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Abstract. Thanks to a finite element method, we solve numerically parabolic partial differential equations on
complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain
and its real boundary exactly. Our technique follows the φ-FEM paradigm, which supposes that the domain
is given by a level-set function. In this paper, we prove a priori error estimates in l 2(H1) and l∞(L2) norms
for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of
φ-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.
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1. Introduction

The classical finite element method for elliptic and parabolic problems (see e.g. [15]) needs
a computational mesh fitting the boundary of the physical domain. In some applications in
engineering or bio-mechanics, the construction of such meshes may be very time-consuming or
even impossible. Alternative approaches, such as Fictitious Domain [10] or Immersed Boundary
Methods (IBM)(see e.g. [13] for a review), can work on unfitted meshes but are usually not very
precise. More recent variants, such as CutFEM [2], demonstrate optimal convergence orders
but are less straightforward to implement than the original IBM. In particular, CutFEM needs
special quadrature rules on the cells cut by the boundary. Finally, we can also mention the
Shifted Boundary Method [11] that avoids the non-trivial integration by introducing a boundary
correction based on a Taylor expansion.
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A new Finite Element Method on unfitted meshes, named φ-FEM, combining the optimal
convergence and the ease of implementation, was recently proposed in [6, 8]. Initially developed
for stationary elliptic PDEs, it has been extended in [5] to a broader class of equations, including
the time-dependent parabolic problems, without any theoretical analysis. The goal of the present
note is to provide such an analysis in the case of the Heat–Dirichlet problem

∂t u −∆u = f inΩ× (0,T ), u = 0 on Γ× (0,T ), u|t=0 = u0 inΩ, (1)

where T > 0,Ω⊂Rd , d = 2,3 is a bounded domain with a smooth boundary Γ given by a level-set
function on Rd

Ω := {φ< 0} and Γ := {φ= 0}. (2)

(Note that some FEM on unfitted meshes have been developed for such problems for example,
in [12, 14]).

For the discretization in time, we use the implicit Euler scheme. The Dirichlet boundary
conditions are imposed via a product with the level-set function φ. An appropriate stabilization
is introduced to the finite element discretization to obtain well-posed problems. A somewhat
unexpected feature of this stabilization is that it works under the constraint on the steps in time
and space of the type ∆t Ê ch2. This does not affect the practical interest of the scheme since it is
normally intended to be used in the regime ∆t ∼ h. We shall provide a priori error estimates for
this scheme in l 2(H 1) norms of similar orders as for the standard FEM, cf. [15]. We also study the
l∞(L2) convergence and prove a slightly suboptimal theoretical bound for it, while it turns out to
be optimal numerically.

2. Definitions, assumptions, description of the scheme and the main result.

We assume that Ω lies inside a box O ⊂ Rd and that Ω and Γ are given by (2). The box O is
covered by a simple quasi-uniform simplicial (typically Cartesian) background mesh denoted
by T O

h . We introduce the active computational mesh Th := {
T ∈T O

h : T ∩ {φh < 0} ̸= ;}
on Ωh =(⋃

T∈Th
T

)o , the subdomain of O composed of mesh cells intersecting Ω, cf. Figure 1 (right).
Here, φh is a piecewise polynomial interpolation of φ in finite element space of degree l ∈ N∗

on T O
h . We shall also need a submesh T Γ

h , containing the elements of Th that are cut by
the approximate boundary Γh := {φh = 0}: T Γ

h = {T ∈ Th : T ∩Γh ̸= ;}. Finally, we denote by
FΓ

h the set of the internal facets E of mesh Th belonging to the cells of the set T Γ
h , FΓ

h :=
{E (internal facet of Th) such that ∃ T ∈Th : T ∩Γh ̸= ; and E ∈ ∂T }.

