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Abstract. Let Gn,2n be the Grassmannian parameterizing the n-dimensional subspaces of C2n . The Picard
group of Gn,2n is generated by a unique ample line bundle O (1). Let T be a maximal torus of SL(2n,C) which
acts on Gn,2n and O (1). By [10, Theorem 3.10, p. 764], 2 is the minimal integer k such that O (k) descends to the
GIT quotient. In this article, we prove that the GIT quotient of Gn,2n (n ≥ 3) by T with respect to O (2) =O (1)⊗2

is not projectively normal when polarized with the descent of O (2).

Résumé. Soit Gn,2n la Grassmannienne des sous-espaces de dimension n de C2n . Le groupe de Picard de
Gn,2n est engendré par un unique fibré en droites ample O (1). Fixons un tore maximal T du groupe SL(2n,C)
qui agit sur Gn,2n et O (1). D’après [10, Theorem 3.10, p. 764], 2 est l’entier minimal k tel que O (k) descende
au quotient GIT. Dans cet article, nous prouvons que le quotient GIT de Gn,2n (n ≥ 3) par T par rapport à
O (2) =O (1)⊗2 n’est pas projectivement normal lorsqu’il est polarisé avec la descente de O (2).
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1. Introduction

A polarized variety (X ,L ), where L is a very ample line bundle is said to be projectively normal
if its homogeneous coordinate ring ⊕m∈Z≥0 H 0(X ,L ⊗m) is integrally closed and it is generated
as a C-algebra by H 0(X ,L ) (see [2, Chapter II, Exercise 5.14]). For example, the projective line
(P1,O (1)) is projectively normal. However, if we consider the rational twisted quartic curve in P3,
i.e., image X = {[a4 : a3b : ab3 : b4] ∈ P3 : [a : b] ∈ P1} of the embedding i : P1 ,→ P3 given by
[a : b] 7→ [a4 : a3b : ab3 : b4], then (X ,OX (1)) = (P1,O (3)) is normal but not projectively normal as
the affine cone of X inside C4 is not normal (see [2, Chapter I, Exercise 3.18]).

In [6], Kannan made an attempt to study projective normality of the GIT quotient of G2,n by a
maximal torus T of SL(n,C) with respect to the descent of O (n) (n is odd). There it was proved that
the homogeneous coordinate ring of the GIT quotient of G2,n by T with respect to the descent of
O (n) is a finite module over the subring generated by the degree one elements. In [3], Howard
et al. showed that the GIT quotient of G2,n by T with respect to the descent of O ( n

2 ) (respectively,
O (n)) is projectively normal if n is even (respectively, if n is odd). In [14], Nayek et al. used graph
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theoretic techniques to give a short proof of the projective normality of the GIT quotient of G2,n

by T with respect to the descent of O (n) for any n.
To the best of our knowledge it is not known whether there is a suitable ample line bundle

L on Gr,n (r ≥ 3) such that the GIT quotient of Gr,n by T with respect to the descent of the
line bundle L is projectively normal (respectively, not projectively normal) with respect to the
descent of L .

In this article, we prove the following:

Theorem 1. The GIT quotient of Gn,2n (n ≥ 3) by a maximal torus T of SL(2n,C) with respect to
the descent of O (2) is not projectively normal (for more precise see Corollary 6).

The layout of the paper is as follows. In Section 2, we recall some preliminaries on algebraic
groups, Standard Monomial Theory and Geometric Invariant Theory. In Section 3, we prove
Theorem 1 (see Corollary 6).

2. Notation and Preliminaries

We refer to [4, 5, 11, 13, 15, 17] for preliminaries in algebraic groups, Lie algebras, Standard
Monomial Theory and Geometric Invariant Theory.

Let V = C2n and (e1,e2, . . . ,e2n) be the standard basis of V . For a fixed integer r with 1 ≤
r ≤ 2n − 1, let Gr,2n be the Grassmannian parameterizing the r -dimensional subspaces of C2n .
Then there is a natural projective variety structure on Gr,2n given by the Plücker embedding
π : Gr,2n ,→ P(∧r V ) sending r -dimensional subspace to its r -th exterior power. The natural left
action of SL(2n,C) on V induces an action of SL(2n,C) on ∧r V and thus on P(∧r V ), moreover, π
is SL(2n,C)-equivariant. Let T be the maximal torus of SL(2n,C) consisting of diagonal matrices.
Let O (1) denote the hyperplane line bundle on Gr,2n given by the Plücker embedding π. Note that
O (1) is SL(2n,C)-linearized, in particular, T -linearized.

Let I (r,2n) denote the indexing set {i = (i1, i2, . . . , ir )|i j ∈ Z and 1 ≤ i1 < i2 < ·· · < ir ≤ 2n}. Let
ei = ei1 ∧ ei2 ∧ ·· ·∧ eir for i = (i1, i2, . . . , ir ) ∈ I (r,2n). Then {ei : i ∈ I (r,2n)} forms a basis of ∧r V .
Let {pi : i ∈ I (r,2n)} be the basis of the dual space (∧r V )∗, which is dual to {ei : i ∈ I (r,2n)}, i.e.,
p j (ei ) = δi j . Note that pi ’s are the i th Plücker coordinates of Gr,2n .

