln(X ) and canonical morphisms Lm(X ) →Ln(X )
for m ≥ n. The group µ̂ acts on Ln(X ) via µn in such a natural way that ξ ·ϕ(t ) =ϕ(ξt ) for ξ ∈µn .

From now on, we assume that the C-variety X is smooth and of pure dimension d . Consider a
regular function f : X →A1

C
, with the zero locus X0. For n ≥ 1 one defines the n-iterated contact

locus of f as follows

Xn( f ) = {
ϕ ∈Ln(X )

∣∣ f (ϕ) = t n mod t n+1} .

Clearly, this variety is invariant by the µ̂-action on Ln(X ) and admits a morphism to X0 given
by ϕ(t ) 7→ϕ(0), which defines an element [Xn( f )] := [Xn( f ) → X0] in M

µ̂

X0
. We consider Denef–

Loeser’s motivic zeta function Z f (T ) = ∑
n≥1[Xn( f )]L−nd T n . They prove in [5] that Z f (T ) is in

M
µ̂

X0
�T �sr, and call the limit S f :=− limT→∞ Z f (T ) in M

µ̂

X0
the motivic nearby cycles of f . If x is a

closed point of X0, the C-variety

Xn,x ( f ) = {
ϕ ∈Ln(X )

∣∣ f (ϕ) = t n mod t n+1,ϕ(0) = x
}

,

is also invariant by the µ̂-action on Ln(X ), called the n-iterated contact locus of f at x. It is
also proved that the zeta function Z f ,x (T ) = ∑

n≥1[Xn,x ( f )]L−nd T n is in M
µ̂

C
�T �sr. The limit

S f ,x =− limT→∞ Z f ,x (T ) is called the motivic Milnor fiber of f at x. Obviously, if ι is the inclusion

of {x} in X0, then S f ,x = ι∗S f in M
µ̂

C
.

We now modify slightly the motivic zeta functions of several functions in [6] and [7]. For a pair
of regular functions ( f , g ) on X , we denote by X0 := X0( f , g ) their common zero locus. For n ≥ m
inN∗, we define

Xn,m( f , g ) := {
ϕ ∈Ln(X )

∣∣ f (ϕ) = t n mod t n+1,ordt g (ϕ) = m
}

.

We can check that Xn,m( f , g ) is invariant under the natural µn-action on Ln(X ), and that
there is an obvious morphism of C-varieties Xn,m( f , g ) → X0; from which we obtain the class
[Xn,m( f , g )] of that morphism in M

µ̂

X0
. Consider the series

Z∆
f ,g (T ) := ∑

n≥m≥1

[
Xn,m( f , g )

]
L−nd T n

in M
µ̂

X0
�T �. For any closed point x ∈ X0, we can define Z∆

f ,g ,x (T ) in M
µ̂

C
�T � as above with

Xn,m( f , g ) replaced by its µn-invariant subvariety Xn,m,x ( f , g ) := {ϕ ∈ Xn,m( f , g ) | ϕ(0) = x}.
The rationality of the series Z∆

f ,g (T ) and Z∆
f ,g ,x (T ) are stated in [6, Théorème 4.1.2] and [7,

Section 2.9], up to the isomorphism of rings M
µ̂

X0
∼= M Gm

X0×Gm
(see [8, Proposition 2.6]), where

Guibert–Loeser–Merle’s result is done in the framework M Gm
X0×Gm

. Put S ∆
f ,g := − limT→∞ Z∆

f ,g (T )

and S ∆
f ,g ,x :=− limT→∞ Z∆

f ,g ,x (T ).
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3. Motivic nearby cycles of a nondegenerate polynomial and applications

3.1. Newton polyhedron of a polynomial

Recall that [d ] stands for {1, . . . ,d}, d ∈ N∗. Let x = (x1, . . . , xd ) be a set of d variables, and let
f (x) = ∑

α∈Nd cαxα be in C[x] with f (O) = 0, with O the origin of Cd . Let Γ be the Newton
polyhedron of f , i.e., the convex hull of the set

⋃
cα ̸=0(α+ (R≥0)d ) in (R≥0)d . For every face γ of Γ

(not necessarily compact, the case γ= Γ included), define by fγ(x) =∑
α∈γ cαxα the face function

of f with respect to γ.
Note that for every face γ of Γ (including Γ itself), there exists a unique set Jγ ⊆ [d ] such that

γ is contained in the hyperplanes x j = 0 for all j ̸∈ Jγ and not contained in other coordinate
hyperplanes.

Definition 4. The polynomial f is called nondegenerate on a face γ of Γ if the hypersurface f −1
γ (0)

has no singular point in G
Jγ
m,C. We say that f is nondegenerate in the sense of Kouchnirenko if it

is nondegenerate on every compact face γ. If f is nondegenerate on every face of Γ (including non-
compact faces, and Γ itself), we say that f is nondegenerate in the sense of Newton polyhedron or
simply Newton nondegenerate.

Consider the function ℓ= ℓΓ : (R≥0)d →Rwhich sends a in (R≥0)d to minb∈Γ〈a,b〉, where 〈 · , · 〉
is the standard inner product in Rd . For a in (R≥0)d , we denote by γa the maximal face of Γ to
which the restriction of the function 〈a, · 〉 gets its minimum. Note that γa is a compact face if and
only if a is in (R>0)d (cf. [4, Property 2.3]). This comes from the fact that γa = {b ∈ Γ | 〈a,b〉 = ℓ(a)}.
Moreover, γa = Γwhen a = (0, . . . ,0) inRd , and γa is a proper face of Γ otherwise. For every proper
face γ of Γ, we define

σγ :=σ[d ],γ := {
a ∈ (R≥0)d ∣∣γ= γa

}
.

It is clear that σγ is a rational polyhedral convex cone of dimension d −dim(γ).
For any J ⊆ [d ], denote by f J the polynomial in C[(x j ) j∈J ] obtained from f (x) substituting

xi by 0 for all i ∈ [d ] \ J . If f is nondegenerate in the sense of Kouchnirenko (resp. Newton
nondegenerate) then f J is also nondegenerate in the sense of Kouchnirenko (resp. Newton
polyhedron).

Let ℓJ stand for ℓΓ( f J ). For a ∈ (R≥0)J , we define the face γJ
a similarly as above, i.e.

γJ
a := {

b ∈ Γ( f J )
∣∣〈a,b〉 = ℓJ (a)

}
.

