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Abstract. We introduce an analogue of the classical Markov equation that involves dual numbers a+αε with
ε2 = 0. This equation characterizes the “shadow Markov numbers” recently considered by one of us. We show
that this equation is characterized by invariance by cluster algebra mutations.
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1. Introduction

The classical Markov (or Markoff) equation [6] is the Diophantine equation

a2 +b2 + c2 = 3abc.

A positive integer a is called a Markov number if it can be completed to a triplet of positive in-
tegers (a,b,c) satisfying the Markov equation. Markov numbers attracted much interest in many
branches of mathematics, from number theory to topology, combinatorics, and mathematical
physics.

In this note we will consider pairs of positive integers, (a,α) ∈ Z×Z, that will be written in a
form

A = a +αε, (1)

where ε is a formal parameter such that ε2 = 0. Formal sums (1) are called dual numbers. The
notion of dual number goes back to Clifford and is used in various situations in algebra, geometry,
and mathematical physics. A dual number (1) is called a positive integer if a,α ∈Z>0.

Our goal is to introduce and study a deformation of the Markov equation

A2 +B 2 +C 2 = (3−2ε) ABC . (2)

Solutions (A,B ,C ) to this equation are triples of dual numbers. We call a dual Markov number a
positive integer dual number A that can be completed to a triplet (A,B ,C ) of positive integer dual
numbers satisfying (2).
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The following triplets of dual numbers

(1,1+ε,1+ε), (1+ε,1+ε,2+4ε), (1+ε,2+4ε,5+13ε)

are examples of triplets of dual Markov numbers.
We study several properties of the deformed Markov equation (2). The main property is that it

is preserved by cluster algebra mutations, similarly to the classical case [11]. We will show that it
is characterized by this mutation invariance.

The notion of “shadow” sequences of integers appeared in [8], and was tested on the sequence
of Markov numbers. Every Markov number, a, is accompanied by another positive integer, α,
called the shadow of a. For a definition, see [8] and Section 2. It is a priori not clear, and was
asked in [8], if the sequence of shadows of Markov numbers satisfy any equation. It turns out that
the classical Markov numbers organized together with their shadows in the form of dual numbers
are solutions to (2).

Theorem 1. Given a Markov number a and its shadow α, the corresponding dual number A =
a +αε is a dual Markov number.

We do not have a classification of dual Markov numbers. A classical theorem Markov implies
that every solution (A,B ,C ) to (2) can be obtained by a sequence of transformations called
mutations (see Section 2) from a triplet of the form

A′ = 1+α′ε, B ′ = 1+β′ε, C ′ = 1+γ′ε,

with some α′,β′,γ′ ∈ Z, but it is an open problem to determine the conditions that guarantee
positivity of α,β,γ.

Another open problem is to understand whether the equation (2) is connected to supergeom-
etry. We believe that (2) should be considered as a “superanalogue” of the classical Markov equa-
tion and is related to the supergroup OSp(1|2,Z); see [1]. However, we were unable to prove this
so far. One also notices a certain resemblance of (2) with the super-Markov equation of [5]; see
Section 3.2.

Although the proofs of the statements of this note are rather elementary, we hope that equa-
tion (2) can be useful for what is sometimes called in mathematical physics “super number the-
ory”; see [1,12]. The idea of shadow integer sequences recently initiated in [10] and [8] was further
developed in [1, 4, 14] and generated various unexpected connections.

2. Markov numbers and their shadows

In this section we briefly explain the connection of Markov numbers with Fomin–Zelevinsky
cluster algebras [2], that was proposed in [11]. We also recall the construction of the shadow
Markov sequence introduced in [8].

2.1. Markov numbers and quiver mutations

It is well-known and due to Markov [6], that every positive integer solution to the Markov equation
can be obtained from (1,1,1) by a sequence of transformations (a,b,c) 7→ (a′,b,c), where

a′ = b2 + c2

a
, (3)

and permutations of a,b, and c. It is easy to check that (a′,b,c) remains a solution if (a,b,c) is a
solution.
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It was noticed in [11], that the maps (3) can be understood as instances of cluster algebra
mutations in the sense of Fomin–Zelevinsky cluster algebra [2]. The quiver associated with the
sequence of Markov numbers is as follows:

b

����

OO OO

a coooo

and (3) are precisely the exchange relations for the mutations associated to this quiver.
Integrality of a′ in (3) follows from the Laurent phenomemon [3], and can also be obtained

directly from an equivalent (and more frequently used) form of (3): a′ = 3bc −a.