Introduce a uniform partition of [0,T ] into time steps 0 = t0 < t1 < ·· · < tN = T with tn = n∆t .
The basic idea of φ-FEM is to introduce the new unknown w = w(x, t ) and to set u = φw so
that the Dirichlet condition u = 0 is automatically satisfied on Γ since φ vanishes there. Using an
implicit Euler scheme to discretize (1) in time and denoting f n( · ) = f ( · , tn), we get the following
discretization in time: given un =φwn find un+1 =φwn+1 such that

φwn+1 −φwn

∆t
−∆(φwn+1) = f n+1. (3)

To discretize in space, we introduce the finite element space of degree k onΩh ,

V (k)
h = {vh ∈ H 1(Ωh) : vh |T ∈Pk (T ),∀ T ∈Th} ,
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for some k Ê 1. Supposing that f and u0 are actually well defined onΩh (rather than onΩ only),
we can finally introduce the φ-FEM scheme for (1) as follows: find wn+1

h ∈V (k)
h , n = 0,1, . . . , N −1

such that for all vh ∈V (k)
h∫

Ωh

φh wn+1
h

∆t
φh vh +

∫
Ωh

∇(φh wn+1
h ) ·∇(φh vh)−

∫
∂Ωh

∂

∂n
(φh wn+1

h )φh vh

+σh
∑

E∈FΓ
h

∫
E

[
∂(φh wn+1

h )

∂n

][
∂(φh vh)

∂n

]
−σh2

∑
K∈T Γ

h

∫
K

(
φh wn+1

h

∆t
−∆(φh wn+1

h )

)
∆(φh vh)

=
∫
Ωh

(un
h

∆t
+ f n+1

)
φh vh −σh2

∑
K∈T Γ

h

∫
K

(un
h

∆t
+ f n+1

)
∆(φh vh) (4)

with un
h = φh wn

h for n Ê 1 and u0
h ∈ V (k)

h an interpolant of u0. Moreover, φh is the piecewise

polynomial interpolation of φ in V (l )
h , with l Ê k. This scheme contains two stabilization terms:

the ghost stabilization (the sum on the facets in FΓ
h ) as in [3], and a least-square stabilization (the

terms multiplied by σh2) that reinforces (3) on the cells of T Γ
h .

Remark 1. Our approach can be easily generalized to non-homogeneous Dirichlet boundary
conditions u = uD on Γ× (0,T ). We can pose then un

h = φh wn
h + Ihug ( · , tn) where ug is some

lifting of uD from Γ to Ωh and Ih stands for a finite element interpolation to V (k)
h . Scheme (4)

should then be modified accordingly, replacing φh wn+1
h by φh wn+1

h + Ihug ( · , tn+1) which results
in some additional terms on the right-hand side.

We recall from [8] the assumptions on the domain and on the mesh required in the theoretical
study of the convergence of the φ-FEM scheme. These assumptions are satisfied if the boundary
Γ is regular enough and the mesh Th is fine enough.

Assumption 2. The boundary Γ can be covered by open sets Oi , i = 1, . . . , I on which ones we can
introduce local coordinates ξ1, . . . ,ξd with ξd = φ and such that, up to order k +1, all the partial
derivatives ∂αξi /∂xα and ∂xα/∂αξi are bounded by a constant C0 > 0. Thus, on O ,φ is of class C k+1

and there exists m > 0 such that on O \
⋃

i=1,...,I Oi , |φ| Ê m.

Assumption 3. The approximate boundary Γh = {φh = 0} can be covered by element patches
{Πk }r=1,...,NΠ such that :

• Each patch Πr can be written Πr =ΠΓr ∪Tr with ΠΓr ⊂T Γ
h and Tr ∈Th \T Γ

h . Moreover Πr

contains less than M elements and these elements are connected;
• T Γ

h =⋃
r=1,...,NΠΠ

Γ
r ;

• Two patchesΠr andΠs are disjoint if r ̸= s.