In V , we fix a full flag {0} = V0 ⊂ V1 ⊂ ·· · ⊂ V2n = V . For w = (w1, w2, . . . , wr ) in I (r,2n), the
Schubert variety in Gr,2n associated to w is denoted by X (w) and is defined by

X (w) =
{

W ∈Gr,2n

∣∣∣∣∣ dimW ∩V j ≥ i , if wi ≤ j < wi+1,

where 1 ≤ j ≤ 2n,0 ≤ i ≤ r and w0 := 0, wr+1 := 2n

}
.

The definition of a Schubert variety X (w) depends on the choice of a full flag. However,
given any two full flags {0} = V0 ⊂ V1 ⊂ ·· · ⊂ V2n = V and {0} = V ′

0 ⊂ V ′
1 ⊂ ·· · ⊂ V ′

2n = V in V ,
there exist an automorphism of V which takes Vi to V ′

i , which shows that X (w) is well defined
up to an automorphism of V . We note that X (w) is a closed subvariety of Gr,2n of dimension∑r

i=1 wi − r (r+1)
2 .

There is a natural partial order on I (r,2n), given as follows: for v = (v1, v2, . . . , vr ), w =
(w1, w2, . . . , wr ), v ≤ w if and only if vi ≤ wi for all 1 ≤ i ≤ r . For v, w ∈ I (r,2n), X (v) ⊆ X (w) if
and only if v ≤ w . Further, pv |X (w) ̸= 0 if and only if v ≤ w .

For w ∈ I (r,2n), we also denote the restriction of the line bundle O (1) on Gr,2n to X (w) by
O (1). The monomial pτ1 pτ2 . . . pτm ∈ H 0(X (w),O (m)), where τ1,τ2, . . . ,τm ∈ I (r,2n) is said to be
standard monomial of degree m if τ1 ≤ τ2 ≤ ·· · ≤ τm ≤ w . The standard monomials of degree m
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on X (w) form a basis of H 0(X (w),O (m)). The Grassmannian Gr,2n ⊆P(∧r V ) is precisely the zero
set of the following well known Plücker relations:

r+1∑
h=1

(−1)h pi1,i2,...,ir−1 jh p j1,..., ĵh ,..., jr+1
, (1)

where {i1, . . . , ir−1}, { j1, . . . , jr+1} are two subsets of {1,2, . . . ,2n} and ĵh means dropping the in-
dex jh .

A point p ∈ X (w) is said to be semi-stable with respect to the T -linearized line bundle O (1) if
there is a T -invariant section s ∈ H 0(X (w),O (m)) for some positive integer m such that s(p) ̸= 0.
We denote the set of all semi-stable points of X (w) with respect to O (1) by X (w)ss

T (O (1)). A point p
in X (w)ss

T (O (1)) is said to be stable if the T -orbit of p is closed in X (w)ss
T (O (1)) and the stabilizer of

p in T is finite. We denote the set of all stable points of X (w) with respect to O (1) by X (w)s
T (O (1)).

Let B (⊃ T ) be the Borel subgroup of SL(2n,C) consisting of upper triangular matrices. For
1 ≤ i ≤ 2n, define εi : T → C× by εi (diag(t1, . . . , t2n)) = ti . Then S := {αi := εi −εi+1| for all 1 ≤ i ≤
2n−1} forms the set of simple roots of SL(2n,C) with respect to T and B . Let {ϖi |i = 1,2, . . . ,2n−1}
be the set of fundamental dominant weights corresponding to S.

For λ = mϖr (m ≥ 1), we associate a Young diagram (denoted by Γ) with λi number of boxes
in the i -th column, where λi := m for 1 ≤ i ≤ r . It is also called Young diagram of shape λ.A
Young diagram Γ associated to λ is said to be a Young tableau if the diagram is filled with integers
1,2, . . . ,2n. We also denote this Young tableau by Γ. A Young tableau is said to be standard if the
entries along any column is non-decreasing from top to bottom and along any row is strictly
increasing from left to right. Given a Young tableau Γ, let τ = {i1, i2, . . . , ir } be a typical row in Γ,
where 1 ≤ i1 < ·· · < ir ≤ 2n. To the row τ, we associate the Plücker coordinate pi1,i2,...,ir . We set
pΓ = ∏

τ pτ, where the product is taken over all the rows of Γ. Note that for w ∈ I (r,2n), pΓ is a
standard monomial on X (w) if Γ is standard and the bottom row of Γ is less than or equal to w .
Further, pΓ is also called standard monomial on X (w) of shape λ. We use the notation pΓ and Γ

interchangeably.
Now we recall the definition of weight of a standard Young tableauΓ (see [12, Section 2, p. 336]).

For a positive integer 1 ≤ i ≤ 2n, we denote by cΓ(i ), the number of boxes of Γ containing the
integer i . The weight of Γ is defined as w t (Γ) := cΓ(1)ε1 +·· ·+cΓ(2n)ε2n .

We conclude this section by recalling the following key lemma about T -invariant monomials
in H 0(Gr,2n ,O (m)).

