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Abstract. In this note, we investigate the convergence of a U -statistic of order two having stationary ergodic
data. We will find sufficient conditions for the almost sure and L1 convergence and present some counter-
examples showing that the U -statistic itself might fail to converge: centering is needed as well as finiteness of
sup j≥2 E[|h(X1, X j )|].
Résumé. Dans cette note, nous étudions le théorème ergodique pour des U -statisques d’ordre 2 dont les
données sont issues d’une suite strictement stationnaire. Nous présentons des conditions suffisantes pour la
convergence presque sûre et dans L1 ainsi que des contre-exemples montrant que la U -statistique seule peut
ne pas converger: un terme de centrage est requis ainsi que la finitude de sup j≥2 E[|h(X1, X j )|].
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1. Introduction

In this note, we investigate the validity of the U -statistics ergodic theorem, i.e. the almost sure
convergence

1(n
2

) ∑
1≤i< j≤n

h(Xi , X j ) −→
Ï

h(x, y)dF (x)dF (y), (1)

where (Xi )i≥1 is a stationary ergodic process with marginal distribution F , and h
(
x, y

)
is a

symmetric kernel that is F ×F integrable. Birkhoff’s ergodic theorem establishes the analogous
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result for the time averages 1
n

∑n
i=1 f (Xi ), while Hoeffding [6] established (1) for i.i.d. processes

(Xi )i≥1. These two classical results naturally lead to the conjecture that (1) should hold without
further assumptions, i.e. for all stationary ergodic processes (Xi )i≥1 and all L1(F ×F ) functions
h(x, y). Aaronson et al. [1] proved a partial result in this direction, namely showing that (1) holds
for all F × F almost everywhere continuous and bounded kernels h(x, y). At the same time,
they presented counterexamples showing that (1) does not hold in full generality. One of their
counterexamples is a bounded kernel where the set of discontinuities has positive F ×F measure,
while the other counterexample is an F × F almost everywhere continuous, but unbounded
kernel.

The U -statistic ergodic theorem has subsequently been addressed by various authors, e.g. Ar-
cones [2], Borovkova, Burton and Dehling [4]; see also the review paper by Borovkova, Burton
and Dehling [5]. These papers provide both sufficient conditions for (1) to hold, as well as further
counterexamples, both for stationary ergodic processes as well as under stronger mixing assump-
tions. Most of the positive results also address other forms of convergence in (1) such as conver-
gence in probability and L1-convergence. Arcones [2] proved the ergodic theorem for absolutely
regular processes under some moment assumptions. Borovkova, Burton and Dehling [5] inves-
tigated convergence in probability in (1), with a special focus on the kernel h(x, y) = log(|x − y |),
which arises in connection with the Takens estimator for the correlation dimension.

A common feature of all these examples is that they satisfy a modified version of the U -
statistics ergodic theorem, namely

1(n
2

) ∑
1≤i< j≤n

(
h(Xi , X j )−E[

h
(
Xi , X j

)])−→ 0, (2)

assuming that E
[∣∣h (

Xi , X j
)∣∣]<∞ for all i , j .

It might thus seem natural to conjecture that (2) holds without further assumptions. In this
note, we present a counterexample that disproves this conjecture. In addition, we will give a
short proof of the U -statistics ergodic theorem for bounded F ×F -almost everywhere continuous
kernels, and give a new condition for L1-convergence.

2. A short proof of the ergodic theorem for U -statistics

In this section, we present a short proof of the U -statistics ergodic theorem that was first
established in Aaronson et al. [1]. For the special case, when the process has values in Rk , this
proof is contained in Borovkova, Burton and Dehling [5]. Here, we give the proof for processes
with values in an arbitrary separable metric space.

Theorem 1. Let (Xk )k≥0 be a stationary ergodic process with values in the separable metric space
S and marginal distribution F , and let h : S × S → R be a symmetric kernel that is bounded and
F ×F -almost everywhere continuous. Then, as n →∞

1(n
2

) ∑
1≤i< j≤n

h(Xi , X j ) −→
Ï

h(x, y)dF (x)dF (y),

almost surely.