If γ is a face of the Newton polyhedron Γ( f J ), denote by σJ ,γ the cone {a ∈ (R≥0)J | γ= γJ
a} and by

σ̊J ,γ the relative interior of σJ ,γ, both of which have dimension |J |−dim(γ). The following lemma
is trivial to prove.

Lemma 5. There exists a canonical partition of (R≥0)J into rational polyhedral convex cones σ̊J ,γ

with γ being all faces of Γ( f J ).

A face γ of Γ is called a coordinate face if γ = Γ( f J ) for some J ⊆ [d ]. We have the following
description for the coordinate faces.

Lemma 6. A face γ of Γ is a coordinate face if and only if for all J ⊇ Jγ, the restriction of ℓJ to σ̊J ,γ

is the zero function.

Proof. For each j ∈ J , we denote by e j the vector (0, . . . ,0,1,0, . . . ,0) ∈ RJ with 1 in the j -th
coordinate. Assume that γ= Γ( f J0 ) for some J0 ⊆ [d ]. Then, for any i ∈ J0, t ≥ 0 and for any b ∈ γ,
the point b + te i is also in γ. For J ⊇ J0 = Jγ and a = (a j ) j∈J ∈ σ̊J ,γ, we have ℓJ (a) = 〈a,b + te i 〉 for
every i ∈ J0 and t ≥ 0. As a consequence, we get a j = 0 for all j ∈ J0. Hence ℓJ (a) = 〈a,b〉 = 0 for
any b ∈ γ= Γ( f J0 ).
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Now, we assume that restriction of ℓJ to σ̊J ,γ is the zero function for some J ⊇ Jγ. Take
a = (a j ) j∈J ∈ σ̊J ,γ, we have 〈a,b〉 = ℓJ (a) = 0 for any b ∈ γ. Since γ is not contained in any
hyperplane xk = 0 for any k ∈ Jγ, we have a j = 0 for all j ∈ Jγ. This together with the description
of γ, namely,

γ= {
b ∈ Γ( f J )

∣∣〈a,b〉 = 0
}
,

implies that Γ( f Jγ ) ⊆ γ. Therefore γ= Γ( f Jγ ). □

Notation 7. In the rest of this article, let F (resp. K ) denote the set of all the faces (resp. the
compact faces) of Γ, and let F̃ denote the set of all the coordinate faces of Γ.

3.2. Contact loci

Let (x1, . . . , xd ) be the standard coordinates of Ad
C

, and let f (x1, . . . , xd ) be as above. For n ∈ N∗,

k ∈N and J ⊆ [d ], denote by ∆(n,k)
J (resp. ∆̃(n,k)

J ) the set of a ∈ {0, . . . ,n}J (resp. a ∈ [n]J ) such that

ℓJ (a)+k = n. Clearly, ∆̃(n,k)
J ⊆∆(n,k)

J .

For a ∈∆(n,k)
J , put

X (n)
J ,a := {

ϕ ∈Xn( f )
∣∣ordt x j (ϕ) = a j ∀ j ∈ J , xi (ϕ) ≡ 0 ∀ i ̸∈ J

}
.

This subvariety of Xn( f ) is invariant by the µn-action given by ξ ·ϕ(t ) = ϕ(ξt ), and it defines an
element

[
X (n)

J ,a

]
:= [

X (n)
J ,a → X0

]
in K µ̂

0 (VarX0 ), where the structure map is given by ϕ 7→ϕ(0). Let

Pn and P̃n be the index sets consisting of all such pairs (J , a) such that

Xn( f ) = ⊔
(J ,a)∈Pn

X (n)
J ,a (1)

and

Xn,O( f ) = ⊔
(J ,a)∈P̃n

X (n)
J ,a . (2)

Lemma 8.

(i) Pn is the set of all the pairs (J , a) such that J ⊇ Jγ, a ∈⊔
k∈N

(
σ̊J ,γ∩∆(n,k)

J

)
and γ ∈ F .

(ii) P̃n is the set of all the pairs (J , a) such that J ⊇ Jγ, a ∈⊔
k∈N

(
σ̊J ,γ∩ ∆̃(n,k)

J

)
and γ ∈ K .

Proof. For any ϕ in Xn( f ), there exists a unique subset J of {1, . . . ,d} such that xi (ϕ) ≡ 0 for all
i ̸∈ J and that x j (ϕ) ̸≡ 0 for all j ∈ J . Put a := (ordt x j (ϕ)) j∈J ∈ {0, . . . ,n}J , and put γ := γJ

a . Then we
have Jγ ⊆ J and

f (ϕ) = fγ(ϕ̃(0))tℓJ (a) +higher terms,

where ϕ̃ := (t−a j x j (ϕ)) j∈J , thus ℓJ (a) ≤ n and ϕ ∈ X (n)
J ,a . The proof for (i) is completed by using

Lemma 5. Similar arguments work for (ii). □

For γ ∈ F̃ , if a ∈ σ̊J ,γ∩∆(n,k)
J and k ̸= n, then X (n)

J ,a =;.
For every face γ ∈ F of Γ( f J ), let us consider the C-varieties

X J ,γ(1) := {
x ∈GJ

m,C

∣∣ fγ(x) = 1
}
, X J ,γ(0) := {

x ∈GJ
m,C

∣∣ fγ(x) = 0
}
.

When J = Jγ we write simply Xγ(ε) instead of X Jγ,γ(ε), for ε = 0,1. We always consider the trivial
action of µ̂ on the variety X J ,γ(0). Let a be in σ̊J ,γ. Then the variety X J ,γ(1) admits a natural µℓJ (a)-
action as follows

e2πi r /ℓJ (a) · (x j ) j∈J := (
e2πi r a j /ℓJ (a)x j

)
j∈J , (3)

for r ∈ [ℓJ (a)]. Note that the class [X J ,γ(1)] in M
µn
C

does not depend on a provided a is in
σ̊J ,γ and ℓJ (a) = n, which follows from the construction of the Grothendieck ring (see [13,
Proposition 3.13]).
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The result and proof ideas of the following theorem are well known due to [1, 6, 7]. In the
present article, we are going to contribute a detailed explanation for every step of proof. Denote
|a| :=∑

j∈J a j for a = (a j ) j∈J ∈RJ .

Theorem 9 (cf. [1, 6, 7]). Let f ∈C[x1, . . . , xd ] such that f (O) = 0. Assume that f is nondegenerate
on a face γ ∈ F . Let J ⊆ [d ] containing Jγ. If a ∈ σ̊J ,γ∩∆(n,0)

J and X (n)
J ,a is nonempty, then there is a

naturally µn-equivariant isomorphism of C-varieties

τ : X (n)
J ,a → X J ,γ(1)×CA|J |ℓJ (a)−|a|

C
.

