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The variance-gamma ratio distribution
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Abstract. Let X and Y be independent variance-gamma random variables with zero location parameter; then
the exact probability density function of the ratio X /Y is derived. Some basic distributional properties are
also derived, including identification of parameter regimes under which the density is bounded, asymptotic
approximations of tail probabilities, and fractional moments; in particular, we see that the mean is undefined.
In the case that X and Y are independent symmetric variance-gamma random variables, an exact formula is
also given for the cumulative distribution function of the ratio X /Y .
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1. Introduction

The variance-gamma (VG) distribution with parameters m > −1/2, 0 ≤ |β| < α, µ ∈ R has
probability density function (PDF)

fX (x) = Meβ(x−µ)|x −µ|mKm(α|x −µ|), x ∈R, (1)

where the normalising constant is given by

M = Mm,α,β = γ2m+1

p
π(2α)mΓ(m +1/2)

,

with γ2 =α2 −β2. Here Km(x) is a modified Bessel function of the second kind, which is defined
in Appendix A. If the random variable X has PDF (1), then we write X ∼ VG(m,α,β,µ). The VG
distribution is also referred to as the Bessel function distribution [17], the generalized Laplace
distribution [13] and the McKay Type II distribution [11]. Alternative parametrisations can be
found in [4, 13, 15]. The VG distribution is widely used in financial modelling [15, 16], and further
application areas and distributional properties are given in Chapter 4 of the book [13]. In this
paper, we set µ= 0.

Let X and Y be independent random variables. The distribution of the ratio X /Y for X ∼
VG(m,0,1,0) and Y ∼ VG(n,0,1,0), m,n > 1, was studied by [19] (they referred to X and Y
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as Bessel function random variables). In particular, an exact formula, expressed in terms of
the Gaussian hypergeometric function (defined in Appendix A), was obtained for the PDF. The
study of [19] was motivated by the fact that the ratio of independent random variables arises
throughout the sciences and the already mentioned fact that VG random variables appear in
many applications, so that the ratio X /Y could, for example, represent the ratio of distributions
of log-returns of two different financial assets. However, it has been observed, for example,
that when fitting the VG distribution to log-returns of financial assets the skewness parameter
β is non-zero (see, for example, [22]). This provides motivation for this paper, in which we
derive the exact distribution of the VG ratio X /Y for independent X ∼ VG(m,α1,β1,0) and
Y ∼ VG(n,α2,β2,0), with m,n > −1/2, 0 ≤ |βi | < αi , i = 1,2, thereby generalising results of [19].
In the case of a ratio of independent symmetric VG random variables (β1 = β2 = 0), we also
derive an exact formula for the cumulative distribution function (CDF) of the ratio X /Y , a key
distributional property that is not given in [19]. This formula is expressed in terms of the Meijer
G-function, which is defined in Appendix A.

We stress that our results hold for m,n >−1/2, a wider range of validity than claimed by [19].
This is significant because the regime m < 1 is often encountered in applications; for example,
when fitting the VG distribution to log returns of financial assets [22]. Another source of interest
is that in the case m = 0 the VG distribution corresponds to the distribution of the product of two
correlated zero mean normal random variables, which itself has numerous applications dating
back to 1936 with the work of [1]; see [6] for an overview. Results corresponding to this case
are given in Corollary 13. Moreover, the case m,n < 1 warrants attention because the VG ratio
distribution undergoes a significant change in behaviour in that the density is bounded for m > 0,
but has a singularity at the origin for −1/2 < m ≤ 0; see Proposition 7. The tails of the distribution
also become heavier if −1/2 < n ≤ 0; see Proposition 8 and Corollary 9, where in the corollary we
give asymptotic approximations for tail probabilities. It follows from Proposition 8 that the mean
of the VG ratio distribution is undefined.

2. The variance-gamma ratio distribution

2.1. Probability density function

In the following theorem, we provide an explicit expression for the PDF fZ (z) of Z = X /Y in terms
of an infinite series involving the Gaussian hypergeometric function. Throughout this paper, we
let γ2

i =α2
i −β2

i , i = 1,2. We also denote ai j = (1+(−1)i+ j )/2, i , j ≥ 0, so that ai j = 1 if i + j is even,
and ai j = 0 if i + j is odd.