Lemma 2 ([14, Lemma 3.1, p. 4]). A monomial pΓ ∈ H 0(Gr,2n ,O (m)) is T -invariant if and only if
cΓ(i ) = cΓ( j ) for all 1 ≤ i , j ≤ 2n.

3. Main Theorem

First we recall that by [10, Theorem 3.10, p. 764], 2 is the minimal integer k such that the line
bundle O (k) on Gn,2n descends to the GIT quotient T \\(Gn,2n)ss

T (O (2)). In this section, we prove
that there exists a Schubert subvariety X (v) of Gn,2n admitting semi-stable points such that the
GIT quotient T \\(X (v))ss

T (O (2)) with respect to the descent of O (2) is not projectively normal (see
Theorem 5). As a consequence, we conclude that any Schubert variety X (w) containing X (v), the
GIT quotient T \\(X (w))ss

T (O (2)) with respect to the descent of O (2) is not projectively normal. In
particular, T \\(Gn,2n)ss

T (O (2)) is not projectively normal.
Recall that 2ϖn = 2ε1 +2ε2 +·· ·+2εn (see [4, Table 1, p. 69]). For u = (u1,u2, . . . ,un) ∈ I (n,2n),

we define u(2ϖn) = 2εu1 +2εu2 +·· ·+2εun .
Recall that by [9, Corollary 1.9, p. 85], there exists a unique minimal element w1 ∈ I (n,2n) such

that w1(2ϖn) ≤ 0, i.e., −w1(2ϖn) is a non-negative linear combination of simple roots. Consider
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w = (2,4,6, . . . ,2n −4,2n −2,2n). Then −w(2ϖn) =−(2ε2 +2ε4 +·· ·+2ε2n) =α1 +α3 +·· ·+α2n−1,
as

∑2n
i=1 εi = 0. Thus, w(2ϖn) ≤ 0. On the other hand for any v ≤ w such that

∑n
i=1(wi − vi ) =

1, we have v = (2,4,6, . . . ,2i − 2,2i − 1,2i + 2, . . . ,2n − 4,2n − 2,2n) for some 1 ≤ i ≤ n. Then
−v(2ϖn) =−(2ε2 +·· ·+2ε2i−2 +2ε2i−1 +2ε2i+2 +·· ·+2ε2n). Since

∑2n
i=1 εi = 0, we have −v(2ϖn) =

(α1 +α3 +·· ·+α2i−3 +α2i+1 +α2i+3 +·· ·+α2n−1)−α2i−1. Thus, v(2ϖn)≰ 0. Therefore, w = w1.
Now we consider the following wi ’s such that w1 ≤ wi for all 2 ≤ i ≤ 5 :

• w2 = (2,4,6, . . . ,2n −6,2n −3,2n −2,2n)
• w3 = (2,4,6, . . . ,2n −6,2n −4,2n −1,2n)
• w4 = (2,4,6, . . . ,2n −6,2n −3,2n −1,2n)
• w5 = (2,4,6, . . . ,2n −6,2n −2,2n −1,2n).

Note that {w1, w2, w3, w4, w5} is precisely the set {w ∈ I (n,2n) : w1 ≤ w ≤ w5}. Further, note
that w2 and w3 are non-comparable and w2, w3 ≤ w4 ≤ w5. Since w1 ≤ wi and w1(2ϖn) ≤ 0, we
have wi (2ϖn) ≤ 0 for all 2 ≤ i ≤ 5. Thus, by [8, Lemma 2.1, p. 470], X (wi )ss

T (O (2)) is non-empty for
all 1 ≤ i ≤ 5.

Let X = T \\(X (w5))ss
T (O (2)). Then we have X = Proj(R), where R = ⊕

k∈Z≥0 Rk and Rk =
H 0(X (w5),O (2k))T . Note that Rk ’s are finite dimensional vector spaces.

Let us consider the following standard monomials

X1 =
1 3 5 · · · 2n −7 2n −5 2n −3 2n −1

2 4 6 · · · 2n −6 2n −4 2n −2 2n

X2 =
1 3 5 · · · 2n −7 2n −5 2n −4 2n −1

2 4 6 · · · 2n −6 2n −3 2n −2 2n

X3 =
1 3 5 · · · 2n −7 2n −5 2n −3 2n −2

2 4 6 · · · 2n −6 2n −4 2n −1 2n

X4 =
1 3 5 · · · 2n −7 2n −5 2n −4 2n −2

2 4 6 · · · 2n −6 2n −3 2n −1 2n

X5 =
1 3 5 · · · 2n −7 2n −5 2n −4 2n −3

2 4 6 · · · 2n −6 2n −2 2n −1 2n

Y1 =

1 3 5 · · · 2n −7 2n −5 2n −4 2n −3

1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

2 4 6 · · · 2n −6 2n −4 2n −2 2n

2 4 6 · · · 2n −6 2n −3 2n −1 2n

Y2 =

1 3 5 · · · 2n −7 2n −5 2n −4 2n −2

1 3 5 · · · 2n −7 2n −5 2n −3 2n −1

2 4 6 · · · 2n −6 2n −4 2n −3 2n

2 4 6 · · · 2n −6 2n −2 2n −1 2n

.