If k ∈N∗, a ∈ σ̊J ,γ∩∆(n,k)
J , and if X (n)

J ,a is nonempty, there is a Zariski locally trivial fibration

π : X (n)
J ,a → X J ,γ(0)

with fiberA
|J |(ℓJ (a)+k)−|a|−k
C

.

Proof. It suffices to prove the theorem for J = [d ]. Let a = (a1, . . . , ad ) be in σ̊γ ∩∆(n,0)
[d ] , hence

n = ℓ(a) and γ= γa . Every element ϕ in X (n)
[d ],a has the form(

ℓ(a)∑
j=a1

b1 j t j , . . . ,
ℓ(a)∑
j=ad

bd j t j

)
with bi ai ̸= 0 for 1 ≤ i ≤ d . The coefficient of tℓ(a) in f (ϕ(t )) is nothing but fγa (b1a1 , . . . ,bd ad

),
thus (b1a1 , . . . ,bd ad

) is in X[d ],γa (1). We deduce that X (ℓ(a))
[d ],a is µℓ(a)-equivariant isomorphic to

X[d ],γa (1)×CAdℓ(a)−|a|
C

(where µℓ(a) acts trivially onAdℓ(a)−|a|
C

) via the map

τ :ϕ(t ) 7→ (
(bi ai )1≤i≤d , (bi j )1≤i≤d ,ai< j≤ℓ(a)

)
.

Indeed, for every ξ in µℓ(a), the element ϕ(ξt ) is sent to(
(ξai bi ai )1≤i≤d , (bi j )1≤i≤d ,ai< j≤ℓ(a)

)= ξ · ((bi ai )1≤i≤d , (bi j )1≤i≤d ,ai< j≤ℓ(a)
)

.

Thus τ is a µℓ(a)-equivariant isomorphism.
Now we prove the second statement. Let a be in σ̊γ∩∆(n,k)

[d ] for k ∈N∗, hence n = ℓ(a)+k and

γ= γa . For ϕ in X (n)
[d ],a , putting

ϕ̃ := (
t−a1 x1(ϕ), . . . , t−ad xd (ϕ)

)
, (4)

we get
f (ϕ) = tℓ(a) fγa (ϕ̃)+ ∑

k≥1
tℓ(a)+k

∑
〈α,a〉=ℓ(a)+k

cαϕ̃
α. (5)

Defining
f̃ (ϕ̃, t ) := fγa (ϕ̃)+ ∑

k≥1
t k

∑
〈α,a〉=ℓ(a)+k

cαϕ̃
α,

we obtain a function

f̃ : Lℓ(a)+k+1−a1 (A1
C)×C · · ·×CLℓ(a)+k+1−ad

(A1
C)×CA1

C→A1
C

given by
f̃ (ϕ̃, t0) := f̃ (ϕ̃(t0), t0).

It thus follows from (5) that ϕ is in X (ℓ(a)+k)
[d ],a if and only if f̃ (ϕ̃, t ) = t k mod t k+1. Putting

ϕ̃i (t ) =∑ℓ(a)−ai+k
j=0 bi j t j for 1 ≤ i ≤ d , the latter means that

fγa (b10, . . . ,bd0) = 0 with bi 0 ̸= 0 for 1 ≤ i ≤ d ,

q j (b1 j , . . . ,bd j )+p j ((bi ′ j ′ )i ′, j ′ ) = 0 for 1 ≤ j ≤ k −1,

qk (b1k , . . . ,bdk )+pk ((bi ′ j ′ )i ′, j ′ ) = 1,
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where p j , for 1 ≤ j ≤ k, are polynomials in variables bi ′ j ′ with i
′ ≤ d and j ′ < j , and

q j (b1 j , . . . ,bd j ) =
d∑

i=1

∂ fγa

∂xi
(b10, . . . ,bd0)bi j .

We consider the morphism
π : X (ℓ(a)+k)

[d ],a → X[d ],γa (0)

which sends theϕ described previously to (b10, . . . ,bd0). Since µ̂ acts trivially on X[d ],γa (0), we only

need to prove that π is a locally trivial fibration with fiber Ad(ℓ(a)+k)−|a|−k
C

. For every 1 ≤ i ≤ d , we
put

Ui :=
{

(x1, . . . , xd ) ∈ X[d ],γa (0)

∣∣∣∣ ∂ fγa

∂xi
(x1, . . . , xd ) ̸= 0

}
. (6)

The nondegeneracy of f on the face γ= γa gives us an open covering {U1, . . . ,Ud } of X[d ],γ(0). We
construct trivializations of π as follows

π−1(Ui )
ΦUi //

π
##

Ui ×CAe
C

pr1
{{

Ui

where e =∑d
l=1(ℓ(a)−al +k)−k and we identifyAe

C
with the subvariety ofA

∑d
l=1(ℓ(a)−al+k)

C
defined

by the equations b̃i j = 0 for 1 ≤ j ≤ k −1 and b̃i k = 1 in the coordinate system (b̃l j ), and for ϕ as
previous,

ΦUi (ϕ) = (
(b̃10, . . . , b̃d0), (b̃l j )1≤l≤d ,1≤ j≤ℓ(a)−al+k

)
,

with b̃i j = 0 if 1 ≤ j ≤ k −1, b̃i k = 1, and b̃l j = bl j otherwise. Furthermore, the inverse map Φ−1
Ui

of
ΦUi is also a regular morphism given explicitly as follows

Φ−1
Ui

(b̃l j ) =
(
ℓ(a)−a1+k∑

j=0
b1 j t j+a1 , . . . ,

ℓ(a)−ad+k∑
j=0

bd j t j+ad

)
,

where bl j = b̃l j for either that l ̸= i or that l = i and k < j ≤ ℓ(a)−al +k, and

bi j =
−p j ((bl j ′ )l≤d , j ′< j )−∑

l≤d ,l ̸=i (∂ fγa /∂xl )(b̃10, . . . , b̃d0)b̃l j

(∂ fγa /∂xi )(b̃10, . . . , b̃d0)
,

for 1 ≤ j ≤ k −1, and

bi k = 1−pk ((bl j ′ )l≤d , j ′<k )−∑
l≤d ,l ̸=i (∂ fγa /∂xl )(b̃10, . . . , b̃d0)b̃lk

(∂ fγa /∂xi )(b̃10, . . . , b̃d0)
.