Theorem 1. Let m,n > −1/2, 0 ≤ |βi | < αi , i = 1,2. Suppose X ∼ VG(m,α1,β1,0) and Y ∼
VG(n,α2,β2,0) are independent. Let Z = X /Y . Then, for z ∈R,

fZ (z) = γ2m+1
1 γ2n+1

2 |z|−2n−2

πα2m+2n+2
1 Γ(m +1/2)Γ(n +1/2)

∞∑
i , j=0

βi
1β

j
2

i ! j !

2i+ j ai j ((i + j )/2)!z− j

α
i+ j
1 Γ(m +n +2+ i + j )

×Γ
(
m +n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
n +1+ i + j

2

)
× 2F1

(
m +n +1+ i + j

2
,n +1+ i + j

2
;m +n +2+ i + j ;1− α2

2

α2
1z2

)
. (2)

Remark 2. When β1 = β2 = 0, the PDF fZ (z) can be expressed as a single hypergeometric
function:

fZ (z) = α2n+1
2 |z|−2n−2Γ(m +1)Γ(n +1)

πα2n+1
1 (m +n +1)Γ(m +1/2)Γ(n +1/2)

2F1

(
m +n +1,n +1;m +n +2;1− α2

2

α2
1z2

)
, (3)
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in agreement with the formula given in Theorem 2.1 of [19]. We note that an application of the
formula (26) yields the following further simplification when m = n = 0:

fZ (z) = 2α1

π2α2

log |α1z/α2|
(α1z/α2)2 −1

. (4)

When β1 = 0 the PDF fZ (z) simplifies to

fZ (z) = γ2n+1
2 |z|−2n−2

πα2n+1
1

∞∑
k=0

k !

(2k)!

Γ(m +n +1+k)Γ(m +1+k)Γ(n +1+k)

Γ(m +1/2)Γ(n +1/2)Γ(m +n +2+2k)

×
(

2β2

α1z

)2k

2F1

(
m +n +1+k,n +1+k;m +n +2+2k;1− α2

2

α2
1z2

)
,

and when β2 = 0 the PDF simplifies to

fZ (z) = γ2m+1
1 α2n+1

2 |z|−2n−2

πα2m+2n+1
1

∞∑
k=0

k !

(2k)!

Γ(m +n +1+k)Γ(m +1+k)Γ(n +1+k)

Γ(m +1/2)Γ(n +1/2)Γ(m +n +2+2k)

×
(

2β1

α1

)2k

2F1

(
m +n +1+k,n +1+k;m +n +2+2k;1− α2

2

α2
1z2

)
.

Observe that the PDF fZ (z) is symmetric about the origin if β1 = 0 or β2 = 0.
We remark that the exact PDF of the product of correlated normal random variables is

expressed as a double sum involving the modified Bessel function of the second kind when both
normal random variables have non-zero mean [2], and the PDF simplifies to a single infinite
series of modified Bessel functions of the second kind when one of the means is zero [2], and
simply to the VG PDF when both means are zero [5]. Thus, the increase in complexity of the
PDF of the VG ratio distribution for non-zero skewness parameters β1,β2 mirrors the increase
in complexity of the product of two correlated normal random variables as one moves from zero
means to non-zero means.

Proof. We consider the case z > 0; the case z < 0 is similar and thus omitted from this proof. The
PDF of Z = X /Y for z > 0 can be expressed as

fZ (z) =
∫ ∞

−∞
|y | fX (y z) fY (y)dy = I1 + I2,

where

I1 = M1M2

∫ ∞

0
ym+n+1eβ1 y z eβ2 y zmKm(α1 y z)Kn(α2 y)dy, (5)

I2 = M1M2

∫ 0

−∞
(−y)m+n+1eβ1 y z eβ2 y zmKm(−α1 y z)Kn(−α2 y)dy, (6)

and M1 := Mm,α1,β1 and M2 := Mn,α2,β2 are the normalising constants of the VG(m,α1,β1,0)
and VG(n,α2,β2,0) distributions. On using Taylor’s expansion of the exponential function and
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interchanging integration and summation in the first step, and evaluating the integral in the
second step using equation (6.576.4) of [9], we obtain that

I1 = M1M2zm
∞∑

i=0

∞∑
j=0

βi
1zi

i !