Remark 3. Let M denote the descent of the line bundle O (2) to X . Then by using Quantization
commutes with reduction we have H 0(X (w5),O (2k))T = H 0(X ,M⊗k ) for k ∈ Z≥0 (see [18, Theo-
rem 3.2.a., p. 11] or [16, Theorem 4.1(ii), p. 526]).

Remark 4.

(i) Note that the set of T -invariant standard monomials of shape 2ϖn on X (w5) is {Xi :
1 ≤ i ≤ 5}. Thus by [11, Theorem 12.4.8, p. 207], the set {Xi : 1 ≤ i ≤ 5} forms standard
monomial basis of R1.

(ii) The set of T -invariant standard monomials of shape 4ϖn on X (w5) is {Y1,Y2}∪{Xi X j : 1 ≤
i ≤ j ≤ 5} \ {X2X3}. Therefore, by [11, Theorem 12.4.8, p. 207], the set {Y1,Y2}∪ {Xi X j : 1 ≤
i ≤ j ≤ 5} \ {X2X3} forms standard monomial basis of R2.

Theorem 5. The GIT quotient X with respect to the descent of O (2) is not projectively normal.

Proof. Consider the natural map f : R1 ⊗R1 → R2 of vector spaces given by Xi ⊗ X j 7→ Xi X j for
1 ≤ i , j ≤ 5. Then f factors through second symmetric power S2R1 of the vector space R1. For
simplicity we also denote the factor map S2R1 → R2 by f . By Remark 4, we have dim(R1) = 5
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and dim(R2) = 16. So, the map f : S2R1 → R2 cannot be surjective, since dim(S2R1) = 15 <
dim(R2). □

Corollary 6. The GIT quotient T \\(X (w))ss
T (O (2)) with respect to the descent of O (2) is not projec-

tively normal for w ∈ I (n,2n) such that w5 ≤ w. In particular, the GIT quotient T \\(Gn,2n)ss
T (O (2))

with respect to the descent of O (2) is not projectively normal.

Proof. By [1, Theorem 3.1.1(b), p. 85], the restriction map

φ : H 0(X (w),O (2k)) → H 0(X (w5),O (2k))

is surjective. Further, since T is linearly reductive, the restriction map φ : H 0(X (w),O (2k))T →
H 0(X (w5),O (2k))T is surjective for all k ≥ 1. So, by Theorem 5, T \\(X (w))ss

T (O (2)) with respect to
the descent of O (2) is not projectively normal. □

Lemma 7. The homogeneous coordinate ring of X is generated by elements of degree at most two.

Proof. Let f ∈ Rk be a standard monomial. We claim that f = f1 f2, where f1 is in R1 or R2. The
Young diagram associated to f has the shape (λ1,λ2,λ3, . . . ,λn) = (2k,2k, . . . ,2k︸ ︷︷ ︸

n

). So the Young

tableau Γ associated to f has 2k rows and n columns with strictly increasing rows and non-
decreasing columns. Since f is T -invariant, by Lemma 2, we have cΓ(t ) = k for all 1 ≤ t ≤ 2n.
Let ri be the i -th row of the tableau. Let Ei , j be the (i , j )-th entry of the tableau Γ and Nt , j is the
number of boxes in the j -th column of Γ containing the integer t .

Recall that w5 is (2,4,6, . . . ,2n −6,2n −2,2n −1,2n). Since r2k ≤ w5, we have E2k, j ≤ 2 j for all
1 ≤ j ≤ n−3. Note that for 1 ≤ j ≤ n−3, we have Ei , j = 2 j for all k+1 ≤ i ≤ 2k. Thus, for 1 ≤ j ≤ n−2,
we have Ei , j = 2 j −1 for all 1 ≤ i ≤ k. Thus, the following rows are the possibilities for r2k :

• (2,4,6, . . . ,2n −6,2n −4,2n −2,2n)
• (2,4,6, . . . ,2n −6,2n −3,2n −2,2n)
• (2,4,6, . . . ,2n −6,2n −4,2n −1,2n)
• (2,4,6, . . . ,2n −6,2n −3,2n −1,2n)
• (2,4,6, . . . ,2n −6,2n −2,2n −1,2n).

Case I. Assume that r2k = (2,4,6, . . . ,2n − 6,2n − 4,2n − 2,2n). Then for 1 ≤ j ≤ n, we have
Ei , j = 2 j − 1 (resp. Ei , j = 2 j ) for all 1 ≤ i ≤ k (resp. for all k + 1 ≤ i ≤ 2k). Therefore, r1 =
(1,3,5, . . . ,2n −7,2n −5,2n −3,2n −1). Hence, r1,r2k together give a factor X1 of f .

Case II. Assume that r2k = (2,4,6, . . . ,2n − 6,2n − 3,2n − 2,2n). Since N2n−3,n−2 ≥ 1, we have
N2n−4,n−2 ≤ k−1. Thus, E1,n−1 = 2n−4. Since E2k,n−1 = 2n−2, we have Ei ,n = 2n−1 for all 1 ≤ i ≤ k.
Therefore, r1 = (1,3,5, . . . ,2n−7,2n−5,2n−4,2n−1). Hence, r1,r2k together give a factor X2 of f .