This proves that π is a (Zariski) locally trivial fibration with fiberAe
C

. □

3.3. Motivic nearby cycles

For every γ = γJ
a ∈ F with a ∈ σ̊J ,γ ∩∆(n,0)

J , we consider the morphism Φa : X J ,γ(1) → X0 which
sends (xi )i∈J to (x̂1, . . . , x̂d ), where x̂i = 0 if either i ∈ [d ]\ J or ai ≥ 1, and x̂i = xi if ai = 0. With this
morphism it follows from Theorem 9 the below commutative diagram

X (n)
J ,a

∼= //

ϕ(t )7→ϕ(0)
##

X J ,γ(1)×CA|J |ℓJ (a)−|a|
C

Φa◦pr1
ww

X0

(7)
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Lemma 10. If a,b ∈ σ̊J ,γ∩∆(n,0)
J , then [Φa : X J ,γ(1) → X0] = [Φb : X J ,γ(1) → X0] in M

µn
X0

.

Proof. Suggested from [13, Section 3.4.3], we stratify (R≥0)J into the cones

Cδ := {
(ki )i ∈ (R≥0)J ∣∣ki > 0 if δi = 1,ki = 0 if δi = 0

}
with δ ∈ {0,1}J . We have a stratification of σJ ,γ∩∆(n,0)

J into the strata Cδ∩σJ ,γ∩∆(n,0)
J . It is a fact

that Φa =Φb if and only if a,b belong the same stratum. Now, to deduce the lemma, we use the
same arguments as in the proof of [13, Proposition 3.13]. □

In particular, when γJ
a = Γwe have a = (0, . . . ,0), J = [d ], and fγa (x) = f (x). Then the morphism

Φa is nothing but the identity morphism.
Similarly, we also consider the morphism Ψa : X J ,γ(0) → X0 sending (xi )i∈J to (x̂1, . . . , x̂d ),

which commutes with π in Theorem 9 and the morphism ϕ(t ) 7→ ϕ(0) for a ∈ σ̊J ,γ ∩∆(n,k)
J and

k ≥ 1. Recall that the µn-action on X J ,γ(0) is trivial. As above, we also have

Lemma 11. If a,b ∈ σ̊J ,γ∩∆(n,0)
J , then [Ψa : X J ,γ(0) → X0] = [Ψb : X J ,γ(0) → X0] in M

µn
X0

.

Notice that, for J ⊆ [d ] and I ⊆ J , we identify (R>0)I with the set of (x j ) j∈J in (R≥0)J such that
xi > 0 for all i ∈ I and x j = 0 for all j ∈ J \ I .

For 0 ≤ m ≤ d , denote by F (m) the set of γ ∈ F such that for all J ⊇ Jγ and γ= γJ
a we have ai ≥ 1

for all i ∈ J ∩ [m +1,d ]. Note that F (0) = K and F (d) = F .
The last part of the following result is known in [1, 6, 7], we provide new formulas in i), ii) as

follows.

Theorem 12. Let f be in C[x1, . . . , xd ] with f (O) = 0, let d1,d2 be in N with d = d1 +d2. For any
γ ∈ F , put Λγ := {I ⊆ Jγ | σ̊Jγ,γ∩ (R>0)I ̸= ;} and

λγ := ∑
I∈Λγ

(−1)dim(σ̊Jγ ,γ∩(R>0)I ).

(Hence, as γ ∈ K , λγ = (−1)dim(σ̊Jγ ,γ) = (−1)|Jγ|−dim(γ).) The below identities hold in M
µ̂

X0
for (i), in

M
µ̂

A
d1
C

for (ii), and in M
µ̂

C
for (iii).

(i) If f is Newton nondegenerate, then

S f =− ∑
γ∈F \F̃

λγ
[

Xγ(1) → X0
]+ ∑

γ∈F
λγ

[
Xγ(0) → X0

]
.

(ii) If f is Newton nondegenerate and ι :Ad1
C

≡Ad1
C

×C {0}d2 ,→ X0 is an inclusion, then

ι∗S f =− ∑
γ∈F (d1)\F̃

λγ

[
Xγ(1)×X0 A

d1
C

→A
d1
C

]
+ ∑
γ∈F (d1)

λγ

[
Xγ(0)×X0 A

d1
C

→A
d1
C

]
.

(iii) If f is nondegenerate in the sense of Kouchnirenko, then

S f ,O = ∑
γ∈K

(−1)|Jγ|+1−dim(γ) ([Xγ(1)]− [Xγ(0)]
)

.

Proof. Notice that (i) is not a particular case of (ii) in general, but our proof method of (i) is similar
to that of (ii); while (iii) is really a consequence of (ii) (when d1 = 0); so it suffices to prove (ii). By
the decomposition (1) and Lemma 8(i), we have

Xn( f ) = ⊔
γ∈F

⊔
J⊇Jγ

⊔
k∈N

⊔
a∈σ̊J ,γ∩∆(n,k)

J

X (n)
J ,a .



Lê Quy Thuong and Nguyen Tat Thang 1259

Take the fiber product on both sides with ι :Ad1
C
,→ X0. If there is an i ∈ J∩[d1+1, . . . ,d ] with ai = 0

(i.e. γ ̸∈ F (d1)), then ϕi (0) is in Gm , thus the image of ι is disjoint with the image of X (n)
J ,a in X0, so

ι∗[X (n)
J ,a ] = 0. It follows that

ι∗[Xn( f )] = ∑
γ∈F (d1)

∑
J⊇Jγ

∑
k∈N

∑
a∈σ̊J ,γ∩∆(n,k)

J

ι∗
[
X (n)

J ,a

]
.

Using Lemma 6, the diagram (7) for X J ,γ(1) → X0 and a similar one for X J ,γ(0) → X0 we have∑
n≥1

ι∗
[
Xn( f )

]
L−nd T n

= ∑
γ∈F (d1)\F̃

∑
J⊇Jγ

[
X J ,γ(1)×X0 A

d1
C

→A
d1
C

]
S0

J ,γ(T )+ ∑
γ∈F (d1)

∑
J⊇Jγ

[
X J ,γ(0)×X0 A

d1
C

→A
d1
C

]
S>

J ,γ(T ),

where

S0
J ,γ(T ) = ∑

a∈σ̊J ,γ∩NJ

a j ≤ℓJ (a), j∈J

L(|J |−d)ℓJ (a)−|a|T ℓJ (a)

and

S>
J ,γ(T ) = ∑

k≥1

∑
a∈σ̊J ,γ∩NJ

a j ≤ℓJ (a)+k, j∈J

L(|J |−d)(ℓJ (a)+k)−|a|−k T ℓJ (a)+k .