β
j
2

j !

∫ ∞

0
ym+n+1+i+ j Km(α1 y z)Kn(α2 y)dy

= M1M22m+n−1αn
2

αm+2n+2
1 z2n+2

∞∑
i=0

∞∑
j=0

βi
1

i !

β
j
2

j !

2i+ j

α
i+ j
1 z jΓ(m +n +2+ i + j )

Γ

(
m +n +1+ i + j

2

)
×Γ

(
n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
1+ i + j

2

)
× 2F1

(
m +n +1+ i + j

2
,1+n + i + j

2
;m +n +2+ i + j ;1− α2

2

α2
1z2

)
. (7)

By a similar calculation, we get that

I2 =
M1M22m+n−1αn

2

αm+2n+2
1 z2n+2

∞∑
i=0

∞∑
j=0

(−1)i+ jβi
1β

j
2

i ! j !

2i+ j

α
i+ j
1 z jΓ(m +n +2+ i + j )

×Γ
(
m +n +1+ i + j

2

)
Γ

(
n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
1+ i + j

2

)
× 2F1

(
m +n +1+ i + j

2
,n +1+ i + j

2
;m +n +2+ i + j ;1− α2

2

α2
1z2

)
. (8)

Summing up (7) and (8) now yields (2) for z > 0. □

Using special properties of the modified Bessel function of the second kind and the hyper-
geometric function, equivalent forms and elementary formulas for the PDF of Z = X /Y can be
derived; we illustrate this in the following Corollary 3 and Proposition 4.

Corollary 3. The PDF (2) can be expressed in the equivalent forms:

fZ (z) = γ2m+1
1 γ2n+1

2 |z|2m

πα2m+2n+2
2 Γ(m +1/2)Γ(n +1/2)

∞∑
i , j=0

βi
1β

j
2

i ! j !

2i+ j ai j ((i + j )/2)!zi

α
i+ j
2 Γ(m +n +2+ i + j )

×Γ
(
m +n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
n +1+ i + j

2

)
× 2F1

(
m +n +1+ i + j

2
,m +1+ i + j

2
;m +n +2+ i + j ;1− α2

1z2

α2
2

)
, (9)

fZ (z) = γ2m+1
1 γ2n+1

2

πα2m
1 α2n+2

2 Γ(m +1/2)Γ(n +1/2)

∞∑
i , j=0

βi
1β

j
2

i ! j !

2i+ j ai j ((i + j )/2)!)zi

α
i+ j
2 Γ(m +n +2+ i + j )

×Γ
(
m +n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
n +1+ i + j

2

)
× 2F1

(
n +1+ i + j

2
,1+ i + j

2
;m +n +2+ i + j ;1− α2

1z2

α2
2

)
, (10)
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and

fZ (z) = γ2m+1
1 γ2n+1

2 z−2

πα2m+2
1 α2n

2 Γ(m +1/2)Γ(n +1/2)

∞∑
i , j=0

βi
1β

j
2

i ! j !

2i+ j ai j ((i + j )/2)!z− j

α
i+ j
1 Γ(m +n +2+ i + j )

×Γ
(
m +n +1+ i + j

2

)
Γ

(
m +1+ i + j

2

)
Γ

(
n +1+ i + j

2

)
× 2F1

(
1+ i + j

2
,m +1+ i + j

2
;m +n +2+ i + j ;1− α2

2

α2
1z2

)
. (11)

Note that (9) and (10) hold for −p2α2/α1 < z <p
2α2/α1, whilst (11) holds for z <−α2/(

p
2α1) or

z >α2/(
p

2α1).