Proof. We define the empirical distribution of the first n random variables

Fn = 1

n

n∑
i=1

δXi ,

where δx denotes the Dirac delta measure in x. For any L1(F )-function f : S → R, we obtain by
Birkhoff’s ergodic theorem∫

S
f (x)dFn(x) = 1

n

n∑
i=1

f (Xi ) →
∫

S
f (x)dF (x),
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almost surely. This convergence holds in particular for any bounded measurable function f ∈
Cb(S). Since S is separable, there exists a countably family of functions fi ∈ Cb(S), i ≥ 1, that
is convergence determining, i.e. that convergence of the integrals

∫
fi (x)dµn(x) → ∫

fi (x)dµ(x),
for all i ≥ 1, implies weak convergence of the probability measures µn to µ. Now, up to a set of
measure 0, we get ∫

S
fi (x)dFn(x) = 1

n

n∑
j=1

fi
(
X j

)→ ∫
S

fi (x)dF (x),

for all i ≥ 1, and thus Fn ⇒ F weakly. This is in fact Varadarajan’s argument [8] for the fact that
the empirical distribution of i.i.d. data X1, . . . , Xn converges weakly almost surely to the true
distribution F .

By Theorem 3.2 of Billingsley [3, p. 21], we obtain convergence of the empirical product
measure

Fn ×Fn ⇒ F ×F,

except on a set of measure 0. Thus, for any bounded F ×F -a.e. continuous function h : S×S →R,
we obtain by the portmanteau theorem

1

n2

∑
1≤i , j≤n

h(Xi , X j ) =
Ï

h(x, y)dFn(x)dFn(y) →
Ï

h(x, y)dF (x)dF (y),

almost surely. Since h is bounded, we obtain 1
n2

∑n
i=1 h(Xi , Xi ) → 0, and thus

1

n2

∑
1≤i ̸= j≤n

h(Xi , X j ) →
Ï

h(x, y)dF (x)dF (y),

almost surely. □

3. Convergence in L1 in the ergodic theorem for U -statistics

In this section, we present two sufficient conditions for the convergence in L1 of a U -statistic
to

Î
h

(
x, y

)
dF (x)dF

(
y
)
, where F denotes the distribution of X0. The first sufficient condition

imposes a restriction on the continuity points of the kernel combined with a uniform integrability
assumption. The second sufficient condition imposes a restriction on the joint distribution of
vectors (X0, Xk ) ,k ≥ 1, but no other assumption is required for the kernel h.

Theorem 2. Let (Xi )i≥1 be a stationary ergodic sequence taking values in Rd and let h : Rd ×Rd →
R be a measurable function such that the family

{
h

(
X1, X j

)
, j ≥ 1

}
is uniformly integrable. Let F

be the distribution of X1. Assume that one of the following assumptions is satisfied:

(A.1) the function h is F ×F almost everywhere continuous and symmetric.
(A.2)

∫
Rd

∫
Rd

∣∣h (
x, y

)∣∣dF (x)dF
(
y
)

is finite, the random variable X0 has a bounded density with
respect to the Lebesgue measure on Rd and for each k ≥ 1, the vector (X0, Xk ) has a density
fk with respect to the Lebesgue measure on Rd ×Rd and supk≥1 sups,t∈Rd fk (s, t ) is finite.

Then

lim
n→∞E

[∣∣∣∣∣ 1(n
2

) ∑
1≤i< j≤n

h
(
Xi , X j

)−∫
Rd

∫
Rd

h
(
x, y

)
dF (x)dF

(
y
)∣∣∣∣∣

]
= 0. (3)

Proof. Let us prove Theorem 2 under assumption (A.1). By Theorem 1 in [4], we know that
1(n
2

) ∑
1≤i< j≤n h

(
Xi , X j

)→ ∫
Rd

∫
Rd h

(
x, y

)
dF (x)dF

(
y
)

in probability. Then it suffices to notice that

uniform integrability of
{
h

(
X1, X j

)
, j ≥ 1

}
implies that of

{
1(n
2

) ∑
1≤i< j≤n h

(
Xi , X j

)
,n ≥ 2

}
.

We will prove Theorem 2 under assumption (A.2) in three steps: first we will show that (3)
holds when h is a product of indicator functions of Borel subsets of Rd . Then we will show
the result by approximating the map

(
x, y

) ∈ Rd ×Rd 7→ h
(
x, y

)
1[−R,R]d (x)1[−R,R]d

(
y
)
1|h(x,y)|≤R
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in L1
(
P(X0,Xk )

)
uniformly with respect to k by a linear combination of products of indicator

functions. Finally we will conclude by uniform integrability.