The conclusion then follows from Lemma 14. □

We need the following lemmas.

Lemma 13. If γ ∈ F , J ⫌ Jγ and I ⊆ Jγ, then σ̊J ,γ∩ (N∗)I =;.

Proof. We first claim that if a ∈ σJ ,γ and j ∈ J \ Jγ then for all t ≥ 0 we have a + te j ∈ σJ ,γ, where
e j is defined in the proof of Lemma 6. Indeed, for any b ∈ γ, we have

〈a + te j ,b〉 = 〈a,b〉 ≤ 〈a,c〉 ≤ 〈a + te j ,c〉 for all c ∈ Γ( f J ).

That implies 〈a + te j ,b〉 = ℓJ (a + te j ). Hence a + te j ∈σJ ,γ.
We assume by contradiction that there exists some point a ∈ σ̊J ,γ∩ (N∗)I . Take m ∈ J \ Jγ. One

can write the cone σJ ,γ as

σJ ,γ =
{
α ∈RJ ∣∣hi (α) = 0,k j (α) ≥ 0, ls (α) > 0, i ∈ I1, j ∈ I2, s ∈ I3

}
,

where hi , k j , ls are linear forms on RJ . Since a ∈ σ̊J ,γ we get k j (a) > 0 for all j ∈ I2. Hence, for
t > 0 small, we get k j (a − tem) > 0. Similarly, we get ls (a − tem) > 0 for t > 0 small and for all
s ∈ I3. By the above argument, for t > 0 we have a + tem ∈ σJ ,γ, hence hi (a + tem) = hi (a) = 0, so
hi (a − tem) = 0, for every i ∈ I1. It implies that a − tem ∈ σJ ,γ for t > 0 small. On the other hand,
because m ∈ J \ Jγ, I ⊆ Jγ and a ∈ (N∗)I , we have am = 0, so a − tem ∉ RJ

≥0 for any t > 0. This is a
contradiction, and the lemma is proved. □

Lemma 14. Use the notation in Theorem 12 and its proof, and let γ ∈ F . If J ⫌ Jγ, then

lim
T→∞

S0
J ,γ(T ) = lim

T→∞
S>

J ,γ(T ) = 0.

If J = Jγ, then
lim

T→∞
S0

Jγ,γ(T ) =− lim
T→∞

S>
Jγ,γ(T ) =λγ.

Proof. Assume that J ⫌ Jγ. Because

• (R≥0)J =⊔
I⊆J (R>0)I , where (R>0); = {(0, . . . ,0)} by convention,

• ℓJ (a) = ℓJγ (a) for a ∈ σ̊J ,γ∩NJ ,
• if I ⊆ Jγ, then σ̊J ,γ∩ (N∗)I =; (by Lemma 13),
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we have S0
J ,γ(T ) =∑

I⊆J ,I ̸⊆Jγ S0
J ,I ,γ(T ), where

S0
J ,I ,γ(T ) := ∑

a∈σ̊J ,γ∩(N∗)I

a j ≤ℓJγ (a), j∈J

L−|a|(L|J |−d T )ℓJγ (a) = ∑
a∈σ̊J ,γ∩(N∗)I

a j ≤ℓJγ (a), j∈I \Jγ

L−|a|(L|J |−d T )ℓJγ (a)

(the last equality comes because the inequality a j ≤ ℓJγ (a) is automatic for every j ∈ Jγ). Denote
by H j the half space of RI defined by a j ≤ ℓJγ (a). Then σ̊J ,γ∩(R>0)I ̸⊆ H j for all j ∈ I \ Jγ, because
if there exists an a ∈σJ ,γ∩H j , then for t > 0 large enough, we have a+ te j ∈σJ ,γ but a+ te j ̸∈ H j .
This agrees with the hypothesis of Lemma 3. Hence, by Lemma 3, limT→∞ S0

J ,I ,γ(T ) = 0 for any

I ⊆ J and I ̸⊆ Jγ. Hence limT→∞ S0
J ,γ(T ) = 0. Similarly, we have limT→∞ S>

J ,γ(T ) = 0.
For the rest statement, it follows from [6, Lemme 2.1.5] that

lim
T→∞

S0
Jγ,γ(T ) = ∑

I⊆Jγ

lim
T→∞

∑
a∈σ̊Jγ ,γ∩(N∗)I

L−|a|(L|J |−d T )ℓJγ (a) =λγ,

and similarly, limT→∞ S>
Jγ,γ(T ) =−λγ. □

Remark 15. This result revisits Guibert’s work in [6, Section 2.1] for Newton nondegenerate
polynomials f in a more general setting. Indeed, in [6] Guibert requires f to have the form∑
α∈(N∗)d aαxα, while we do not. Recently, Bultot–Nicaise in [3, Theorems 7.3.2, 7.3.5] provide a

new approach to the motivic zeta functions Z f (T ) and Z f ,O(T ), for f being Newton nondegener-
ate, using log smooth models.

Example 16. Consider the function f (x, y) = y2 − x3 on A2
C

, which is well known to be non-
degenerate with respect to its Newton polyhedron Γ. If γ is either the face [3,+∞)× {0} or the
face {0}× [2,+∞) of Γ, then γ is a coordinate face and Xγ(0) = ;. If γ is the compact face {(3,0)}
(resp. {(0,2)}), it contributes Xγ(1) = µ3 and Xγ(0) =; (resp. Xγ(1) = µ2 and Xγ(0) =;), as well as
λγ =−1. If γ is the compact face connecting (3,0) and (0,2), it contributes Xγ(1) = {

(x, y) ∈G2
m,C

∣∣
y2 − x3 = 1

}
and Xγ(0) = {

(x, y) ∈ G2
m,C

∣∣ y2 − x3 = 0
} ∼= Gm,C, as well as λγ = −1. Finally, if γ = Γ,

it is a coordinate face and contributes XΓ(0) ∼= Gm,C, as well as λΓ = 1 (since σ̊{1,2},Γ = {(0,0)}). By
Theorem 12 (we skip arrows to X0 for simplicity),

S f =
[{

(x, y) ∈G2
m,C

∣∣ y2 −x3 = 1
}]+ [µ3]+ [µ2]− (L−1)+ (L−1)

= [{
(x, y) ∈A2

C

∣∣ y2 −x3 = 1
}]

(∈M
µ̂

X0
).

