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Abstract. In this note, we investigate the convergence of a U-statistic of order two having stationary ergodic
data. We will find sufficient conditions for the almost sure and L! convergence and present some counter-
examples showing that the U-statistic itself might fail to converge: centering is needed as well as finiteness of
Sup = EllR(Xy, X))

Résumé. Dans cette note, nous étudions le théoréme ergodique pour des U-statisques d’ordre 2 dont les
données sont issues d'une suite strictement stationnaire. Nous présentons des conditions suffisantes pour la
convergence presque stre et dans L! ainsi que des contre-exemples montrant que la U-statistique seule peut
ne pas converger: un terme de centrage est requis ainsi que la finitude de sup ;> E[|2(X1, X;)1].
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1. Introduction

In this note, we investigate the validity of the U-statistics ergodic theorem, i.e. the almost sure

convergence
1
Y X, X)) — f f h(x, y)dF(x)dF(y), )

(Z) l<i<j<n
where (X;);»; is a stationary ergodic process with marginal distribution F, and h(x,y) is a
symmetric kernel that is F x F integrable. Birkhoff’s ergodic theorem establishes the analogous
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result for the time averages %Z?zl f(X;), while Hoeffding [6] established (1) for i.i.d. processes
(X;)i=1- These two classical results naturally lead to the conjecture that (1) should hold without
further assumptions, i.e. for all stationary ergodic processes (X;);>; and all L; (F x F) functions
h(x,y). Aaronson etal. [1] proved a partial result in this direction, namely showing that (1) holds
for all F x F almost everywhere continuous and bounded kernels h(x,y). At the same time,
they presented counterexamples showing that (1) does not hold in full generality. One of their
counterexamples is a bounded kernel where the set of discontinuities has positive F x F measure,
while the other counterexample is an F x F almost everywhere continuous, but unbounded
kernel.

The U-statistic ergodic theorem has subsequently been addressed by various authors, e.g. Ar-
cones [2], Borovkova, Burton and Dehling [4]; see also the review paper by Borovkova, Burton
and Dehling [5]. These papers provide both sufficient conditions for (1) to hold, as well as further
counterexamples, both for stationary ergodic processes as well as under stronger mixing assump-
tions. Most of the positive results also address other forms of convergence in (1) such as conver-
gence in probability and L!-convergence. Arcones [2] proved the ergodic theorem for absolutely
regular processes under some moment assumptions. Borovkova, Burton and Dehling [5] inves-
tigated convergence in probability in (1), with a special focus on the kernel h(x, y) =log(lx— yI),
which arises in connection with the Takens estimator for the correlation dimension.

A common feature of all these examples is that they satisfy a modified version of the U-
statistics ergodic theorem, namely

N Y (X X)—E[R(X:,X})]) —0, @
() 1=i< j<n
assuming that E |k (X;, X;)|] <ocoforall i, j.

It might thus seem natural to conjecture that (2) holds without further assumptions. In this
note, we present a counterexample that disproves this conjecture. In addition, we will give a
short proof of the U-statistics ergodic theorem for bounded F x F-almost everywhere continuous
kernels, and give a new condition for L!-convergence.

2. A short proof of the ergodic theorem for U-statistics

In this section, we present a short proof of the U-statistics ergodic theorem that was first
established in Aaronson etal. [1]. For the special case, when the process has values in R, this
proof is contained in Borovkova, Burton and Dehling [5]. Here, we give the proof for processes
with values in an arbitrary separable metric space.

Theorem 1. Let (Xy) = be a stationary ergodic process with values in the separable metric space
S and marginal distribution F, and let h : S x S — R be a symmetric kernel that is bounded and
F x F-almost everywhere continuous. Then, as n — oo

Y X X)) — [f hix, Y)AF@AFQ),

n
(2) l<i<js<n
almost surely.