2.2. The construction of [8]

The notion of shadow Markov sequence [8] is based on transformations (3). The shadow se-
quence is constructed recurrently without any equation on it.

Choose the initial triplet of dual numbers (A1,B1,C1) with

A1 = 1+α1ε, B1 = 1+β1ε, C1 = 1+γ1ε, (4)

where α1,β1,γ1 are arbitrary integers. Define an infinite sequence of transformations (A,B ,C ) 7→
(A′,B ,C ) by the same formula as (3):

A′ := B 2 +C 2

A
. (5)

More explicitly (5) reads

a′ = b2 + c2

a
, α′ = 2bβ+2c γ−a′α

a
(6)

and therefore determines both, the real and nilpotent parts of A′ = a′+α′ε. Furthermore, α′ will
remain integer, which follows from the version of Laurent phenomenon proved in [9].

2.3. The Markov tree and its shadow

Similarly to the classical Markov numbers, their shadows can be organized with the help of an
infinite binary tree. The version that we use is the following.

The binary tree is drawn in the plane cutting it into infinitely many regions, and every region
is labeled by a Markov number. Locally the picture is this

A B
•
C

and the transformations (5) correspond to the following branchings:

B
A • • A′

C

The most natural choice of the initial values (α1,β1,γ1) is

(α1,β1,γ1) = (0,1,1). (7)
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For details; see [8] and Section 4. The tree of Markov numbers with the initial triplet (7) is
presented below together with their shadow:

1 0 • 1 1
•

1 1 2 4
•

• 5 13 •

• 13 40 • • 29 117 •

• 34 • • 194 • • 433 • • 169 •
120 976 2592 921

89 1325 7561 2897 6466 37666 14701 985

354 7875 56287 20226 51320 352360 129640 6761

. . . . . . . . .

Remark. The simplest subsequence of Markov numbers (left branch of the above tree) contains
the odd Fibonacci numbers 1,2,5,13,34,89, . . .. It was noticed in [8], that the sequence

1,4,13,40,120,354,1031,2972,8495, . . .

appearing as the shadow of the odd Fibonacci branch, is the sequencel A238846 (see [13]) which
is the convolution of two bisections of the Fibonacci sequence, F2n+1 and F2n . We refer to [7, 8]
for various ε-deformations of Fibonacci numbers.

The combinatorial nature of other shadow sequence appearing in the above tree is
not understood. For instance, it would be interesting to know properties of the sequence
1,13,117,921,6761, . . . appearing as the shadow of 1,5,29,169,985, . . . which is a bisection of the
classical Pell numbers.

3. Mutation stability

In this section, we relax the positivity condition for the nilpotent part α of dual numbers A =
a +αε. We consider an arbitrary choice of the initial triplet (4) and give a slightly more general
form of the deformed Markov equation. We also obtain several properties of this equation.

3.1. Proof of Theorem 1

The following statement is a more precise and general reformulation of Theorem 1.

Proposition 2.

(i) Every triplet of dual numbers (A,B ,C ) obtained from (4) by a sequence of transforma-
tions (5) satisfies the equation

A2 +B 2 +C 2 = (3−σε) ABC , (8)

where σ=α1 +β1 +γ1.
(ii) Conversely, every triplet of solutions (A,B ,C ) to (8) with positive a,b,c can be obtained

from a triple of the form (4) by a sequence of transformations (5) mixed with permutations
of A,B and C .



Nathan Bonin and Valentin Ovsienko 1487

Proof. To prove Part (i), let us first check that the initial triplet (4) satisfies (8). Indeed, substitut-
ing (4) to the left-hand-side of the equation gives 3+2(α1+β1+γ1)ε, while in the right-hand-side
one obtains 3+3(α1 +β1 +γ1)ε−σε.