Proof. Apply the three transformation formulas given in equation (9.131.1) of [9] to the hyperge-
ometric functions in the formula (2). □

Proposition 4. Suppose that m −1/2 ≥ 0 and n −1/2 ≥ 0 are integers. Then, (2) can be simplified
to the elementary form:

fZ (z) = γ2m+1
1 γ2n+1

2 |z|m−1/2

(2α1)m+1/2(2α2)n+1/2

m− 1
2∑

i=0

n− 1
2∑

j=0

(m +n − i − j )!

(m −1/2− i )!(n −1/2− j )!

(
m −1/2+ i

i

)

×
(

n −1/2+ j

j

)
(2α1|z|)−i (2α2)− j

(
1

um+n+1−i− j
1

+ 1

um+n+1−i− j
2

)
, (12)

where u1 =α1|z|+α2 +β1z +β2 and u2 =α1|z|+α2 −β1z −β2.

Remark 5. As noted by [13], the VG(1/2,α,β,0) distribution corresponds to the asymmetric
Laplace distribution. Hence, setting m = n = 1/2 in (12) yields the PDF of the ratio of independent
asymmetric Laplace random variables. In the case β1 = β2 = 0, the formula further reduces to
the PDF of the ratio of independent Laplace random variables; this distribution is known as the
Lomax distribution (see, for example, [12]).

Proof. Apply the formula (24) to the modified Bessel functions of the second kind that appear
in the integrands of I1 and I2 given in (5) and (6). Evaluating the resulting integrals using the
standard formula

∫ ∞
0 xae−bx dx = a!b−a−1 for a = 0,1,2, . . ., b > 0, summing up I1 + I2, and

simplifying yields (12). □

2.2. Cumulative distribution function

Let FZ (z) = P(Z ≤ z) denote the CDF of the VG ratio distribution. In the following theorem, we
provide an exact formula for the CDF in the case of a ratio of independent symmetric VG random
variables (β1 =β2 = 0), the same setting as in the work of [19].

Theorem 6. Let β1 =β2 = 0, and m,n >−1/2, α1,α2 > 0. Then, for z ∈R,

FZ (z) = 1

2
+ α1z/α2

2πΓ(m +1/2)Γ(n +1/2)
G2,3

3,3

(
α2

1z2

α2
2

∣∣∣∣∣ −n, 1
2 ,0

m,0,− 1
2

)
. (13)

Proof. For ease of exposition, we setα1 =α2 = 1; the general case follows from a simple rescaling.
As the PDF is symmetric when β1 = β2 = 0, we also just consider the case z > 0. Using the
representation (33) of the hypergeometric function in terms of the Meijer G-function allows us to
write the PDF (3) in terms of the Meijer G-function:

fZ (z) =Cm,n z−2n−2G2,2
2,2

(
z−2

∣∣∣∣−m −n,−n
0,−n

)
=Cm,n z−2n−2G2,2

2,2

(
z2

∣∣∣∣ 1,n +1
m +n +1,n +1

)
,
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where 1/Cm,n =πΓ(m+1/2)Γ(n+1/2), and we used the relation (31) to obtain the second equality.
For z > 0, the CDF of Z is thus given by

FZ (z) = 1

2
+Cm,n

∫ z

0
y−2n−2G2,2

2,2

(
y2

∣∣∣∣ 1,n +1
m +n +1,n +1

)
dy

= 1

2
+ Cm,n

2

∫ z2

0
u−n−3/2G2,2

2,2

(
u

∣∣∣∣ 1,n +1
m +n +1,n +1

)
du

= 1

2
+ Cm,n

2

[
u−n−1/2G2,3

3,3

(
u

∣∣∣∣ n + 3
2 ,1,n +1

m +n +1,n +1,n + 1
2

)]z2

0

= 1

2
+ Cm,n

2

[
G2,3

3,3

(
u

∣∣∣∣ 1, 1
2 −n, 1

2
m + 1

2 , 1
2 ,0

)]z2

0

= 1

2
+ Cm,n

2
G2,3

3,3

(
z2

∣∣∣∣ 1, 1
2 −n, 1

2
m + 1

2 , 1
2 ,0

)
,

where we used the integral formula (34) in the third step; the relation (32) in the fourth step; and
in the final step we used that the Meijer G-function in the penultimate equality evaluated at u = 0
is equal to zero, which is readily deduced from the contour integral representation (30) of the
G-function. Finally, we using (32) yields