This also agrees with Davison–Meinhardt’s conjecture on motivic nearby fibers of weighted
homogeneous polynomials mentioned in [12]. Also by Theorem 12 we have

S f ,O = [{
(x, y) ∈G2

m,C

∣∣ y2 −x3 = 1
}]+ [µ3]+ [µ2]− (L−1)

= [{
(x, y) ∈A2

C

∣∣ y2 −x3 = 1
}]− (L−1) (∈M

µ̂

C
).

3.4. Relation between motivic nearby cycles of f and f [d−1]

Let w be a linear function on Cd generic to f . In [9, 10], Lê Dũng Tráng introduced the relative
monodromy concerning ( f ,O) and w . We refer to [10, Theorem 2.4] for the following. Denote by
Bε the closed d-balls of radius ε about O, by Dη the closed disk of radius η about 0 inC, and by D×

η

the punctured disk Dη\{0}. LetΦbe the restriction of the map (w, f ) :Cd →C2 to Bϵ∩(w, f )−1(D2
η).

Lê proved that, for 0 < η ≪ ϵ ≪ 1, the map Φ−1(D2
η \ (Dη × {0})) → D×

η is a smooth fibration
which is fiber isomorphic to the Milnor fibration of ( f ,O) with monodromy M :Φ−1(Dη× {η}) →
Φ−1(Dη×{η}), and that w−1(0)∩Φ−1(D2

η\(Dη×{0})) → D×
η is also a smooth fibration which is fiber

isomorphic to the Milnor fibration of ( f |w=0,O). Then M induces the monodromy of the Milnor
fibration of ( f |w=0,O) and it lifts a diffeomorphism (which is a carousel) Dη×{η} → Dη×{η} along
the mapping Φ|Φ−1(Dη×{η}).
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We now consider the “non-generic” hyperplane xd = 0. We write f̃ for f [d−1], that is,

f̃ (x1, . . . , xd−1) = f (x1, . . . , xd−1,0),

and write Õ for the origin of Cd−1. Let X̃0 be the zero locus of f̃ , which may be included into X0.
The following theorem may be partially considered as a motivic analogue of the work mentioned
above. Using realizations, it would be interesting to compare the motivic result to the topological
result of Lê Dũng Tráng.

Theorem 17. Let f ∈ C[x1, . . . , xd ], and let d1,d2 ∈ N such that d = d1 +d2. The below identities
hold in M

µ̂

A
d1
C

for (i) and in M
µ̂

C
for (ii).

(i) Suppose that f is Newton nondegenerate, X̃0 ⊆ X0 and that Ad1
C

is embedded into X̃0 with

the inclusions ofAd1
C

in both X0 and X̃0 denoted by the same symbol ι. Then

ι∗S f = ι∗S f̃ + ι∗S ∆
f ,xd

.

(ii) If f is nondegenerate in the sense of Kouchnirenko and f (O) = 0, then

S f ,O =S f̃ ,Õ +S ∆
f ,xd ,O .

Proof. It suffices to prove (i). By the definition of (n,m)-iterated contact loci, we have

Xn,m( f , xd ) = ⊔
(J ,a)∈Pn .ad=m

X (n)
Jγ,a ,

We deduce from Section 2.3 and the method in the proof of Theorem 12 that∑
n≥m≥1

ι∗[Xn,m( f , xd )]L−nd T n

= ∑
γ∈F (d1)

∑
J⊇Jγ

∑
a∈σ̊J ,γ∩NJ

a j ≤ℓJ (a), j∈J
1≤ad≤ℓJ (a)

ι∗
[
X

(ℓJ (a))
J ,a

]
L−dℓJ (a)T ℓJ (a)

+ ∑
γ∈F (d1)

∑
J⊇Jγ

∑
k≥1

∑
a∈σ̊J ,γ∩NJ

a j ≤ℓJ (a), j∈J
1≤ad≤ℓJ (a)+k

ι∗
[
X

(ℓJ (a)+k)
J ,a

]
L−d(ℓJ (a)+k)T ℓJ (a)+k .

We apply Theorem 9 to γ ∈ F (d1) and a ∈ σ̊J ,γ. If d ∈ Jγ, then ℓJγ (a)+k ≥ ad ≥ 1 automatically
for any k ∈ N. If d ̸∈ Jγ, then the inequalities ℓJγ (a) + k ≥ ad ≥ 1 is in the situation of [8,
Lemma 2.10], in which the corresponding series has the limit zero. Therefore, taking limT→∞
and using Theorem 9, Lemma 14 and the proof of Theorem 12, we get

ι∗S ∆
f ,xd

=− ∑
γ∈F (d1)\F̃

d∈Jγ

λγ
[

Xγ(1)×X0 A
d1
C

→A
d1
C

]+ ∑
γ∈F (d1)

d∈Jγ

λγ
[

Xγ(0)×X0 A
d1
C

→A
d1
C

]
.

By Theorem 12,

ι∗S f =− ∑
γ∈F (d1)\F̃

d ̸∈Jγ

λγ
[

Xγ(1)×X0 A
d1
C

→A
d1
C

]+ ∑
γ∈F (d1)

d ̸∈Jγ

λγ
[

Xγ(0)×X0 A
d1
C

→A
d1
C

]+ ι∗S ∆
f ,xd

.

The condition d ̸∈ Jγ means that Jγ ⊆ [d −1], hence, again by Theorem 12,

ι∗S f̃ =− ∑
γ∈F (d1)\F̃

d ̸∈Jγ

λγ
[

Xγ(1)×X0 A
d1
C

→A
d1
C

]+ ∑
γ∈F (d1)

d ̸∈Jγ

λγ
[

Xγ(0)×X0 A
d1
C

→A
d1
C

]
.

The theorem is completely proved. □
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4. Cohomology groups of contact loci of nondegenerate singularities

As before, let f be in C[x1, . . . , xd ] which vanishes at O. In this section, we always assume that f is
nondegenerate in the sense of Kouchnirenko (say for short that f is nondegenerate).

4.1. Borel–Moore homology groups of contact loci

Consider the decomposition of Xn,O( f ) shown in (2) and Lemma 8(ii):

Xn,O( f ) = ⊔
(J ,a)∈P̃n

X (n)
J ,a ,

where P̃n is the set of all the pairs (J , a) such that J ⊇ Jγ, a ∈ ⊔
k∈N

(
σ̊J ,γ∩ ∆̃(n,k)

J

)
and γ ∈ K . We

consider an ordering in P̃n defined as follows: for (J , a) and (J ′, a′) in P̃n , (J ′, a′) ≤ (J , a) if and
only if J ′ ⊆ J and a j ≤ a′

j for all j ∈ J ′, where a = (a j ) j∈J and a′ = (a′
j ) j∈J ′ .