Proof. We define the empirical distribution of the first n random variables
1 n
Fn = Z 5Xir
ni=1

where §, denotes the Dirac delta measure in x. For any L; (F)-function f: S — R, we obtain by
Birkhoff’s ergodic theorem

1 n
f FAF,(x) ==Y f(X;)— f fdF(x),
N n;5 S
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almost surely. This convergence holds in particular for any bounded measurable function f €
Cy(8S). Since S is separable, there exists a countably family of functions f; € C,(S), i = 1, that
is convergence determining, i.e. that convergence of the integrals [ f;(x)du,(x) — [ f;(x)dpu(x),
for all i = 1, implies weak convergence of the probability measures y, to p. Now, up to a set of
measure 0, we get

1 n
ffi(X)an(x) =— Zfi(Xj)_’ffi(x)dF(x),
S nis S

for all i = 1, and thus F,, = F weakly. This is in fact Varadarajan’s argument [8] for the fact that
the empirical distribution of i.i.d. data Xj,..., X, converges weakly almost surely to the true
distribution F.

By Theorem 3.2 of Billingsley [3, p. 21], we obtain convergence of the empirical product
measure

FyxFp,=FxF

except on a set of measure 0. Thus, for any bounded F x F-a.e. continuous function : Sx S — R,
we obtain by the portmanteau theorem

1
= ¥ hX))= ff (e, ) AFn () dF(y) — ff h(x, AR AE(),

1<i,j<n

almost surely. Since h is bounded, we obtain # Z?zl h(X;, X;) — 0, and thus

1
— ) h(Xi,Xj)— ff h(x, y)dF(x)dF(y),

% 1<itj<n
almost surely. g

3. Convergence in L! in the ergodic theorem for U-statistics

In this section, we present two sufficient conditions for the convergence in L! of a U-statistic
to I h(x,y)dF (x)dF (y), where F denotes the distribution of Xy. The first sufficient condition
imposes a restriction on the continuity points of the kernel combined with a uniform integrability
assumption. The second sufficient condition imposes a restriction on the joint distribution of
vectors (Xp, Xi), k = 1, but no other assumption is required for the kernel #.

Theorem 2. Let (X;);», be a stationary ergodic sequence taking values inR? and let h: R% x R? —
R be a measurable function such that the family {h (X1, X;), j = 1} is uniformly integrable. Let F
be the distribution of X,. Assume that one of the following assumptions is satisfied:
(A.1) the function h is F x F almost everywhere continuous and symmetric.
(A.2) Jpa Jpa |B(x,y)|dF (x)dF () is finite, the random variable X, has a bounded density with
respect to the Lebesgue measure on R and for each k = 1, the vector (Xo, Xi.) has a density
fi with respect to the Lebesgue measure on R x R and sup k=1SUP; sepd fi (5, 1) is finite.

Then

lim E
n—oo

=0. (3)

1
g X hex)- [ [ n(xy)dEeds(y)
(Z) 1<i<j<n v R4 JRA
Proof. Let us prove Theorem 2 under assumption (A.1). By Theorem 1 in [4], we know that
@ Yi<icjen h(Xi, Xj) = [pa Jga h(x,y) dF (x) dF (y) in probability. Then it suffices to notice that
uniform integrability of {i (X, X;), j = 1} implies that of{ﬁ Yi<icjen b (Xi,Xj),nz 2}.

We will prove Theorem 2 under assumption (A.2) in three steps: first we will show that (3)
holds when £ is a product of indicator functions of Borel subsets of R?. Then we will show
the result by approximating the map (x, y) € R x R — h(x, y) L g )L _gga(y) 1yp(x,p) <R
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in L'(P(x,,x,)) uniformly with respect to k by a linear combination of products of indicator
functions. Finally we will conclude by uniform integrability.

First step. Assume that h (x, y) =1,(x)1p ( y), where A and B are Borel subsets of R. Observe
that

1 1
@ 1Si<z}snh(xi»xj) NG lsgjsnm (X) 15 (X;) 4)
1 & !
= o 3 18 (X)) T 14 (X0 ®)
(2) j=2 i=1
1 & .
= (27)]_;2(1 -1)15(X;)Y;, (6)
where
1
szj—ZILA(Xi). )
—li=1
Therefore, the following decomposition takes place:
1
w2 h(XX))
(2) 1<i<j<n
1 & 1 &
=am 2 (=) 1 (X)) (Yj -P(Xo€ A)+P(Xoe A) = ) (7 -1) 1s(X;).  (®
(2) j=2 (2) j=2