Let us check that (8) is stable with respect to the transformations (5).

Lemma 3. The equation

A2 +B 2 +C 2 = X ABC , (9)

where X is a formal parameter, is preserved by the transformations (5).

Proof of the lemma. Let us show that, if (A,B ,C ) is a solution to (9), then (A′,B ,C ), with A′ as
in (5), is also a solution to the same equation.

Assume that (A,B ,C ) is a solution to (9). Then A′ given by (5) can be rewritten:

A′ = X BC − A. (10)

Substituting this expression for A′ to the left-hand-side of (9), one obtains

A′2 +B 2 +C 2 = X 2 B 2C 2 −2X ABC + A2 +B 2 +C 2

= X 2 B 2C 2 −X ABC ,

while in the right-hand-side, one has

X A′BC = X (X BC − A)BC

= X 2 B 2C 2 −X ABC .

We conclude that the triplet (A′,B ,C ) satisfies exactly the same equation, namely A′2 +B 2 +C 2 =
X A′BC . □

The assumption that the initial triplet (A1,B1,C1) satisfies (9) implies that

X = A2
1 +B 2

1 +C 2
1

A1B1C1
,

that gives X = 3− (α1 +β1 +γ1)ε.
Proposition 2(i) follows.
To prove Part (ii), we use the classical theorem that any positive solution (a,b,c) to the Markov

equation can be reduced to (1,1,1) by a sequence of transformations (3). We conclude following
the same sequence of transformations (5). □

3.2. Uniqueness

Let us show that (8) is the only ε-deformation of the Markov equation which is preserved by the
mutations (5).

Consider the most general ε-deformed Markov equation, it can be written in the form

A2 +B 2 +C 2 = 3ABC +P (A,B ,C )ε, (11)

where P is an arbitrary polynomial

P (A,B ,C ) = ∑
i , j ,k≥0

Pi j k Ai B j C k .

Theorem 4. Equation (8) is the only equation among the family (11) preserved by the transforma-
tions (5).
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Proof. Let us show that, if (11) is preserved by the transformations (5), then all the coefficients
Pi j k of the polynomial P vanish, except perhaps P111, which is arbitrary. Indeed, (5) can be
rewritten

A′ = 3BC − A+ P (A,B ,C )

A
ε

so that the left-hand-side of (11) after the transformation becomes

A′2 +B 2 +C 2 = 9B 2C 2 −6ABC + A2 +B 2 +C 2 +
(

6BC

A
P (A,B ,C )−2P (A,B ,C )

)
ε

= 9B 2C 2 −3ABC +
(

6BC

A
P (A,B ,C )−P (A,B ,C )

)
ε.

The right-hand-side of (11) is

3A′BC +P (A′,B ,C )ε= 9B 2C 2 −3ABC +
(

3BC

A
P (A,B ,C )+P (A′,B ,C )

)
ε.

The assumption the equation is preserved by the mutations then reads

P (A′,B ,C )ε=
(

3BC

A
−1

)
P (A,B ,C )ε,

or with more details ∑
i , j ,k≥0

Pi j k (3BC − A)i B j C k =
(

3BC

A
−1

) ∑
i , j ,k≥0

Pi j k Ai B j C k .

(Note that these terms appear with multiple ε, so that we omit P (A,B ,C )
A ε in the left-hand-side

since ε2 = 0.)
The latter equation implies that Pi j k = 0 for i > 1, and similarly for j and k > 1. Indeed, taking

the maximal i , for which Pi j k ̸= 0, if i ≥ 2, all of the terms in the right-hand-side contain A,
while the left-hand-side contain the term Pi j k 3i B i+ j C i+k . Therefore, the equation (11) cannot
be invariant in this case.

The theorem follows. □

Remark. Another version of super-Markov equation was suggested by Huang, Penner, and
Zeitlin [5]:

a2 +b2 + c2 + (ab +bc +ac)ε= 3(1+ε) abc.

For a discussion and a related conjecture; see [7]. This equation has interesting geometric
properties, albeit it is not preserved by the mutations (3).