Lemma 18. Let n be inN∗. For all (J , a) and (J ′, a′) in P̃n such that X (n)
J ′,a′ and X (n)

J ,a are nonempty,
the following are equivalent:

(i) (J ′, a′) ≤ (J , a),

(ii) X (n)
J ′,a′ ⊆X (n)

J ,a ,

(iii) X (n)
J ′,a′ ∩X (n)

J ,a ̸= ;,

the closure taken in the usual topology. Consequently, for all (J , a) ∈ P̃n such that X (n)
J ,a ̸= ; we

have
X (n)

J ,a = ⊔
(J ′,a′)≤(J ,a)

X (n)
J ′,a′ .

Proof. We prove here that (iii) implies (i), the rest are straighforward. Observe firstly that, due to
the definition of X (n)

J ,a , if it is nonempty then

X (n)
J ,a = {

ϕ ∈Xn( f ) | ordt x j (ϕ) ≥ a j ∀ j ∈ J , xi (ϕ) ≡ 0 ∀ i ̸∈ J
}

,

where a = (a j ) j∈J , and a j > 0 for all j ∈ J . Assume that there existsϕ0 ∈X (n)
J ′,a′∩X (n)

J ,a ̸= ;. Then we

have ordt x j (ϕ0) = a′
j > 0 for all j ∈ J ′, and ordt x j (ϕ0) ≥ a j > 0 for all j ∈ J . If i ̸∈ J , then we have

ordt xi (ϕ0) =+∞, thus i ̸∈ J ′, so J ′ ⊆ J . Clearly, a j ≤ a′
j for all j ∈ J ′. Therefore, (J ′, a′) ≤ (J , a). □

Consider the function η : P̃n →Z given by η(J , a) = dimCX (n)
J ,a , for every n ∈N∗. Put

Sp := ⊔
(J ,a)∈P̃n ,η(J ,a)≤p

X (n)
J ,a ,

for p ∈N. The below are some properties of η and Sp ’s.

Lemma 19. Let n be inN∗.

(i) If (J ′, a′) ≤ (J , a) in P̃n and X (n)
J ,a ̸= ;, then η(J ′, a′) ≤ η(J , a).

(ii) For all p ∈N, Sp are closed and Sp ⊆ Sp+1. As a consequence, there is a filtration of Xn,O( f )
by closed subspaces:

Xn,O( f ) = Sd0 ⊇ Sd0−1 ⊇ ·· · ⊇ S−1 =;,

where d0 denotes the C-dimension of Xn,O( f ).

Proof. The first statement (i) is trivial. To prove (ii) we take the closure of Sp ; then using
Lemma 18 we get

Sp = ⋃
η(J ,a)≤p

X (n)
J ,a = ⋃

η(J ,a)≤p,X (n)
J ,a ̸=;

X (n)
J ,a = ⋃

η(J ,a)≤p,X (n)
J ,a ̸=;

⊔
(J ′,a′)≤(J ,a)

X (n)
J ′,a′ .
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This decomposition combined with (i) implies that Sp ⊆ Sp , which proves that Sp is a closed
subspace. The remaining statements of (ii) are trivial. □

A main result of this section is the following theorem. To express the result, we work with the
Borel–Moore homology H BM∗ .

Theorem 20. Let f ∈ C[x1, . . . , xd ] be nondegenerate in the sense of Kouchnirenko, n ∈ N∗ and
f (O) = 0. Then there is a spectral sequence

E 1
p,q := ⊕

(J ,a)∈P̃n ,η(J ,a)=p

H BM
p+q (X (n)

J ,a ) =⇒ H BM
p+q (Xn,O( f )).

Proof. We have the following the Gysin exact sequence

· · ·→ H BM
p+q (Sp−1) → H BM

p+q (Sp ) → H BM
p+q (Sp \ Sp−1) → H BM

p+q−1(Sp−1) →··· .

Put

Ap,q := H BM
p+q (Sp ), Ep,q := H BM

p+q (Sp \ Sp−1).

Then we have the bigraded Z-modules A := ⊕
p,q Ap,q and E := ⊕

p,q Ep,q . The previous exact
sequence induces the exact couple 〈A,E ;h, i , j 〉, where h : A → A is induced from the inclusions
Sm ⊆ Sm+1, i : A → E and j : E → A are induced from the above exact sequence. Since the filtration
in Lemma 19(ii) is finite, that exact couple gives us the following spectral sequence

E 1
p,q := Ep,q = H BM

p+q (Sp \ Sp−1) =⇒ H BM
p+q (Xn,O( f )).

On the other hand, we have

Sp \ Sp−1 =
⊔

(J ,a)∈P̃n ,η(J ,a)=p

X (n)
J ,a .

One claims that for two different pairs (J , a), (J
′
, a

′
) in P̃n which η(J , a) = η(J

′
, a

′
) = p then

X (n)
J ,a ∩X (n)

J ′ ,a′ =; and X (n)

J ′ ,a′ ∩X (n)
J ,a =;.

Indeed, if otherwise, suppose that

X (n)

J ′ ,a′ ∩X (n)
J ,a ̸= ;.

By Lemma 18, we obtain that X (n)

J ′ ,a′ ⊆ X (n)
J ,a , but X (n)

J ′ ,a′ and X (n)
J ,a are two disjoint smooth

manifolds, then η(J
′
, a

′
) < η(J , a). This is a contradiction.

Therefore, in the set Sp \ Sp−1 with the induced topology, each set X (n)
J ,a which η(J , a) = p is

open, hence, is also closed. This implies that

H BM
p+q (Sp \ Sp−1) = ⊕

(J ,a)∈P̃n ,η(J ,a)=p

H BM
p+q (X (n)

J ,a ).

The theorem is then proved. □

Corollary 21. With the hypothesis as in Theorem 20, there is an isomorphism of groups

H BM
2d0

(Xn,O( f )) ∼=Zs ,

where s is the number of connected components of Xn,O( f ) which have the same complex dimen-
sion d0 as Xn,O( f ).



1264 Lê Quy Thuong and Nguyen Tat Thang

4.2. Sheaf cohomology groups of contact loci

In this subsection, we are going to prove the following theorem.