First step. Assume that h
(
x, y

) = 1A (x)1B
(
y
)
, where A and B are Borel subsets of Rd . Observe

that
1(n
2

) ∑
1≤i< j≤n

h
(
Xi , X j

)= 1(n
2

) ∑
1≤i< j≤n

1A (Xi )1B
(
X j

)
(4)

= 1(n
2

) n∑
j=2

1B
(
X j

) j−1∑
i=1

1A (Xi ) (5)

= 1(n
2

) n∑
j=2

(
j −1

)
1B

(
X j

)
Y j , (6)

where

Y j = 1

j −1

j−1∑
i=1

1A (Xi ) . (7)

Therefore, the following decomposition takes place:

1(n
2

) ∑
1≤i< j≤n

h
(
Xi , X j

)
= 1(n

2

) n∑
j=2

(
j −1

)
1B

(
X j

)(
Y j −P (X0 ∈ A)

)+P (X0 ∈ A)
1(n
2

) n∑
j=2

(
j −1

)
1B

(
X j

)
. (8)

Observe that by the ergodic theorem and the Lebesgue dominated convergence theorem, the first
term of the right hand side of (8) converges to 0 in L1. Moreover, by the ergodic theorem and a
summation by parts,

E

[∣∣∣∣∣ 1(n
2

) n∑
j=2

(
j −1

)
1B

(
X j

)−P (X0 ∈ B)

∣∣∣∣∣
]
→ 0, (9)

hence we derive that

lim
n→∞E

[∣∣∣∣∣ 1(n
2

) ∑
1≤i< j≤n

1A (Xi )1B
(
X j

)−P (X0 ∈ A)P (X0 ∈ B)

∣∣∣∣∣
]
= 0 (10)

where P (X0 ∈ A)P (X0 ∈ B) = ∫
Rd

∫
Rd h

(
x, y

)
dF (x)dF

(
y
)
.

Second step. Let R > 0 be fixed and define

h(R) (x, y
)= h

(
x, y

)
1[−R,R]d (x)1[−R,R]d

(
y
)
1|h(x,y)|≤R , (11)

which is integrable. By a standard result in measure theory, we know that for each positive ε, there
exists an integer N , constants c1, . . . ,cN and sets Aε,ℓ,Bε,ℓ,1 ≤ ℓ≤ N , such that∫

Rd×Rd

∣∣h(R) (x, y
)−hε

(
x, y

)∣∣dλd (x)dλd
(
y
)≤ ε, (12)

where

hε
(
x, y

)= N∑
ℓ=1

cℓ1Aε,ℓ (x)1Bε,ℓ

(
y
)

. (13)

Therefore, using stationarity and the fact that
(
Xi , X j

)
has a density f j−i which is bounded by a

constant M independent of
(
i , j

)
,

E
[∣∣h(R) (Xi , X j

)−hε
(
Xi , X j

)∣∣]= E[∣∣h(R) (X0, X j−i
)−hε

(
X0, X j−i

)∣∣]
=

∫
Rd×Rd

∣∣h(R) (x, y
)−hε

(
x, y

)∣∣ f j−i
(
x, y

)
dλd (x)dλd

(
y
)≤ Mε
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and

E

[∣∣∣∣∫
Rd

∫
Rd

h(R) (x, y
)

dF (x)dF
(
y
)−∫

Rd

∫
Rd

hε
(
x, y

)
dF (x)dF

(
y
)∣∣∣∣]

≤
∫
Rd

∫
Rd

∣∣h(R) (x, y
)−hε

(
x, y

)∣∣ fX0 (x) fX0

(
y
)

dλd (x)dλd (y) ≤ sup
t∈Rd

fX0 (t )ε. (14)

Consequently,

E

[∣∣∣∣∣ 1(n
2

) ∑
1≤i< j≤n

h(R) (Xi , X j
)−∫

Rd

∫
Rd

h(R) (x, y
)

dF (x)dF
(
y
)∣∣∣∣∣

]

≤ E
[∣∣∣∣∣ 1(n

2

) ∑
1≤i< j≤n

hε
(
Xi , X j

)−∫
Rd

∫
Rd

hε
(
x, y

)
dF (x)dF

(
y
)∣∣∣∣∣

]
+

(
M + sup

t∈Rd
fX0 (t )

)
ε. (15)

By the first step and the triangle inequality, we deduce that for each positive ε,

limsup
n→∞

E

[∣∣∣∣∣ 1(n
2

) ∑
1≤i< j≤n

h(R) (Xi , X j
)−∫

Rd×Rd
h(R) (x, y

)
dF (x)dF

(
y
)∣∣∣∣∣

]

≤
(

M + sup
t∈Rd

fX0 (t )

)
ε, (16)

and hence (3) holds with h replaced by hR .