Theorem 4. Assume Ω ⊂ Ωh , l ≥ k, Assumptions 2–3, f ∈ H 1(0,T ; H k−1(Ωh)) and u ∈
H 2(0,T ; H k−1(Ω)) being the exact solution to (1), un( · ) = u( · , tn) and wn

h be the solution to (4)
for n = 1, . . . , N . For σ large enough, there exist c,C > 0 depending only on the regularity of mesh
Th and on the constants of Assumptions 2-3 (with C also depending on T ), such that if ∆t Ê ch2

then(
N∑

n=0
∆t |un −φh wn

h |2H 1(Ω)

) 1
2

ÉC∥u0 −u0
h∥L2(Ωh ) +C (hk +∆t )

(
∥u∥H 2(0,T ;H k−1(Ω)) +∥ f ∥H 1(0,T ;H k−1(Ωh ))

)
and

max
1ÉnÉN

∥un−φh wn
h∥L2(Ω) ÉC∥u0−u0

h∥L2(Ωh )+C (hk+ 1
2 +∆t )

(
∥u∥H 2(0,T ;H k−1(Ω))+∥ f ∥H 1(0,T ;H k−1(Ωh ))

)
.
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Remark 5.

• If k = 1, the norms on the right hand side of the estimates above can be replaced by
the norm of f alone in H 1(0,T ;L2(Ωh)). Indeed, recalling Ω ⊂Ωh , this assumption on f
implies u ∈ H 2(0,T ;L2(Ω))∩H 1(0,T ; H 2(Ω)), see e.g. [9, Theorems 5 and 6, Chapter 7.1].
On the other hand, imposing such regularity on u overΩ, would not suffice to control the
extension of f outside of Ω, so that the regularity of f on Ωh should be postulated any
way. This contrasts with the usual a priori estimates for standard FEM (see e.g. [15]).

• If k > 1, we need to suppose the regularity of both u and f as stated above.

In the rest of the paper, the letter C , eventually with subscripts, will stand for various constants
depending on the mesh regularity, the constants from Assumptions 2–3, and also on T (when
specifically mentioned). Before the proof of Theorem 4, we recall some results from [8] about
φ-FEM for the Poisson equation with Dirichlet boundary conditions.

Lemma 6 (cf. [8, Lemma 3.7]). Consider the bilinear form

ah(u, v) =
∫
Ωh

∇u ·∇v −
∫
∂Ωh

∂u

∂n
v +σh

∑
E∈FΓ

h

∫
E

[
∂u

∂n

][
∂v

∂n

]
+ ∑

K∈T Γ
h

σh2
∫

K
∆u∆v.

Provided σ is chosen big enough, there exists an h-independent constant α> 0 such that

ah(φh vh ,φh vh) Êα|φh vh |2H 1(Ωh ), ∀ vh ∈V (k)
h .

Lemma 7 (cf. [8, Theorem 2.3]). For any f ∈ H k−1(Ωh), let wh ∈V (k)
h be the solution to

ah(φh wh ,φh vh) =
∫
Ωh

f φh vh −σh2
∑

K∈T Γ
h

∫
K

f ∆(φh vh)

and u ∈ H k+1(Ω) be the solution to

−∆u = f inΩ, u = 0 on Γ

extended to ũ ∈ H k+1(Ωh) so that u = ũ on Ω and ∥ũ∥H k+1(Ωh ) É C∥u∥H k+1(Ω) É C∥ f ∥H k−1(Ωh ).
Provided σ is chosen big enough, there exists an h-independent constant C > 0 such that

|ũ −φh wh |H 1(Ωh ) ÉC hk∥ f ∥H k−1(Ωh ) and ∥ũ −φh wh∥L2(Ωh ) ÉC hk+ 1
2 ∥ f ∥H k−1(Ωh ).

Remark 8. This result is proven in [8] under the more stringent assumption f ∈ H k (Ωh) which
was used to assure ũ ∈ H k+2(Ωh) and to provide an interpolation error of ũ by a product φh wh .
However, in [7, Lemma 6] we have proven a better interpolation estimate ∥ũ −φh Ih w∥H s (Ωh ) É
C hk+1−s∥ f ∥H k−1(Ωh ) (s = 0,1) for ũ =φw and the Scott–Zhang interpolant Ih . Thus, f ∈ H k−1(Ωh)
is actually sufficient.