Theorem 22. Let f ∈ C[x1, . . . , xd ] be nondegenerate in the sense of Kouchnirenko, n ∈ N∗ and
f (O) = 0. Let F be an arbitrary sheaf of abelian groups on Xn,O( f ). Then, there is a spectral
sequence

E p,q
1 := ⊕

(J ,a)∈P̃n ,η(J ,a)=p

H p+q
c (X (n)

J ,a ,F ) =⇒ H p+q
c (Xn,O( f ),F ). (8)

Proof. We use the notation in Lemma 19. For simplicity, we write S for Sd0 = Xn,O( f ). For
any 0 ≤ p ≤ d0, we put S◦

p := Sp \ Sp−1, which is a µn-invariant subset of S. Consider the
inclusions jp : S◦

p ,→ Sp , kp : S \ Sp ,→ S and ip : Sp ,→ S. Put Fp := ( jp )!( jp )−1(ip )−1F and
F p (F ) := (kp−1)!(kp−1)−1F for every p ≥ 1, with the convention F 0(F ) := F . Then we have the
exact sequences

0 → F p+1(F ) → F p (F ) and 0 → (ip )∗Fp →F |Sp →F |Sp−1 ,

in which by F |Sp we mean (ip )∗(ip )−1F . Therefore we have the following diagram

0

��

0

��

(ip )∗Fp

��

0 // F p+1(F ) //

��

F // F |Sp
//

��

0

0 // F p (F ) // F // F |Sp−1
// 0

It implies from the snake lemma that F p (F )/F p+1(F ) ∼= (ip )∗Fp . Thus there is a filtration of F

by “skeleta”: F = F 0(F ) ⊇ F 1(F ) ⊇ ·· · . It gives the following spectral sequence of cohomology
groups with compact support

E p,q
1 (S,F ) := H p+q

c (S, (ip )∗Fp ) =⇒ H p+q
c (S,F ). (9)

Since Sp is a closed subset of S, H m
c (S, (ip )∗Fp ) ∼= H m

c (Sp ,Fp ) for any m in N. Also, by the
isomorphisms given by the extension by zero sheaf, we have

H m
c (Sp ,Fp ) = H m

c (Sp , ( jp )!( jp )−1(ip )−1F ) ∼= H m
c (S◦

p , ( jp )−1(ip )−1F ).

We have that

S◦
p = ⊔

(J ,a)∈P̃n ,η(J ,a)=p

X (n)
J ,a .

Then by the reason as in the proof of Theorem 20, we get

H m
c (S◦

p , ( jp )−1(ip )−1F ) = ⊕
(J ,a)∈P̃n ,η(J ,a)=p

H p+q
c (X (n)

J ,a , (l J ,a)−1( jp )−1(ip )−1F ),

where l J ,a is the inclusion of X (n)
J ,a in S◦

p . For simplicity of notation, we write H p+q
c (X (n)

J ,a ,F )

instead of H p+q
c (X (n)

J ,a , (l J ,a)−1( jp )−1(ip )−1F ). The proof is completed. □

Now, let us consider the spectral sequence (8) for a constant sheaf. We need some notation,
for each γ ∈ K , k ∈N,n ∈N∗, p ∈Z and J ⊇ Jγ, we denote by D (n)

J ,γ,k,p the set of all a ∈ σ̊J ,γ∩ ∆̃(n,k)
J

such that dimCX (n)
J ,a = p.

Lemma 23. For any γ ∈ K , k ∈N,n ∈N∗, p ∈Z and J ⊇ Jγ, the set D (n)
J ,γ,k,p is finite.
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Proof. Notice that dimCX (n)
J ,a = d −1+ |J |n − |a| −k. The finiteness of D (n)

J ,γ,k,p follows from the
fact that the system of equations d − 1+ |J |n − |a| −k = p, ℓJ (a)+k = n in variables a only has
finite solutions inNJ . □

The summands in the spectral sequence (8) are described more explicitly in case of constant
sheaf as below.

Lemma 24. Let γ ∈ K ,n ∈N∗, p, q ∈Z and J ⊇ Jγ. Then, for any a ∈ D (n)
J ,γ,0,p we have

H p+q
c (X (n)

J ,a ,C) ∼= Hp−q (X J ,γ(1),C).

Proof. Since a ∈ D (n)
J ,γ,0,p , it follows from Theorem 9 that X (n)

J ,a is a complex manifold of real

dimension 2p and is homeomorphic to X J ,γ(1)×C|J |ℓJ (a)−|a|. Then, by combining the duality and
the Kunneth formula we get the conclusion. □

We also have the following description for the cohomology of X (n)
J ,a for J ⊇ Jγ and a ∈ D (n)

J ,γ,k,p
with k ∈N∗.

Lemma 25. Let γ ∈ K ,n,k ∈N∗, p, q ∈Z and J ⊇ Jγ. Then, for any a ∈ D (n)
J ,γ,k,p we have

H p+q
c (X (n)

J ,a ,C) ∼= Hp−q (X J ,γ(0),C).

Proof. Since X (n)
J ,a is a complex manifold of real dimension 2p, then by duality, we have

H p+q
c (X (n)

J ,a ,C) ∼= Hp−q (X (n)
J ,a ,C).

On the other hand, by Theorem 9, X (n)
J ,a is a locally trivial fibration on X J ,γ(0) with fiber

C|J |(ℓJ (a)+k)−|a|−k which is contractible. Hence, by the spectral sequence for (Serre) fibration, we
obtain that Hp−q (X (n)

J ,a ,C) ∼= Hp−q (X J ,γ(0),C). The proof is completed. □

We have the following result concerning cohomology of contact loci.

Corollary 26. Let f ∈ C[x1, . . . , xd ] be nondegenerate in the sense of Kouchnirenko, n ∈ N∗ and
f (O) = 0. Then, there is a spectral sequence

E p,q
1 =⇒ H p+q

c (Xn,O( f ),C),

where

E p,q
1 = ⊕

γ∈K

⊕
J⊇Jγ

(
Hp−q (X J ,γ(1),C)

|D(n)
J ,γ,0,p |⊕⊕

k≥1
Hp−q (X J ,γ(0),C)

|D(n)
J ,γ,k,p |

)
.

Proof. Apply Theorem 22 for F to be the constant sheaf on Xn,O( f ) associated to the field of
complex numbers C, since the inverse image of constant sheaf is a constant sheaf, the Corollary
is a direct consequence of Theorem 22 and Lemmas 24 and 25. □
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