Case III. Assume that r2k = (2,4,6, . . . ,2n − 6,2n − 4,2n − 1,2n). Then Ei ,n−2 = 2n − 4 for all
k +1 ≤ i ≤ 2k and Ei ,n−1 = 2n −3 for all 1 ≤ i ≤ k. Since N2n−1,n−1 ≥ 1, we have N2n−2,n−1 ≤ k −1.
Thus, E1,n = 2n −2. Therefore, r1 = (1,3,5, . . . ,2n −7,2n −5,2n −3,2n −2). Hence, r1,r2k together
give a factor X3 of f .

Case IV. Assume that r2k = (2,4,6, . . . ,2n − 6,2n − 3,2n − 1,2n). Since N2n−3,n−2 ≥ 1, we have
N2n−4,n−2 ≤ k − 1. Thus, E1,n−1 = 2n − 4. Since E2k,n−1 = 2n − 1, we have E1,n ≤ 2n − 2. Thus,
r1 is either (1,3,5, . . . ,2n − 7,2n − 5,2n − 4,2n − 3) or (1,3,5, . . . ,2n − 7,2n − 5,2n − 4,2n − 2). If
r1 = (1,3,5, . . . ,2n − 7,2n − 5,2n − 4,2n − 2), then r1,r2k together give a factor X4 of f . If r1 =
(1,3,5, . . . ,2n − 7,2n − 5,2n − 4,2n − 3), then Ek,n−1 = 2n − 2. Otherwise, if Ek,n−1 = 2n − 4 or
2n −3, then

∑2n−3
t=2n−4(Nt ,n−2 +Nt ,n−1 +Nt ,n) ≥ 2k +1, which is a contradiction. Therefore, Ek,n =

2n −1. Thus, Ek+1,n−1 = 2n −2. Therefore, rk = (1,3,5, . . . ,2n −7,2n −5,2n −2,2n −1) and rk+1 =
(2,4,6, . . . ,2n −6,2n −4,2n −2,2n). Hence, r1,rk ,rk+1,r2k together give a factor Y1 of f .
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Case V. Assume that r2k = (2,4,6, . . . ,2n − 6,2n − 2,2n − 1,2n). Since E2k,n−2 = 2n − 2, we have
E1,n−1 = 2n −4. Thus, E1,n ≥ 2n −3. If E1,n = 2n −1, then N2n−1,n−1 +N2n−1,n ≥ k +1, which is a
contradiction. Thus, E1,n is either 2n −3 or 2n −2. Thus, r1 is either (1,3,5, . . . ,2n −7,2n −5,2n −
4,2n −3) or (1,3,5, . . . ,2n −7,2n −5,2n −4,2n −2). If r1 = (1,3,5, . . . ,2n −7,2n −5,2n −4,2n −3),
then r1,r2k together give a factor X5 of f . If r1 = (1,3,5, . . . ,2n − 7,2n − 5,2n − 4,2n − 2), then
2n − 4 ≤ Ek,n−1 ≤ 2n − 1. If Ek,n−1 = 2n − 1, then N2n−1,n−1 ≥ k + 1, which is a contradiction.
If Ek,n−1 = 2n − 2, then

∑2n−1
t=2n−2(Nt ,n−2 + Nt ,n−1 + Nt ,n) ≥ 2k + 2, which is a contradiction. If

Ek,n−1 = 2n − 4, then Ei ,n−2 = 2n − 3 for all k + 1 ≤ i ≤ 2k − 1. Thus, cΓ(2n − 3) ≤ k − 1, which is
a contradiction. Therefore, Ek,n−1 = 2n−3. Thus, Ek,n = 2n−1. Then 2n−3 ≤ Ek+1,n−1 ≤ 2n−1. If
Ek+1,n−1 = 2n −1, then N2n−1,n−1 +N2n−1,n ≥ k +1, which is a contradiction. If Ek+1,n−1 = 2n −2,
then

∑2n−1
t=2n−2(Nt ,n−2 +Nt ,n−1 +Nt ,n) ≥ 2k +1, which is a contradiction. Thus, Ek+1,n−1 = 2n −3.

Therefore, rk = (1,3,5, . . . ,2n−7,2n−5,2n−3,2n−1) and rk+1 = (2,4,6, . . . ,2n−6,2n−4,2n−3,2n).
Therefore, r1,rk ,rk+1,r2k together give a factor Y2 of f . □

Lemma 8. Xi ’s (1 ≤ i ≤ 5), and Y j ’s (1 ≤ j ≤ 2) satisfy the following relation in R2 : X2X3 =
X1X4 −Y2 −Y1 +X5(X1 −X2 −X3 +X4 −X5).

Proof. Note that

X2X3 =

1 3 5 · · · 2n −7 2n −5 2n −4 2n −1

1 3 5 · · · 2n −7 2n −5 2n −3 2n −2

2 4 6 · · · 2n −6 2n −3 2n −2 2n

2 4 6 · · · 2n −6 2n −4 2n −1 2n

.