Lemma 9. For all vh ∈V (k)
h , there holds

∥φh vh∥L2(Ωh ) ÉCP |φh vh |H 1(Ωh ).

Proof. Let Ω̃h = {φh < 0}. By the Poincaré inequality,

∥φh vh∥L2(Ω̃h ) ÉC diam(Ω̃h)|φh vh |H 1(Ω̃h ),

and diam(Ω̃h) É diam(O ). Moreover, thanks to [8, Lemma 3.4], it holds

∥φh vh∥L2(Ωh \Ω̃h ) É ∥φh vh∥L2(ΩΓh ) ÉC h|φh vh |H 1(ΩΓh ),

whereΩΓh is the domain occupied by the mesh T Γ
h . We conclude notingΩ⊂ Ω̃h ∪ΩΓh . □
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Proof of Theorem 4. There exists a function ũ ∈ H 2(0,T ; H k−1(Ωh)), an extension of u to Ωh ,
such that

∥ũ∥H 2(0,T ;H k−1(Ωh )) ÉC∥u∥H 2(0,T ;H k−1(Ω)). (5)

Let wn
h be the solution to our scheme, which we rewrite as∫

Ωh

φh

wn+1
h −wn

h

∆t
φh vh +ah(φh wn+1

h ,φh vh)− ∑
T∈T Γ

h

σh2
∫

T
φh

wn+1
h −wn

h

∆t
∆(φh vh)

=
∫
Ωh

f n+1φh vh − ∑
T∈T Γ

h

σh2
∫

T
f n+1∆(φh vh) (6)

for n Ê 1 while φh w0
h should be replaced with u0

h for n = 0.

For any time t ∈ [0,T ], introduce w̃h( · , t ) = w̃h ∈ V (k)
h , as in Lemma 7, with f replaced by

f −∂t ũ evaluated at time t :

ah(φh w̃h ,φh vh) =
∫
Ωh

( f −∂t ũ)φh vh −σh2
∑

K∈T Γ
h

∫
K

( f −∂t ũ)∆(φh vh). (7)

Let w̃n
h = w̃h(tn) and en

h := φh(wn
h − w̃n

h ) for n Ê 1 and e0
h := u0

h −φh w̃0
h . Taking the difference

between (6) and (7) at time tn+1, we get∫
Ωh

en+1
h −en

h

∆t
φh vh +ah(en+1

h ,φh vh)− ∑
T∈T Γ

h

σh2
∫

T

en+1
h −en

h

∆t
∆(φh vh)

=
∫
Ωh

(
∂t ũn+1 −φh

w̃n+1
h − w̃n

h

∆t

)
φh vh − ∑

T∈T Γ
h

σh2
∫

T

(
∂t ũn+1 −φh

w̃n+1
h − w̃n

h

∆t

)
∆(φh vh).

Taking vh = wn+1
h − w̃n+1

h , i.e. φh vh = en+1
h , applying the equality

∥en+1
h ∥2

L2(Ωh ) − (en
h ,en+1

h )L2(Ωh ) =
∥en+1

h ∥2
L2(Ωh )

−∥en
h∥2

L2(Ωh )
+∥en+1

h −en
h∥2

L2(Ωh )

2
,

and estimating the terms in the RHS by Cauchy–Schwarz and inverse inequalities (∥∆en+1
h ∥L2(T ) É

C h−2∥en+1
h ∥L2(T )) we deduce that

∥en+1
h ∥2

L2(Ωh )
−∥en

h∥2
L2(Ωh )

+∥en+1
h −en

h∥2
L2(Ωh )

2∆t
+

(I )︷ ︸︸ ︷
ah(en+1

h ,en+1
h )−

(II )︷ ︸︸ ︷
σh2

∫
ΩΓh

en+1
h −en

h

∆t
∆en+1

h

ÉC

∥∥∥∥∥∂t ũn+1 −φh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥
L2(Ωh )

∥en+1
h ∥L2(Ωh )︸ ︷︷ ︸

(III )

. (8)

Thanks to the coercivity lemma 6, the term (I ) can be bounded from below by α|en+1
h |2

H 1(Ωh )
.