4. Initial conditions

Let us end the note with a brief discussion of the choice of initial triplet α1,β1,γ1 in (4). The
choice of [8], which is (α1,β1,γ1) = (0,1,1) is not unique, but can be justified by the following.

A simple property of the equation (8) is that the shadow parts of its solutions linearly depend
on the choice of the initial triplet α1,β1,γ1. This readily follows from the second equation in (6).
Therefore, the shadow part of every solution to (8) is a linear combination of those with one of
the following initial triplets

(0,1,1), (1,1,1), (0,1,0),

that form a basis in the space of initial conditions. However, choosing (1,1,1), one obtains
the shadow part that coincides with the Markov numbers, namely the solutions of the form
(A,B ,C ) = (a + aε,b + bε,c + cε), which is not an interesting case. The choice (0,1,0) produces
negative integers. As mentioned in the introduction, it would be interesting to characterize the
initial triplets that produce only positive shadow parts.



Nathan Bonin and Valentin Ovsienko 1489

Acknowledgements

We would like to thank Philippe Larchevêque, Sophie Morier-Genoud, Julien Rouyer, Michael
Shapiro, Sergei Tabachnikov, Alexey Ustinov, and Alexander Veselov for fruitful discussions. We
are indebted to the anonymous referee for many helpful remarks and suggestions.

References

[1] C. H. Conley, V. Ovsienko, “Shadows of rationals and irrationals: supersymmetric continued fractions and the super
modular group”, 2022, https://arxiv.org/abs/2209.10426.

[2] S. Fomin, A. Zelevinsky, “Cluster algebras. I. Foundations”, J. Am. Math. Soc. 15 (2002), no. 2, p. 497-529.
[3] ——— , “The Laurent phenomenon”, Adv. Appl. Math. 28 (2002), no. 2, p. 119-144.
[4] A. N. W. Hone, “Casting light on shadow Somos sequences”, 2021, https://arxiv.org/abs/2111.10905.
[5] Y. Huang, R. C. Penner, A. M. Zeitlin, “Super McShane identity”, to appear in J. Differ. Geom., 2019, https://arxiv.org/

abs/1907.09978.
[6] A. Markov, “Sur les formes quadratiques binaires indéfinies”, Math. Ann. 15 (1879), p. 381-406.
[7] G. Musiker, N. Ovenhouse, S. W. Zhang, “Double Dimer Covers on Snake Graphs from Super Cluster Expansions”,

2021, https://arxiv.org/abs/2110.06497.
[8] V. Ovsienko, “Shadow sequences of integers, from Fibonacci to Markov and back”, to appear in Math. Intell., 2021,

https://arxiv.org/abs/2111.02553.
[9] V. Ovsienko, M. Shapiro, “Cluster algebras with Grassmann variables”, Electron. Res. Announc. Math. Sci. 26 (2019),

p. 1-15.
[10] V. Ovsienko, S. Tabachnikov, “Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences”,

Algebr. Represent. Theory 21 (2018), no. 5, p. 1119-1132.
[11] J. Propp, “The combinatorics of frieze patterns and Markoff numbers”, Integers 20 (2020), article no. A12 (38 pages).
[12] J. M. Rabin, “Super elliptic curves”, J. Geom. Phys. 15 (1995), no. 3, p. 252-280.
[13] N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences”, 2010, http://oeis.org.
[14] A. Veselov, “Conway’s light on the shadow of Mordell”, 2022, https://arxiv.org/abs/2208.14184.

https://arxiv.org/abs/2209.10426
https://arxiv.org/abs/2111.10905
https://arxiv.org/abs/1907.09978
https://arxiv.org/abs/1907.09978
https://arxiv.org/abs/2110.06497
https://arxiv.org/abs/2111.02553
http://oeis.org
https://arxiv.org/abs/2208.14184

	1. Introduction
	2. Markov numbers and their shadows
	2.1. Markov numbers and quiver mutations
	2.2. The construction of Ovs
	2.3. The Markov tree and its shadow

	3. Mutation stability
	3.1. Proof of Theorem 1
	3.2. Uniqueness

	4. Initial conditions
	Acknowledgements

	References