FZ (z) = 1

2
+ Cm,n

2
· zG2,3

3,3

(
z2

∣∣∣∣ 1
2 ,−n,0

m,0,− 1
2

)
= 1

2
+ Cm,n

2
· zG2,3

3,3

(
z2

∣∣∣∣ −n, 1
2 ,0

m,0,− 1
2

)
. (14)

The formula (14) is also readily seen to hold for z < 0. We therefore arrive at the formula (13),
which conveniently holds for all z ∈R □

2.3. Asymptotic behaviour of the density and tail probabilities, and fractional moments

The representations of the PDF fZ (z) given in Theorem 1, Corollary 3 and Proposition 4 are
rather complicated and difficult to parse at first inspection. Some insight can be gained from
the following propositions.

Proposition 7. Let m,n >−1/2, 0 ≤ |βi | <αi , i = 1,2.

(1) Suppose m > 0. Then

fZ (0) = γ2m+1
1 γ2n+1

2

πα2m
1 α2n+2

2

Γ(m)Γ(n +1)

Γ(m +1/2)Γ(n +1/2)
2F1

(
1,n +1;

1

2
;
β2

2

α2
2

)
.

(2) Suppose m = 0. Then, as z → 0,

fZ (z) ∼− 2γ1γ
2n+1
2

π3/2α2n+2
2

Γ(n +1)log |z|
Γ(n +1/2)

2F1

(
1,n +1;

1

2
;
β2

2

α2
2

)
.

(3) Suppose −1/2 < m < 0. Then, as z → 0,

fZ (z) ∼ γ2m+1
1 γ2n+1

2

α2m+2n+2
2 sin(−mπ)

Γ(m +n +1)|z|2m

Γ(m +1/2)Γ(n +1/2)
2F1

(
m +1,m +n +1;

1

2
;
β2

2

α2
2

)
.

Proposition 8. Let m,n >−1/2, 0 ≤ |βi | <αi , i = 1,2.

(1) Suppose n > 0. Then, as |z|→∞,

fZ (z) ∼ γ2m+1
1 γ2n+1

2

πα2m+2
1 α2n

2

Γ(m +1)Γ(n)z−2

Γ(m +1/2)Γ(n +1/2)
2F1

(
1,m +1;

1

2
;
β2

1

α2
1

)
. (15)

(2) Suppose n = 0. Then, as |z|→∞,

fZ (z) ∼ 2γ2m+1
1 γ2

π3/2α2m+2
1

Γ(m +1)z−2 log |z|
Γ(m +1/2)

2F1

(
1,m +1;

1

2
;
β2

1

α2
1

)
. (16)
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(3) Suppose −1/2 < n < 0. Then, as |z|→∞,

fZ (z) ∼ γ2m+1
1 γ2n+1

2

α2m+2n+2
1 sin(−nπ)

Γ(m +n +1)|z|−2−2n

Γ(m +1/2)Γ(n +1/2)
2F1

(
n +1,m +n +1;

1

2
;
β2

1

α2
1

)
. (17)

Corollary 9. Let m,n >−1/2, 0 ≤ |βi | <αi , i = 1,2. Let F̄Z (z) =P(Z > z).

(1) Suppose n > 0. Then, as z →∞,

F̄Z (z) ∼ γ2m+1
1 γ2n+1

2

πα2m+2
1 α2n

2

Γ(m +1)Γ(n)z−1

Γ(m +1/2)Γ(n +1/2)
2F1

(
1,m +1;

1

2
;
β2

1

α2
1

)
. (18)

(2) Suppose n = 0. Then, as z →∞,

F̄Z (z) ∼ 2γ2m+1
1 γ2

π3/2α2m+2
1

Γ(m +1)z−1 log(z)

Γ(m +1/2)
2F1

(
1,m +1;

1

2
;
β2

1

α2
1

)
.