We now use the Young inequality (with some ε > 0) and the inverse inequality ∥∆en+1
h ∥L2(T ) É

C I h−1|en+1
h |H 1(T ) to bound the term (II ):

(I )− (II ) Êα|en+1
h |2H 1(Ωh ) −

σh2

2ϵ(∆t )2 ∥en+1
h −en

h∥2
L2(ΩΓh )

− ϵσC 2
I

2
|en+1

h |2
H 1(ΩΓh )

Ê 3

4
α|en+1

h |2H 1(Ωh ) −
1

2∆t
∥en+1

h −en
h∥2

L2(ΩΓh )
, (9)
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where we have chosen ϵ so that ϵσC 2
I /2 =α/4 and then assumedσh2/(ϵ∆t ) É 1. This will allow us

to control the negative term above by the similar positive term in (8), and leads to the restriction
∆t Ê ch2 with c =σ/ϵ.

We turn now to the RHS of (8), i.e. term (III ). By triangle inequality∥∥∥∥∥∂t ũn+1 −φh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥
L2(Ωh )

É
∥∥∥∥∂t ũn+1 − ũn+1 − ũn

∆t

∥∥∥∥
L2(Ωh )

+
∥∥∥∥∥ ũn+1 − ũn

∆t
−φh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥
L2(Ωh )

. (10)

By Taylor’s theorem with integral remainder

ũn( · ) = ũn+1( · )−∆t∂t ũn+1( · )−
∫ tn+1

tn

∂t t ũ(t , · )(tn − t )dt

so that∥∥∥∥∂t ũn+1 − ũn+1 − ũn

∆t

∥∥∥∥
L2(Ωh )

= 1

∆t

∥∥∥∥∫ tn+1

tn

∂t t ũ(t , · )(tn − t )dt

∥∥∥∥
L2(Ωh )

É
p
∆t∥∂t t ũ∥L2(tn ,tn+1;L2(Ωh )).

Differentiating −∆u = f −∂t u and (7) in time, we obtain thanks to Lemma 7,

∥∂t (ũ(t )−φh w̃h)(t )∥L2(Ωh ) ÉC hk+ 1
2 ∥(∂t f −∂t t ũ)(t )∥H k−1(Ωh ).

Thus, for the second term in (10), we get by the last interpolation estimate:∥∥∥∥∥ ũn+1 − ũn

∆t
−φh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥
L2(Ωh )

= 1

∆t

∥∥∥∥∫ tn+1

tn

∂t (ũ(t , · )−φh w̃h(t , · ))dt

∥∥∥∥
L2(Ωh )

É C hk+ 1
2p

∆t
∥∂t f −∂t t ũ∥L2(tn ,tn+1;H k−1(Ωh )).

Collecting these estimates and applying the Young inequality with some δ > 0 and Poincaré
inequality from Lemma 9, we get

(III ) É C

δ

(
∆t∥∂t t ũ∥2

L2(tn ,tn+1;L2(Ωh )) +
h2k+1

∆t
∥∂t f −∂t t ũ∥2

L2(tn ,tn+1;H k−1(Ωh ))

)
+ δC 2

P

2
|en+1

h |2H 1(Ωh ).

(11)
Substituting (9) and (11) to (8) and taking δ so that δC 2

P =α/2 yields

∥en+1
h ∥2

L2(Ωh )
−∥en

h∥2
L2(Ωh )

2∆t
+ α

2
|en+1

h |2H 1(Ωh )

ÉC

(
∆t∥∂t t ũ∥2

L2(tn ,tn+1;L2(Ωh )) +
h2k+1

∆t
∥∂t f −∂t t ũ∥2

L2(tn ,tn+1;H k−1(Ωh ))

)
.