By using (1), we have the following straightening laws in X (w5)

1 3 5 · · · 2n −7 2n −5 2n −4 2n −1

1 3 5 · · · 2n −7 2n −5 2n −3 2n −2

=
1 3 5 · · · 2n −7 2n −5 2n −4 2n −2

1 3 5 · · · 2n −7 2n −5 2n −3 2n −1

−
1 3 5 · · · 2n −7 2n −5 2n −4 2n −3

1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

and

2 4 6 · · · 2n −6 2n −3 2n −2 2n

2 4 6 · · · 2n −6 2n −4 2n −1 2n

=
2 4 6 · · · 2n −6 2n −4 2n −2 2n

2 4 6 · · · 2n −6 2n −3 2n −1 2n

−
2 4 6 · · · 2n −6 2n −4 2n −3 2n

2 4 6 · · · 2n −6 2n −2 2n −1 2n

.
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Therefore, by using the above straightening laws we have

X2X3 =

1 3 5 · · · 2n −7 2n −5 2n −4 2n −2

1 3 5 · · · 2n −7 2n −5 2n −3 2n −1

2 4 6 · · · 2n −6 2n −4 2n −2 2n

2 4 6 · · · 2n −6 2n −3 2n −1 2n

−

1 3 5 · · · 2n −7 2n −5 2n −4 2n −2

1 3 5 · · · 2n −7 2n −5 2n −3 2n −1

2 4 6 · · · 2n −6 2n −4 2n −3 2n

2 4 6 · · · 2n −6 2n −2 2n −1 2n

−

1 3 5 · · · 2n −7 2n −5 2n −4 2n −3

1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

2 4 6 · · · 2n −6 2n −4 2n −2 2n

2 4 6 · · · 2n −6 2n −3 2n −1 2n

+

1 3 5 · · · 2n −7 2n −5 2n −4 2n −3

1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

2 4 6 · · · 2n −6 2n −4 2n −3 2n

2 4 6 · · · 2n −6 2n −2 2n −1 2n

= X1X4 −Y2 −Y1 +X5Z ,

where

Z =
1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

2 4 6 · · · 2n −6 2n −4 2n −3 2n

.

By using (∗) (see Appendix) we have Z = X1−X2−X3+X4−X5. Therefore, X2X3 = X1X4−Y2−
Y1 +X5(X1 −X2 −X3 +X4 −X5). □

Proposition 9. We have

(i) The GIT quotient T \\(X (w1))ss
T (O (2)) with respect to the descent of O (2) is projectively

normal and isomorphic to point.
(ii) The GIT quotient T \\(X (w2))ss

T (O (2)) with respect to the descent of O (2) is projectively
normal and isomorphic to P1 polarized with O (1).

(iii) The GIT quotient T \\(X (w3))ss
T (O (2)) with respect to the descent of O (2) is projectively

normal and isomorphic to P1 polarized with O (1).
(iv) The GIT quotient T \\(X (w4))ss

T (O (2)) with respect to the descent of O (2) is projectively
normal and isomorphic to P3 polarized with O (1).

Proof. Note that Y2 = 0 on X (wi ) for all 1 ≤ i ≤ 4.

Proof of (iv). By [1, Theorem 3.1.1(b), p. 85], the restriction map H 0(X (w5),O (2k)) →
H 0(X (w4),O (2k)) is surjective. Further, since T is linearly reductive, the restriction map
H 0(X (w5),O (2k))T → H 0(X (w4),O (2k))T is surjective for all k ≥ 1. Note that X5 = 0 on X (w4).
Consider Xi ’s (1 ≤ i ≤ 4) as elements of H 0(X (w4),O (2))T . Recall that (X1, . . . , X4) is a basis of
H 0(X (w4),O (2))T .

We claim that any relation among Xi ’s (1 ≤ i ≤ 4) given by a homogeneous polynomials of
degree k is identically zero. Suppose ∑

cm X m = 0 (2)

where m = (m1,m2,m3,m4) are tuples of non-negative integers such that m1+m2+m3+m4 = k,
X m = X m1

1 X m2
2 X m3

3 X m4
4 and cm ’s are non-zero scalars. Then rewriting (2) as∑

m2≤m3

cm X m1
1 (X2X3)m2 X m3−m2

3 X m4
4 + ∑

m2>m3

cm X m1
1 X m2−m3

2 (X2X3)m3 X m4
4 = 0.

Recall that by Lemma 8, we have X2X3 = X1X4 −Y1. Replacing X2X3 by X1X4 −Y1 in the above
equation we get∑

m2≤m3

cm X m1
1 (X1X4 −Y1)m2 X m3−m2

3 X m4
4 + ∑

m2>m3

cm X m1
1 X m2−m3

2 (X1X4 −Y1)m3 X m4
4 = 0.
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Note that any monomial in X1, X3, X4,Y1 (respectively, in X1, X2, X4,Y1) is standard. Hence, cm = 0
for all m. Thus, X1, X2, X3, X4 are algebraically independent. Further, by Lemma 7, and above sur-
jectivity, the homogeneous coordinate ring of T \\(X (w4))ss

T (O (2)) is generated by X1, X2, X3, X4.
On the other hand, by [1, Theorem 3.2.2, p. 92], X (w4) is normal. As T \\(X (w4))ss

T (O (2)) is an open
subset of X (w4), it is also normal. Hence, by Remark 3, the GIT quotient T \\(X (w4))ss

T (O (2)) with
respect to the descent of O (2) is projectively normal and isomorphic to Proj(C[X1, X2, X3, X4]) =
P3 polarized with O (1).