(3) Suppose −1/2 < n < 0. Then, as z →∞,

F̄Z (z) ∼ γ2m+1
1 γ2n+1

2

α2m+2n+2
1 sin(−nπ)

Γ(m +n +1)z−1−2n

(1+2n)Γ(m +1/2)Γ(n +1/2)
2F1

(
n +1,m +n +1;

1

2
;
β2

1

α2
1

)
.

Remark 10. Since 2F1(a,b;c;0) = 1, the formulas of Proposition 7 simplify when β2 = 0, whilst
the formulas of Proposition 8 and Corollary 9 simplify when β1 = 0.

Remark 11. Proposition 7 tells us that, as z → 0, the PDF fZ (z) is bounded for m > 0, but
has a singularity for −1/2 < m ≤ 0. Note that whether the density is bounded or unbounded
is determined solely by the parameter m. We remark that this behaviour is consistent with the
behaviour of the VG density fX (x), which is bounded for all x ∈R if m > 0, but has a singularity as
x → 0 if −1/2 < m ≤ 0 (see [7, equation (2.4)]).

The asymptotic behaviour of the PDF as z → 0 shows that the VG ratio distribution is unimodal
if −1/2 < m ≤ 0, as in this case the density is bounded everywhere except for the singularity at
z = 0. Also, the VG ratio distribution was shown to be unimodal in the β1 = β2 = 0 case by [19]
(they proved it for m,n ≥ 1, although their argument also applies for m,n >−1/2). Our numerical
tests strongly suggest that the VG ratio distribution is unimodal for all parameter values, although
we have been unable to prove this.

We see from Proposition 8 that the tails of the VG ratio distribution become heavier as n ≤ 0
decreases; note that now the rate of decay of the tails with respect to z is solely determined by the
parameter n. We remark that it is curious that, whilst the VG ratio distribution is only symmetric
around the origin if β1 = 0 or if β2 = 0, for all parameter values we have limz→∞ fZ (z)/ fZ (−z) = 1.
This is in contrast to the VG distribution itself, for which limx→∞ fX (x)/ fX (−x) = 1 if and only if
β= 0 (see [7, p. 4]).

It follows from Proposition 8 that, for all possible parameter values, the mean of the VG ratio
distribution is undefined. This is a common feature of ratio distributions; for example, it is well-
known that the ratio of independent standard normal random variables follows the Cauchy
distribution, for which the mean does not exist. Whilst the mean of the VG ratio distribution is
not defined, the fractional moments E[|Z |k ] do exist for suitable k < 1, as seen in Proposition 12
below.

The PDF of the VG ratio distribution is plotted for a range of parameter values in Figures 1
and 2. Figure 1 demonstrates the effect of varying the shape parameters m and n, whilst Figure 2
shows the effect of varying the skewness parameters β1 and β2. In both figures, α1 =α2 = 1. The
figures confirm the assertions made in Remark 11.
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Figure 1. β1 =β2 = 0, (a): m =−0.25; (b): m = 0.

Figure 2. m = n = 1.5, β1 = 0.5.

Proof of Proposition 7. Suppose first that m > 0. We shall make use of the representation (10) of
the PDF fZ (z). Let

C = γ2m+1
1 γ2n+1

2

πα2m
1 α2n+2

2 Γ(m +1/2)Γ(n +1/2)
.

Then

lim
z→0

fZ (z) =C
∞∑

k=0

(
2β2

α2

)2k k !Γ(m +n +1+k)Γ(m +1+k)Γ(n +1+k)

(2k)!Γ(m +n +2+2k)

× 2F1(n +1+k,1+k;m +n +2+2k;1). (19)

Using the formula (27) to express the hypergeometric functions in (19) in terms of the gamma
function, and cancelling the gamma functions gives that

lim
z→0

fZ (z) =CΓ(m)
∞∑

k=0

k !

(2k)!
Γ(n +1+k)

(
2β2

α2

)2k

=CΓ(m)Γ(n +1)2F1

(
1,n +1;

1

2
;
β2

2

α2
2

)
,

where we obtained the second equality by using the basic formula (u)k = Γ(u+k)/Γ(u) to put the
infinite series into the hypergeometric form (25).