Multiplying this by 2∆t and summing on n = 0, . . . , N −1, we get

∥eN
h ∥2

L2(Ωh ) +α∆t
N∑

n=1
|en

h |2H 1(Ωh )

É ∥e0
h∥2

L2(Ωh ) +C (∆t 2∥∂t t ũ∥2
L2(0,T ;L2(Ωh )) +h2k+1∥∂t f −∂t t ũ∥2

L2(0,T ;H k−1(Ωh ))
).

Thus, observing that the sum above can be stopped at any number n É N , we get

max
n=1,...,N

∥en
h∥L2(Ωh ) +

(
∆t

N∑
n=1

|en
h |2H 1(Ωh )

) 1
2

ÉC∥e0
h∥L2(Ωh ) +C

(
∆t∥∂t t ũ∥L2(0,T ;L2(Ωh )) +hk+ 1

2 ∥∂t f −∂t t ũ∥L2(0,T ;H k−1(Ωh ))

)
.
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Lemma 7 applied to −∆u = f −∂t u inΩ at times tn gives

max
n=0,...,N

∥ũn −φh w̃n
h∥L2(Ωh ) ÉC hk+1/2∥ f −∂t ũ∥C ([0,T ],H k−1(Ωh )),(

∆t
N∑

n=1
|ũn −φh w̃n

h |2H 1(Ωh )

) 1
2

ÉC hk∥ f −∂t ũ∥C ([0,T ],H k−1(Ωh )).

In particular,

∥e0
h∥L2(Ωh ) É ∥u0 −u0

h∥L2(Ωh ) +∥u0 −φh w̃0
h∥L2(Ωh )

É ∥u0 −u0
h∥L2(Ωh ) +C hk+1/2∥ f −∂t ũ∥C ([0,T ],H k−1(Ωh )).

Combining this with the regularity of f and ũ, cf. (5), together with the bound ∥ · ∥C ([0,T ],· ) É
C∥ ·∥H 1(0,T ;·) (with C depending on T ) gives the announced result. □

3. Numerical experiments

In this section, we illustrate the performance of our approach on two test cases1. We have
implemented φ-FEM in FEniCS [1], the codes of the simulations are available in the github
repository

https://github.com/KVuillemot/PhiFEM_Heat_Equation
In our numerical simulations, if the expected convergence is of order C1hp +C2∆t m , we will

fix ∆t = hp/m in such a way we only need to observe if the error is of order hp numerically.

Remark 10 (Norms for the simulations). To illustrate the convergence of the methods with the
simulations, since it is numerically complex to compute the error on the exact domainΩ, we will
use the following formula

∥uh −uref∥2
l 2(0,T,H 1

0 (Ωref))

∥uref∥2
l 2(0,T,H 1

0 (Ωref))

≈
∑N

n=0∆t
∫
Ωref

|∇uh(., tn)−∇uref(., tn)|2dx∑N
n=0∆t

∫
Ωref

|∇uref(., tn)|2dx
,

and
∥uh −uref∥2

l∞(0,T,L2(Ωref))

∥uref∥2
l∞(0,T,L2(Ωref))

≈
maxn=0,...,N

∫
Ωref

(uh(., tn)−uref(., tn))2dx

maxn=0,...,N
∫
Ωref

(uref(., tn))2dx
,

where uh denotes an approximation of the L2-orthogonal projection of the solution on the
reference meshΩref and uref the reference solution.

First test case: the source term is deduced from a manufactured solution and the FEM solution
is compared to this manufactured solution. For this case, we will consider a simple smooth
domain: the circle centered in (0,0), with radius 1 as represented in Figure 1. The level-set
function is given using the equation of the circle, i.e. φ(x, y) = −1+ x2 + y2. Its approximation
φh will be the interpolation of φ with Pk+1 finite elements, except for Figure 6 (right).