Third step. By uniform integrability, for each positive ε, there exists δ such that for each A
satisfying P (A) < δ, sup1≤i< j E

[∣∣h (
Xi , X j

)∣∣1A
] < ε. Let R be such that P

(
X1 ∉ [−R,R]d

) < δ,

sup j≥2E
[∣∣h (

X1, X j
)∣∣1{∣∣h(

X1,X j
)∣∣>R

}]< ε and
∫
Rd

∫
Rd

∣∣h (
x, y

)−h(R)
(
x, y

)∣∣dF (x)dF (y) < ε. Then for

h(R) defined as in (11),

E
[∣∣h (

Xi , X j
)−h(R) (Xi , X j

)∣∣]
≤ E

[∣∣h (
Xi , X j

)∣∣(1{Xi∉[−R,R]d } +1{
X j ∉[−R,R]d

}+1{∣∣h(
X1,X j

)∣∣>R
})]≤ 3ε (17)

and it follows that

E

[∣∣∣∣∣ 1(n
2

) ∑
1≤i< j≤n

h
(
Xi , X j

)−∫
Rd

∫
Rd

h
(
x, y

)
dF (x)dF

(
y
)∣∣∣∣∣

]

≤ E
[∣∣∣∣∣ 1(n

2

) ∑
1≤i< j≤n

h(R) (Xi , X j
)−∫

Rd

∫
Rd

h(R) (x, y
)

dF (x)dF
(
y
)∣∣∣∣∣

]
+4ε, (18)

and we conclude by the second step. This ends the proof of Theorem 2. □

4. Examples of failure of the convergence of U -statistics

Example 4.1 given in [1] shows that there exists a stationary ergodic sequence (Xi )i≥1 and a

bounded measurable function for which
((n

2

)−1 ∑
1≤i< j≤n h

(
Xi , X j

))
n≥2

converges, but not to the

integral of h
(
x, y

)
with respect to the product of the law of X1.

In a similar setting, we are able to formulate two examples, the first showing that

the sequence
((n

2

)−1 ∑
1≤i< j≤n h

(
Xi , X j

))
n≥2

may fail to converge in probability even if∣∣h (
Xi , X j

)∣∣ is bounded by 1, and the second one showing that a centered U -statistic((n
2

)−1 ∑
1≤i< j≤n

(
h

(
Xi , X j

)−E[
h

(
Xi , X j

)]))
n≥2

may also fail to converge in probability.
We consider the transformation T x = 2x mod 1 of the unit interval [0,1) equipped with the

Borel sigma field B and Lebesgue measure λ. We define X0(x) = x, Xk (x) = T k x and U : L1 → L1

by U Y = Y ◦T , Y ∈ L1.
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4.1. Example 1: non-convergence of the U -statistics

Proposition 3. There exists a strictly stationary ergodic sequence (Xi )i≥1 and a bounded measur-
able symmetric function h : R2 → R such that the sequence

((n
2

)−1 ∑
1≤i< j≤n h

(
Xi , X j

))
n≥2

does not
converge in probability.

Proof. Let (Nℓ)ℓ≥1 and
(
N ′
ℓ

)
ℓ≥0

be sequences of positive integers such that N ′
0 = 1 and for ℓ≥ 1,

Nℓ < N ′
ℓ
< Nℓ+1 and

N ′
ℓ/Nℓ ≥ ℓ, Nℓ+1/N ′

ℓ→∞. (19)

We define
I = ⋃

ℓ≥0
Iℓ, Iℓ := {

k ∈N : N ′
ℓ < k ≤ Nℓ+1

}
(20)

G = ⋃
k∈I

{(
x,T k x

)
: x ∈ [0,1)

}
(21)

and for x, y ∈ [0,1),
h

(
x, y

)=1G
(
x, y

)+1G
(
y, x

)
.

Since for i < j and k ≥ 1, the equality T i x = T k+ j x can hold only for a countable set of x (namely,
the dyadic rationals), we obtain for 1 ≤ i < j the identity h

(
Xi , X j

) = 1G
(
Xi , X j

)
almost surely.

Moreover, by definition,
(
Xi , X j

) ∈G if and only if T i+k x = T j x for some k ∈ I . Almost surely, the
latter identity holds if and only if k = j − i , and thus

h
(
Xi , X j

)={
1 if j − i ∈ I ,

0 if j − i ∈N\ I .