By [1, Theorem 3.1.1(b), p. 85], it follows that the restriction map H 0(X (w4),O (2k)) →
H 0(X (wi ),O (2k)) is surjective for all 1 ≤ i ≤ 3. Further, since T is linearly reductive, the restric-
tion map H 0(X (w4),O (2k))T → H 0(X (wi ),O (2k))T is surjective for all k ≥ 1. On the other hand,
by [1, Theorem 3.2.2, p. 92], X (wi ) is normal. As T \\(X (wi ))ss

T (O (2)) is an open subset of X (wi ), it
is also normal. Hence, by (iv) the GIT quotient T \\(X (wi ))ss

T (O (2)) with respect to the descent of
O (2) is also projectively normal for all 1 ≤ i ≤ 3.

Proof of (iii). Note that X2 and X4 are identically zero on X (w3). Since the restriction map
H 0(X (w4),O (2k))T → H 0(X (w3),O (2k))T is surjective for all k ≥ 1, by (iv) any standard mono-
mial in H 0(X (w3),O (2k))T is of the form X k1

1 X k2
3 , where k1 + k2 = k. Hence, the GIT quotient

T \\(X (w3))ss
T (O (2)) is isomorphic to Proj(C[X1, X3]) =P1 polarized with O (1).

Proof of (ii). Note that X3 and X4 are identically zero on X (w2). Since the restriction map
H 0(X (w4),O (2k))T → H 0(X (w2),O (2k))T is surjective for all k ≥ 1, by (iv) any standard mono-
mial in H 0(X (w2),O (2k))T is of the form X k1

1 X k2
2 , where k1 + k2 = k. Hence, the GIT quotient

T \\(X (w2))ss
T (O (2)) is isomorphic to Proj(C[X1, X2]) =P1 polarized with O (1).

Proof of (i). Note that X2, X3 and X4 are identically zero on X (w1). Since the restriction map
H 0(X (w4),O (2k))T → H 0(X (w1),O (2k))T is surjective for all k ≥ 1, by (iv) any standard mono-
mial in H 0(X (w1),O (2k))T is of the form X k

1 . Hence, the GIT quotient T \\(X (w1))ss
T (O (2)) is iso-

morphic to Proj(C[X1]). □

Remark 10.

(i) The GIT quotient T \\(G1,2)ss
T (O (2)) with respect to the descent of O (2) is projectively

normal and isomorphic to point.
(ii) The GIT quotient T \\(G2,4)ss

T (O (2)) with respect to the descent of O (2) is projectively
normal (see [3, Theorem 2.3, p. 182]) and isomorphic to (P1,O (1)) (see [7, Proposition 3.5,
p. 277]).

Now we prove that the GIT quotient of X (w5) by T with respect to the descent of O (4) is
projectively normal.

Theorem 11. The homogeneous coordinate ring of T \\(X (w5))ss
T (O (4)) is generated by elements

of degree one.

Proof. Let f ∈ H 0(X (w5),O (4)⊗k )T = H 0(X (w5),O (4k))T . Then by Lemma 7, we have

f =∑
a(m,n)X mY n ,

where m = (m1,m2,m3,m4,m5), n = (n1,n2), are tuples of non-negative integers such that
m1+m2+m3+m4+m5+2n1+2n2 = 2k, X m = X m1

1 X m2
2 X m3

3 X m4
4 X m5

5 , Y n = Y n1
1 Y n2

2 , and a(m,n)’s
are non-zero scalars.

Now to prove that the homogeneous coordinate ring of T \\(X (w5))ss
T (O (4)) is generated

by H 0(X (w5),O (4))T as a C-algebra, it is enough to show that for each f as above and each
monomial appearing in the expression of f is in the image of Sk H 0(X (w5),O (4))T , under the
natural map Sk H 0(X (w5),O (4))T → H 0(X (w5),O (4k))T , where Sk H 0(X (w5),O (4))T denotes the
kth symmetric power of the vector space H 0(X (w5),O (4))T .
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Consider the monomial X mY n appearing in the expression of f . Since m1+m2+m3+m4+m5

is even integer, X m can be written as
∏

(i , j ) Xi X j , where the number of pairs (i , j ) is (k −n1 −n2)
and repetition of Xi ’s are allowed. Thus, X m is a product of (k −n1 −n2) number of monomials
in H 0(X (w5),O (4))T . Note that Y1,Y2 ∈ H 0(X (w5),O (4))T . Therefore, X mY n is in the image of
Sk (H 0(X (w5),O (4))T ) under the natural map. □

Corollary 12. The GIT quotient T \\(X (w5))ss
T (O (4)) is projectively normal with respect to the

descent of O (4).