Moreover, we consider the manufactured solution given by uref = cos
( 1

2π(x2+y2)
)

exp(x)sin(t )
so that uref satisfies uref(t = 0) = u0

ref = 0 and uref = 0 on Γ× (0,T ). Here, Ωref =Ωh . We represent
the errors in l 2(H 1) norm on Figure 2 and in l∞(L2) norm on Figure 3, both with P1 and P2 finite
elements (k = 1 and k = 2). Here, the numerical results fit well the theoretical convergence order
of Theorem 4 and behaves even better since we observe a convergence of orders two and three
for the l∞(L2) norm instead of 1.5 and 2.5 respectively. We remark that the theoretical constraint

1The experiments are executed on a laptop equipped with an Intel Core i7-12700H CPU and 32Gb of memory.
Moreover, for the first test case, we use the serial default solver of FEniCS. For the second test case, the GMRES linear
solver is used with hypre_amg as preconditioner.

https://github.com/KVuillemot/PhiFEM_Heat_Equation
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Figure 1. Left: considered domain for the first test case. Center: a conforming mesh for the
standard FEM. Right: a uniform Cartesian mesh for φ-FEM.
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Figure 2. First test case. l 2(0,T ; H 1(Ω)) relative errors with respect to h with P1 elements
and∆t = h (left) and with P2 elements and∆t = h2 (right). Standard FEM (red squares) and
φ-FEM (blue dots), σ= 1.

∆t Ê ch2 is not satisfied for the P2 finite elements but it does not affect the practical convergence.
We also represent the l 2(H 1) and l∞(L2) errors with respect to the computation time (here, the
computation time is the sum of time needed to assemble the finite element matrix and to solve
the finite element systems at each time step, without the time used to construct the meshes) in
Figure 4. We observe that in this case,φ-FEM is significantly faster than a standard FEM to obtain
a solution with the same precision.

In Figure 5 (left), we represent the l 2(H 1) error and in Figure 5 (right) the l∞(L2) error, both
with respect to σ. This allows us to emphasize the influence of σ on the stability of the errors and
validates our choice of σ= 1 in the other simulations.

Finally, in Figure 6, we justify our choice for the degree of interpolation of φ since in our theo-
retical result, Pk is sufficient but we observe here that the error decreases for l = 2. Furthermore,
in our previous paper [6], our theoretical results in the Neumann case hold true only for l ≥ k +1.
Here, since the interpolation is exact from l = 2 we do not need to compute highest degrees of
interpolation for the level-set function to compare the results.

Second test case: the source term is given and the FEM solution is compared to a standard FEM
solution on a very fine mesh. We now consider a more realistic test case since we will apply some
forces and consider the resulting distribution of heat in the considered domain. More precisely,
this time, we impose u = 0 on Γ× (0,T ), the initial condition is u0 = 0 in Ω and we define a
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Figure 3. First test case. l∞(0,T ;L2(Ω)) relative errors with respect to h with P1 elements
and ∆t = h2 (left) and with P2 elements and ∆t = h3 (right). Standard FEM (red squares)
and φ-FEM (blue dots), σ= 1.
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Figure 4. First test case. l 2(0,T ; H 1(Ω)) with ∆t = h (left) and l∞(0,T ;L2(Ω)) with ∆t = h2

(right) relative errors with respect to the computation time. Standard FEM (red squares)
and φ-FEM (blue dots), P1 elements, σ= 1.
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Figure 5. First test case. l 2(0,T ; H 1(Ω)) relative errors with respect to σ for different mesh
sizes, with ∆t = h (left) and l∞(0,T ;L2(Ω)) relative errors with respect to σ, ∆t = h2 (right),
both with P1 elements.
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Figure 6. First test case. l 2(0,T ; H 1(Ω)) relative errors with respect to h for different values
of l , ∆t = h (left) and l∞(0,T ;L2(Ω)) relative errors with respect to h for different values of
l , ∆t = h2 (right), both with P1 elements and σ= 1.