The cases m = 0 and −1/2 < m < 0 are treated similarly, but instead of using the equality (27)
we apply the limiting forms (28) and (29) for the hypergeometric function, respectively. In the
case −1/2 < m < 0, we simplify our limiting form for fZ (z) by applying the standard formula
Γ(−m)Γ(m +1) =π/sin(−mπ). □

Proof of Proposition 8. The proof is similar to that of Proposition 7, except we make use of the
representation (11) of the PDF fZ (z) instead of the representation (10). □
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Proof of Corollary 9. Suppose first that n > 0. Then, by (15), as z →∞,

F̄Z (z) ∼ γ2m+1
1 γ2n+1

2

πα2m+2
1 α2n

2

Γ(m +1)Γ(n)

Γ(m +1/2)Γ(n +1/2)
2F1

(
1,m +1;

1

2
;
β2

1

α2
1

)∫ ∞

z
x−2 dx,

and evaluating
∫ ∞

z x−2 dx = z−1 yields (18). The cases n = 0 and −1/2 < n < 0 are dealt with
similarly making use of the limiting forms (16) and (17) and the formulas

∫ ∞
z x−2 log(x)dx =

z−1(log(z)+1) ∼ z−1 log(z), as z →∞, and
∫ ∞

z x−2−2n dx = z−1−2n/(1+2n). □

Proposition 12. Let m,n > −1/2, 0 ≤ |βi | < αi , i = 1,2. Then, for max{−1,−2m − 1} < k <
min{1,2n +1},

E[|Z |k ] = αk
2 (1−β2

1/α2
1)m+1/2(1−β2

2/α2
2)n+1/2

αk
1 cos(kπ/2)Γ(m +1/2)Γ(n +1/2)

Γ

(
m + k +1

2

)
Γ

(
n + 1−k

2

)

× 2F1

(
k +1

2
,m + k +1

2
;

1

2
;
β2

1

α2
1

)
2F1

(
1−k

2
,n + 1−k

2
;

1

2
;
β2

2

α2
2

)
.

We will need the following formula of [8] for the absolute moments of the VG(m,α,β,0)
distribution. Then, for k > max{−1,−2m −1},

E[|X |k ] = 2k (1−β2/α2)m+1/2

p
παkΓ(m +1/2)

Γ

(
m + k +1

2

)
Γ

(
k +1

2

)
2F1

(
k +1

2
,m + k +1

2
;

1

2
;
β2

α2

)
. (20)

Proof. By independence, E[|Z |k ] = E[|X |k ]E[|Y |−k ], and calculating the absolute moments
E[|X |k ] and E[|Y |−k ] using equation (20) yields the desired formula for E[|Z |k ] following a sim-
plification using the identity Γ((k +1)/2)Γ((1−k)/2) =πsec(kπ/2). □

2.4. Product of correlated zero mean normal random variables

Let (Ui ,Vi ), i = 1,2, be independent bivariate normal random vectors with zero mean vector,
variances (σ2

Ui
,σ2

Vi
) and correlation coefficient ρi . Set si =σUi σVi , and let Wi =Ui Vi . It was noted

by [3, 5] that the product Wi has a VG distribution,

Wi ∼ VG

(
0,

1

si (1−ρ2
i )

,
ρi

si (1−ρ2
i )

,0

)
, (21)

which yielded a new derivation of the PDF of the product Wi which was earlier obtained inde-
pendently by [10] and [20]. Let T = W1/W2. On combining (2) and (4) with (21) we immediately
deduce the following formulas for the PDF of the ratio T .