In particular,
∣∣h (

Xi , X j
)∣∣≤ 1. By (19) we have

1

Nℓ(Nℓ−1)

∑
1≤i< j≤Nℓ

h
(
Xi , X j

)→ 1

2
,

1

N ′
ℓ

(N ′
ℓ
−1)

∑
1≤i< j≤N ′

ℓ

h
(
Xi , X j

)→ 0. (22)

Indeed, first observe that for each integer n,∑
1≤i< j≤n

h
(
Xi , X j

)= n∑
j=2

j−1∑
i=1

1 j−i∈I (23)

=
n∑

j=2

j−1∑
k=1

1k∈I (24)

=
n−1∑
k=1

n∑
j=k+1

1k∈I =
n−1∑
k=1

(n −k)1k∈I (25)

hence by definition of I , we get that for ℓ≥ 3,

1

Nℓ (Nℓ−1)

∑
1≤i< j≤Nℓ

h
(
Xi , X j

)= 1

Nℓ (Nℓ−1)

ℓ−2∑
u=1

∑
k∈Iu

(Nℓ−k)+ 1

Nℓ (Nℓ−1)

∑
k∈Iℓ−1

(Nℓ−k)

=: Aℓ+Bℓ. (26)

Note that bounding for 1 ≤ u ≤ ℓ− 2 the term
∑

k∈Iu (Nℓ−k) by NℓCard(Iu), and Card(Iu) by
Nu+1 −Nu , we get

Aℓ ≤
1

Nℓ−1

ℓ−2∑
u=1

(Nu+1 −Nu) ≤ Nℓ−1 −N1

Nℓ−1
(27)

and using (19), we get Aℓ→ 0. Moreover,

Bℓ =
1

Nℓ (Nℓ−1)

Nℓ∑
k=N ′

ℓ−1+1

(Nℓ−k) = 1

Nℓ (Nℓ−1)

Nℓ−N ′
ℓ−1−1∑

j=0
j ∼ 1

2

(
Nℓ−N ′

ℓ−1 −1
)2

N 2
ℓ

(28)
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hence Bℓ → 1/2, which proves the first part of (22). The second one follows from the observation
that

{
1, . . . , N ′

ℓ
−1

}∩ Iu is empty if u ≥ ℓ−1, which gives in view of (25),

1

N ′
ℓ

(N ′
ℓ
−1)

∑
1≤i< j≤N ′

ℓ

h
(
Xi , X j

)= 1

N ′
ℓ

(N ′
ℓ
−1)

N ′
ℓ
−1∑

k=1

(
N ′
ℓ−k

)
1k∈I

= 1

N ′
ℓ

(N ′
ℓ
−1)

ℓ−2∑
u=1

∑
k∈Iu

(
N ′
ℓ−k

)
≤ 1

N ′
ℓ

ℓ−2∑
u=1

(
Nu+1 −N ′

u

)
≤ 1

N ′
ℓ

ℓ−2∑
u=1

(Nu+1 −Nu) ≤
N ′
ℓ−1

N ′
ℓ

,

where the second inequality follows from Nu < N ′
u , and N ′

ℓ−1/Nℓ goes to 0 by (19). □

4.2. Example 2: non-convergence of a centered U -statistic

Proposition 4. There exists a strictly stationary ergodic sequence (Xi )i≥1 and a symmetric mea-
surable function h : R2 → R such that for each i < j , E

[∣∣h (
Xi , X j

)∣∣] is finite but the sequence((n
2

)−1 ∑
1≤i< j≤n

(
h

(
Xi , X j

)−E[
h

(
Xi , X j

)]))
n≥2

does not converge in probability.

Note that in this example, sup j≥2E
[∣∣h (

X1, X j
)∣∣] is infinite. Moreover, the sequence((n

2

)−1 ∑
1≤i< j≤n

(
h

(
Xi , X j

)−E[
h

(
Xi , X j

)]))
n≥2

converges in distribution to a centered non-
degenerated Gaussian random variable.

Proof. We take the same probability space and transformation as above. For k = 1,2, . . . define

Gk = T −k ([1/2,1)) , Gk =
{(

x,T k x
)

: x ∈Gk

}
, h

(
x, y

)= ∞∑
k=1

ak
(
1Gk

(
x, y

)+1Gk

(
y, x

))
,

where
ak = k3/2 − (k −1)3/2 for k ≥ 2 and a1 = 1. (29)