Observe that by the ergodic theorem and the Lebesgue dominated convergence theorem, the first
term of the right hand side of (8) converges to 0 in L'. Moreover, by the ergodic theorem and a
summation by parts,

n
@ Z j—1)1p(X;)-P(Xo € B) 9)
j=2
hence we derive that
Jlim E a Y 1aX)1p(X;)-P(Xo€ AP (Xo€B) (10)
2) 1<i<jsn

where P (X € A)P (Xo € B) = Jpa Jpa (X, y) dF (x)dF (y).
Second step. Let R > 0 be fixed and define
h® (x,y) = h(xy) 1 _g g L g gia (V) Lingey)|<r (11

which is integrable. By a standard result in measure theory, we know that for each positive ¢, there
exists an integer N, constants ¢y, ...,cy and sets A ¢, B¢ ¢,1 < ¢ < N, such that

f |RP (x,y) = he (x, )| dAa () dAg () <&, (12)
R4 x R4
where
N
he (x,y) =) cela, (01, (y). (13)
/=1

Therefore, using stationarity and the fact that (X;, X;) has a density fj_; which is bounded by a
constant M independent of (i, j),

E[[R® (X5, Xj) = he (X, Xj)|] = E[[2™ (X0, Xj-i) = he (Xo, Xj4)]

= [ I 0 = e () fr-i () dAa (0 A (3) < Me
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and
E f f h® (x,y)dF(x)dF(y)—f f he (x,y)dF(x)dF(y)'
R4 JR4 R4 Jrd
Sf ih(R) (x,¥) = he (%, )| fxo (%) fxo (¥) AAa(x)dAa(p) < sup fx, (De.  (14)
RY JR4 reRd
Consequently;,
1
El|l— h® X, X _f f XS0 x,y)dF (x)dF y‘
(;z) lsi;sn ( i ]) rd Jrd ( ) ( )

<E

+ (M+ sup fx, (t)) e. (15)

teRd

1
@] > hE(Xi,Xj)—fRdedhg[x,y]dF(x)dF(y)

2) 1<i<j<n

By the first step and the triangle inequality, we deduce that for each positive €,

limsupE
n—oo

1
o, Yy, h® (Xi,Xj)—fRd y h® (x, y) dF (x) dF (y)
2) 1=si<j=n %

< (M+ sup fx, (t))e, (16)

teRd

and hence (3) holds with & replaced by hg.

Third step. By uniform integrability, for each positive ¢, there exists 0 such that for each A
satisfying P (A) < 6, suplsi<j[E[|h(Xi,Xj)|]lA] < e. Let R be such that P(X; ¢ [-R,RI9) < §,
sup >, E [|h (X1, X;)] 1{|h(X1,Xj)|>R}] <eand fpa fga | R (x,y) = B'P (x,y)|dF(x)dF(y) < €. Then for
h® defined as in (11),

E[|h (Xi, X;) = B (Xi, X;)] ]
=E [lh (Xi, ;)| (H{X,-et[fR,R]d} +Lix;e-rRa} + ]1{|h(X1,Xj)|>R})] =3¢ (17

and it follows that

G Z_ )= [ [ nts)arwar)

E
(2) l<i<jsn

1
<El|l+ Y. h®P(x,X)) —f f R (x,y)dF (x)dF (y)|| +4e, (18)
(2) l<i<j<n R? JRA
and we conclude by the second step. This ends the proof of Theorem 2. 0

4. Examples of failure of the convergence of U-statistics

Example 4.1 given in [1] shows that there exists a stationary ergodic sequence (X;);>; and a
bounded measurable function for which ((;’)_1 Yi<icjenh (Xi,Xj)) _, converges, but not to the
integral of i (x, y) with respect to the product of the law of X;. "

In a similar setting, we are able to formulate two examples, the first showing that
the sequence ((g)_121£i<jsnh(Xi,Xj)) _, may fail to converge in probability even if
|h(Xl-,Xj)| is bounded by 1, and thengecond one showing that a centered U-statistic

((g)_l Yi<icjzn (B (X, Xj) —E[h (X,-,Xj)])) _, may also fail to converge in probability.