Proof. Follows from Theorem 11. □

Corollary 13. The GIT quotient T \\(G3,6)ss
T (O (4)) is projectively normal with respect to the descent

of O (4).

Proof. Note that for n = 3, w5 = (4,5,6). So, we have X (w5) =G3,6. Therefore, proof immediately
follows from Theorem 11. □

In the view of the above results the following question is open:

Problem. Is the GIT quotient of Gn,2n (n ≥ 4) by T with respect to the descent of O (4) projectively
normal?

Appendix

Here, we prove the following straightening law on X (w5) that we used in the proof of Lemma 8.

1 3 5 · · · 2n −7 2n −5 2n −2 2n −1

2 4 6 · · · 2n −6 2n −4 2n −3 2n

= X1 −X2 −X3 +X4 −X5. (∗)

Proof. Let i = {1,3, . . . ,2n −7} and j = {2,4,6, . . . ,2n −6}. Let I = {1,3, . . . ,2n −7,2n −5,2n −4} and
J = {2,4, . . . ,2n −6,2n −3,2n −2,2n −1,2n} be two subsets of {1,2, . . . ,2n}. Then by using (2.1) the
following straightening law holds in X (w5)

pi ,2n−5,2n−4,2n−3p j ,2n−2,2n−1,2n −pi ,2n−5,2n−4,2n−2p j ,2n−3,2n−1,2n

+pi ,2n−5,2n−4,2n−1p j ,2n−3,2n−2,2n −pi ,2n−5,2n−4,2n p j ,2n−3,2n−2,2n−1 = 0. (3)

Let I = {1,3, . . . ,2n −7,2n −5,2n −3} and J = {2,4, . . . ,2n −6,2n −4,2n −2,2n −1,2n}. Then by
using (2.1) the following straightening law holds in X (w5)

pi ,2n−5,2n−4,2n−3p j ,2n−2,2n−1,2n +pi ,2n−5,2n−3,2n−2p j ,2n−4,2n−1,2n

−pi ,2n−5,2n−3,2n−1p j ,2n−4,2n−2,2n +pi ,2n−5,2n−3,2n p j ,2n−4,2n−2,2n−1 = 0. (4)

Let I = {1,3, . . . ,2n −7,2n −5,2n −2} and J = {2,4, . . . ,2n −6,2n −4,2n −3,2n −1,2n}. Then by
using (2.1) the following straightening law holds in X (w5)

pi ,2n−5,2n−4,2n−2p j ,2n−3,2n−1,2n −pi ,2n−5,2n−3,2n−2p j ,2n−4,2n−1,2n

−pi ,2n−5,2n−2,2n−1p j ,2n−4,2n−3,2n +pi ,2n−5,2n−2,2n p j ,2n−4,2n−3,2n−1 = 0. (5)

Let I = {1,3, . . . ,2n −7,2n −5,2n −1} and J = {2,4, . . . ,2n −6,2n −4,2n −3,2n −2,2n}. Then by
using (2.1) the following straightening law holds in X (w5)

pi ,2n−5,2n−4,2n−1p j ,2n−3,2n−2,2n −pi ,2n−5,2n−3,2n−1p j ,2n−4,2n−2,2n

+pi ,2n−5,2n−2,2n−1p j ,2n−4,2n−3,2n +pi ,2n−5,2n−1,2n p j ,2n−4,2n−3,2n−2 = 0. (6)
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Let I = {1,3, . . . ,2n −7,2n −5,2n} and J = {2,4, . . . ,2n −6,2n −4,2n −3,2n −2,2n −1}. Then by
using (2.1) the following straightening law holds in X (w5)

pi ,2n−5,2n−4,2n p j ,2n−3,2n−2,2n−1 −pi ,2n−5,2n−3,2n p j ,2n−4,2n−2,2n−1

+pi ,2n−5,2n−2,2n p j ,2n−4,2n−3,2n−1 −pi ,2n−5,2n−1,2n p j ,2n−4,2n−3,2n−2 = 0. (7)

Thus by using (5), we have

pi ,2n−5,2n−2,2n−1p j ,2n−4,2n−3,2n = pi ,2n−5,2n−4,2n−2p j ,2n−3,2n−1,2n

−pi ,2n−5,2n−3,2n−2p j ,2n−4,2n−1,2n +pi ,2n−5,2n−2,2n p j ,2n−4,2n−3,2n−1.

By using (7) we have

pi ,2n−5,2n−2,2n−1p j ,2n−4,2n−3,2n

= pi ,2n−5,2n−4,2n−2p j ,2n−3,2n−1,2n −pi ,2n−5,2n−3,2n−2p j ,2n−4,2n−1,2n

−pi ,2n−5,2n−4,2n p j ,2n−3,2n−2,2n−1 +pi ,2n−5,2n−3,2n p j ,2n−4,2n−2,2n−1

+pi ,2n−5,2n−1,2n p j ,2n−4,2n−3,2n−2.

Further, by using (3), (4) and (6), (∗) follows. □
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