By similar arguments as in the proof of Proposition 3, the following equality holds almost surely
for each 1 ≤ i < j :

h
(
Xi , X j

)= a j−iU j f , where f = 1[1/2,1),

hence E
[
h

(
Xi , X j

)]= a j−i /2, and∑
1≤i< j≤n

h
(
Xi , X j

)= n−1∑
i=1

n∑
j=i+1

a j−iU j f =
n∑

j=2

j−1∑
i=1

a j−iU j f =
n∑

j=2

(
j −1

)3/2 U j f , (30)

where f =1[1/2,1). In order to have a better understanding of U j f , we introduce the intervals

I j ,ℓ =
[
ℓ−1

2 j
,
ℓ

2 j

)
, j ≥ 1,1 ≤ ℓ≤ 2 j . (31)

Lemma 5. The sequence
(
U j

(
f −1/2

))
j≥1 is a martingale difference sequence with respect to the

filtration
(
F j

)
j≥0, where F j =σ

(
I j ,ℓ,1 ≤ ℓ≤ 2 j

)
and F0 = {;,Ω}.

Proof. We show by induction on j ≥ 1 that

f ◦T j (x) =1⋃2 j−1
ℓ=1 I j ,2ℓ

(x) . (32)

For j = 1, notice that if x ∈ [0,1/2), then f ◦ T (x) = f (2x) = 1[1/2,1](2x) = 1[1/4,1/2) (x) and if
x ∈ [1/2,1), then f ◦T (x) = f (2x − 1) = 1[1/2,1](2x − 1) = 1[3/2,2) (2x) = 1[3/4,1) (x) hence for each
x ∈ [0,1), f ◦T (x) =1[1/4,1/2) (x)+1[3/4,1) (x).
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Assume now that (32) holds true for some j ≥ 1 and let us show that

f ◦T j+1 (x) =1⋃2 j
ℓ=1 I j+1,2ℓ

(x) . (33)

By (32) with x replaced by T x, we derive that

f ◦T j+1 (x) =1⋃2 j−1
ℓ=1 I j ,2ℓ

(T x) . (34)

If x ∈ [0,1/2), then

1⋃2 j−1
ℓ=1 I j ,2ℓ

(T x) =1⋃2 j−1
ℓ=1 I j ,2ℓ

(2x) =1⋃2 j−1
ℓ=1 I j+1,2ℓ

(x)

and (33) holds, and if x ∈ [1/2,1), then

1⋃2 j−1
j=1 I j ,2ℓ

(T x) =1⋃2 j−1
ℓ=1 I j ,2ℓ

(2x −1) =
2 j−1∑
ℓ=1

1I j ,2ℓ (2x −1) =
2 j−1∑
ℓ=1

1I
j ,2ℓ+2 j (x) =1⋃2 j

ℓ=2 j−1+1
I j+1,2ℓ

(x)

hence (33) also holds.
By (32), it is clear that U j f is F j -measurable. Moreover,

E
[
U j+1 (

f −1/2
)∣∣∣F j

]
=

2 j∑
ℓ=1

E
[
1I j+1,2ℓ −1/2

∣∣∣F j

]
= 0, (35)

which ends the proof of Lemma 5. □

Notice that
(n

2

)−1 ∑
1≤i< j≤n

(
h

(
Xi , X j

)−E[
h

(
Xi , X j

)])=∑n
j=1 dn, j , where

dn, j =
(

n

2

)−1 (
j −1

)3/2
(
U j f − 1

2

)
, j ≥ 2,dn,1 = 0. (36)

Then
(
dn, j

)
j≥1 is a martingale difference sequence with respect to the filtration

(
F j

)
j≥0 given as

in Lemma 5. Recall that by [7], if
(
dn, j

)
n≥1,1≤ j≤n is an array of martingale differences, such that

max
1≤ j≤n

∣∣dn, j
∣∣→ 0 in probability, (37)

there exists M > 0 such that sup
n≥1

max
1≤ j≤n

E
[

d 2
n, j

]
≤ M and (38)

n∑
j=1

d 2
n, j →σ2 in probability, (39)

then
∑n

j=1 dn, j converges in distribution to a centered normal distribution with variance σ2.

Noticing that
∣∣U j f (x)−1/2

∣∣ = 1/2, we can see that (37) and (38) are satisfied as well as (39)
with σ2 = 1/4.

Letting Yn = (n
2

)−1 ∑
1≤i< j≤n

(
h

(
Xi , X j

)−E[
h

(
Xi , X j

)])
, we thus get that Yn → N (0,1/4). Ex-

pressing Y2n−Yn as a sum of a martingale difference array, the same argument as above gives that
Y2n −Yn converges in distribution to a non-degenerated normal random variable hence (Yn)n≥1

cannot converge in probability. □
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