We consider the transformation Tx = 2x mod 1 of the unit interval [0,1) equipped with the
Borel sigma field 2 and Lebesgue measure A. We define Xy (x) = x, X¢(x) = T*xand U: L' — L!
byUY=YoT,YelLl
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4.1. Example 1: non-convergence of the U -statistics

Proposition 3. There exists a strictly stationary ergodic sequence (X;);>1 and a bounded measur-

able symmetric function h: R?> — R such that the sequence (('2’)_1 Yi<icjenh (Xi,Xj)) , does not
n=

converge in probability.

Proof. Let (N/)/» and (N

’ ;) /=0 D€ sequences of positive integers such that Nj=1andfor¢=>1,
Ny <N, <Ny, and
l

Ny/Ng =¥, Ngii/N,—oo. 19)
We define
I=JI, Ir={keN:N,<k<Np} (20)
(=0
G= x, T*x|: x€10,1) 1)
U{(x1)sxci0.0)

and for x, y € [0, 1),

h(xy)=1c(x y)+1c(yx).
Since for i < j and k = 1, the equality T’ x = T**J x can hold only for a countable set of x (namely,
the dyadic rationals), we obtain for 1 < i < j the identity h(Xl,X ) = L (Xi, X;) almost surely.
Moreover, by definition, (X;, X ]) € G ifand only if T***x = T/ x for some k € I. Almost surely, the
latter identity holds if and only if k = j — i, and thus

h(X,,X,—):{

In particular, |k (X;, X;)| < 1. By (19) we have

1 1 1
- h(Xi,Xi)— =) ————
N¢(N¢—1) 15i<zj:5N[ (%5 %) 20 NN, -1 151'%51\7;

1 ifj—iel,
0 if j—ieN\L

h(X;, Xj)— 0. (22)

Indeed, first observe that for each integer n,

n j—

Z h(Xl’Xj ZZ j-iel (23)

l<i<j<n Jj=2i=1
n j-1
=2 2 Tker 24)
j=2k=1
n-1 n n-1
=2 2 lker=) -kl (25)
k=1j=k+1 k=1
hence by definition of I, we get that for £ = 3,
1
S h(X;, X (Np— k) + ————— (N, - k)
N¢(Ne—1) 1si<zj:szv[ (i, Xj) = Ne (Nl l;lk; Ne (Ni D ke%1
=:Ap+By. (26)

Note that bounding for 1 < u < ¢ -2 the term } ;¢ (N¢ — k) by Ny Card (I,,), and Card (I,,) by
Ny+1— Ny, we get

1 2 Ny1— N
A< Ny — N, _ 27
(SN Z( wrt =N < = 27)
and using (19), we get Ay — 0. Moreover,

Ny-N,_ -1 / 2

1 N 1 oL 1 (Ne=Ny -1)
Bj=——— ) WNy-kh=—— ) ]~—+ (28)

N¢(Ny-1) k=N]_ +1 Ny(Ny—1) =0 2 Nl
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hence By — 1/2, which proves the first part of (22). The second one follows from the observation
that {1,...,N2 -1} n I, is empty if u = £ — 1, which gives in view of (25),
1 1 Njy-1
v~ MEeX)= e Z (N =K Lies
Né(Né_l) 1=i<j<N, N/ (N/ -

) _
= — N,_
Ny (N, -1 uz::lk;u( ‘

¢
1 (-2 ( , )
S — Nyi1— N
N} u=1 ¢
1 ¢=2 N; .
Sﬁ;; (Ny+1—-Ny) = —— N, )
where the second inequality follows from N, < N, and N;_, /N, goes to 0 by (19). U

4.2. Example 2: non-convergence of a centered U -statistic

Proposition 4. There exists a strictly stationary ergodic sequence (X;);>1 and a symmetric mea-
surable function h: R> — R such that for each i < j, E[|h(X;,X;)|] is finite but the sequence

((2‘)_1 Yi<icjzn (B (Xi, Xj) —E[h (Xi’Xj)]))nzz does not converge in probability.