Corollary 13. Let the previous notations prevail. Then, for t ∈R,

fT (t ) = (s1/s2)(1−ρ2
1)3/2t−2

π2
√

1−ρ2
2

∞∑
i , j=0

ai j ((i + j )/2)!)4

i ! j !(i + j +1)!
(2ρ1)i

(
1−ρ2

1

1−ρ2
2

) j (
2s1ρ2

s2t

) j

× 2F1

(
1+ i + j

2
,1+ i + j

2
;2+ i + j ;1−

(
s1(1−ρ2

1)

s2(1−ρ2
2)t

)2)
. (22)

The PDF (22) simplifies as follows when ρ1 = ρ2 = 0. For t ∈R,

fT (t ) = 2s2

π2s1

log |s2t/s1|
(s2t/s1)2 −1

. (23)

Remark 14. When s1 = s2 = 1, (23) is also the density of the product of two independent
standard Cauchy random variables with PDF f (x) = π−1(1 + x2)−1, x ∈ R. This follows from
the well-known result that the quotient of independent standard normal random variables
follows the standard Cauchy distribution. More generally, formulas for the PDF of the product
of independent Student’s t random variables are given in [18].
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Appendix A. Special functions

In this appendix, we define the modified Bessel function of the second kind, the Gaussian
hypergeometric function and the Meijer G-function, and state some basic properties that are
needed in this paper. Unless otherwise stated, these and further properties can be found in the
standard references [9, 14, 21].

The modified Bessel function of the second kind is defined, for m ∈R and x > 0, by

Km(x) =
∫ ∞

0
e−x cosh(t ) cosh(mt )dt .

For m = 0,1,2, . . ., we have the elementary representation

Km+1/2(x) =
√

π

2x

m∑
j=0

(m + j )!

(m − j )! j !
(2x)− j e−x . (24)

The Gaussian hypergeometric function is defined by the power series

2F1(a,b;c; x) =
∞∑

j=0

(a) j (b) j

(c) j

x j

j !
, (25)

for |x| < 1, and by analytic continuation elsewhere. Here (u) j = u(u + 1) · · · (u + k − 1) is the
ascending factorial.

A special case is the following:

2F1(1,1;2; x) =−x−1 log(1−x). (26)

The hypergeometric function has the following behaviour as x → 1−.

(1) c −a −b > 0:

2F1(a,b;c;1) = Γ(c)Γ(c −a −b)

Γ(c −a)Γ(c −b)
. (27)

(2) c −a −b = 0:

2F1(a,b; a +b; x) ∼− Γ(a +b)

Γ(a)Γ(b)
log(1−x), x → 1−. (28)

(3) c −a −b < 0:

2F1(a,b;c; x) ∼ Γ(c)Γ(a +b − c)

Γ(a)Γ(b)
(1−x)c−a−b , x → 1−. (29)

The Meijer G-function is defined, for x ∈R, by the contour integral

Gm,n
p,q

(
x

∣∣∣∣a1, . . . , ap

b1, . . . ,bq

)
= 1

2πi

∫
L

∏m
j=1Γ(b j − s)

∏n
j=1Γ(1−a j + s)∏p

j=n+1Γ(a j − s)
∏q

j=m+1Γ(1−b j + s)
xs ds, (30)

where the integration path L separates the poles of the factors Γ(b j − s) from those of the factors
Γ(1−a j + s), and we use the convention that the empty product is 1.

The G-function satisfies the relations

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . ,bq

)
=Gn,m

q,p

(
x−1

∣∣∣∣1−b1, . . . ,1−bq

1−a1, . . . ,1−ap

)
, (31)

xαGm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . ,bq

)
=Gm,n

p,q

(
x

∣∣∣∣a1 +α, . . . , ap +α

b1 +α, . . . ,bq +α

)
. (32)

The hypergeometric function can be expressed in terms of the Meijer G-function:

2F1(a,b;c;1−x) = Γ(c)

Γ(a)Γ(b)Γ(c −a)Γ(c −b)
G2,2

2,2

(
x

∣∣∣∣1−a,1−b
0,c −a −b

)
. (33)
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(see http://functions.wolfram.com/07.23.26.0007.01). Also, on combining equations 5.4(1) and
5.4(13) of [14], we obtain the indefinite integral formula∫

xα−1Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . ,bq

)
dx = xαGm,n+1

p+1,q+1

(
x

∣∣∣∣1−α, a1, . . . , ap

b1, . . . ,bq ,−α
)

. (34)
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