Figure 7. Left: considered domain for the second test case. Center: a conforming mesh for
the standard FEM. Right: a uniform Cartesian mesh for φ-FEM.

source term given by f (x, y, z, t ) = exp

(
− (x−µ1)2+(y−µ2)2+(z−µ3)2

2σ2
0

)
for each (x, y, z, t ) ∈ Ω× (0,T ),

with (µ1,µ2,µ3,σ0) = (0.2,0.3,−0.1,0.3). The final time is fixed to T = 1. Moreover, for this test
case, we will consider a more complex and 3D domain from [4], given by

φ(x, y, z) = x2 + y2 + z2 − r 2
0 − A

11∑
k=0

exp

(
− (x −xk )2 + (y − yk )2 + (z − zk )2

σ2
0

)
,

with

(xk , yk , zk ) = r0p
5

(
2cos

(
2kπ

5

)
,2sin

(
2kπ

5

)
,1

)
, 0 É k É 4,

(xk , yk , zk ) = r0p
5

(
2cos

(
(2(k −5)−1)π

5

)
,2sin

(
(2(k −5)−1)π

5

)
,−1

)
, 5 É k É 9,

(xk , yk , zk ) = (0,0,r0) , k = 10,

(xk , yk , zk ) = (0,0,−r0) , k = 11,

with r0 = 0.6, σ= 0.3 and A = 1.5. The resulting domain and meshes are given in Figure 7.
Here, uref denotes the solution of a classical finite element method on Ωref that is a very fine

conforming mesh. In this case, to be more precise, we introduce a partition of the interval [0,T ]
into time steps 0 = t ref

0 < t ref
1 < ·· · < t ref

M = T with t ref
n = n∆t ref and∆t ref = hp/m

ref , where href denotes
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Figure 8. Second test case. l 2(0,T ; H 1(Ω)) relative errors with respect to h with ∆t = h
(left) and l∞(0,T ;L2(Ω)) relative errors with respect to h with ∆t = h2 (right), both with
P1 elements. Standard FEM (red squares) and φ-FEM (blue dots), σ= 1.

the size of cells of Ωref. Then, in the numerical simulations each discretization is built so that
{tn}n=0,...,N is a subset of

{
t ref

n

}
n=0,...,M . In Figure 8, we consider P1 finite elements (k = 1), and P2

finite elements for the interpolation φh of φ (l = 2). We compare here the l 2(H 1), l∞(L2) relative
errors between the solution of the φ-FEM scheme (4) and a standard FEM. The numerical results
fit well the theoretical convergence order announced in Theorem 4, namely, order one for the
l 2(H 1) norm and order two for the l∞(L2) error.

4. Conclusion

In the present work, we proposed a FEM scheme following the φ-FEM paradigm to approx-
imate the solution of the heat equation and proved its convergence, which is optimal in the
l 2(0,T ; H 1(Ω)) norm and quasi-optimal in the l∞(0,T ;L2(Ω)) norm. We remark that, in compari-
son with [8], we need less regularity on the exact solution in the a priori error estimates.

A first advantage of theφ-FEM paradigm is its ease of implementation. Indeed, it uses standard
shape functions contrary to the XFEM approach. Moreover, it uses standard integration tools
contrary to cutFEM needing an integration on the real boundary and some integrations on cut
cells.

A second interesting aspect of our approach is the computational time of the simulation. The
low cost (computational time) of φ-FEM can be explained by the fact that the boundary of the
geometry in the classical finite element method is approximated by some linear functions while,
in the φ-FEM paradigm, the boundary is taken into account thanks to the level set function φ,
which can be of high degree without increasing the size of the finite element matrix.

In the mathematical analysis, we supposed that the boundary of the considered domain is
regular enough. The case of less regular domains will be the aim of future work.
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