Note that in this example, sup;.,E[|h(X1,X;)|] is infinite. Moreover, the sequence
((g)_lzlskjsn(h(Xi,Xj)—[E[h(Xi,Xj)])) _, converges in distribution to a centered non-
degenerated Gaussian random variable. "=

Proof. We take the same probability space and transformation as above. For k = 1,2,... define
_ _ [e.o]
Gr=T"%(1/2,1)), Gy = {(x, Tkx) ‘x€ Gk}, h(x,y)=Y ar(Le, (x,y)+1g, (3.x)),
k=1

where
ar=k3"?-k-1%% fork=2and a; = 1. (29)

By similar arguments as in the proof of Proposition 3, the following equality holds almost surely

foreachl<i<j: '
h(X[,Xj)Zaj_iU]f, where f =11/2,1),
hence [E[h(Xi,Xj)] = aj_l-/2, and
Y (X, X)) Z Z aj_ U f= Zza, Ul f= Z -1)**uif, (30)
1<i<js<n i=1 j=i+1 j=2i=

where f = 1[1/2,1). In order to have a better understanding of U/ f, we introduce the intervals

1 0) jer1022) 31)
2] ’ 2] yJ=zhl=s6= .

Lemma 5. The sequence (U/ (f —1/2)) j=1 Is @ martingale difference sequence with respect to the

filtration (F}) ;,, where Fj =0 (I,¢,1= £ <2/) and Fy = {,Q}.

Ij,gZ

Proof. We show by induction on j = 1 that

foTl(x)=1 (x). (32)

UL, T
For j = 1, notice that if x € [0,1/2), then fo T(x) = f(2x) = Lj1/2,11(2x) = L{1/4,1/2) (x) and if
x €[1/2,1),then foT(x) = f2x—1) = L1/211(2x — 1) = L3/2,2) (2x) = 13/4,1) (x) hence for each
x€[0,1), foT(x)=Tpya1/2) () +Li3/4,1) (X).
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Assume now that (32) holds true for some j = 1 and let us show that

foT/™ (x) = (x). (33)

U;L Ijs1,20
By (32) with x replaced by T'x, we derive that

foTi™ (x)= (Tx). (34)

UL, Tjae
If x€[0,1/2), then
1,1 (Tx)

=1 ,i1
Upey Tjee U?Zl Ijoe

and (33) holds, and if x € [1/2,1), then

2x)=1 (x)

2/ -1
Upoy Tjr2e

21 21

1 (Tx)=1 @x-1)=) 15, QCx-D=) 1; (=1 (x)
= =

2j=1 . 2f-1 . 2]
Usy Lj2e Usoy Ljee U i1, Lisrae

hence (33) also holds. _
By (32), it is clear that U/ f is & j-measurable. Moreover,

E[ur (F-112) | 7] = [E[]llﬁm 12| 7| =0, (35)
which ends the proof of Lemma 5. g

Notice that (§) ™ T1i< jen (7 (X0, X;) ~E[R(X:, X;)]) = Y dn,j, where

-1
dn,jz(;l) (- )3/2(U’f )]>2dn1— 36)

Then (dp,j) ;- is a martingale difference sequence with respect to the filtration (%) ;. given as

in Lemma 5 Recall that by [7], if (dp, ;) is an array of martingale differences, such that

nzl,1<j<n

max |d,, ]| — 0 in probability, 37

1<jsn

there exists M > 0 such that sup 1max E d j < M and (38)
n=11=j=n
n
Y d;, ; — o in probability, 39)
=1

then Z” dy,j converges in distribution to a centered normal distribution with variance o2,

Notlclng that |Uf f)- 1/2| = 1/2, we can see that (37) and (38) are satisfied as well as (39)
with o2 = 1/4.

Letting Yy, = (g)_IZISstn (h(Xi, Xj)-E[h(X;, X;)]), we thus get that Y, — N (0,1/4). Ex-
pressing Y», — Y}, as a sum of a martingale difference array, the same argument as above gives that
Y>,, — Y, converges in distribution to a non-degenerated normal random variable hence (Y;);,>1
cannot converge in probability. O
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