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Abstract. A conjecture by the second author, proven by Bonnafé–Rouquier, says that the multiplicity matrix
for baby Verma modules over the restricted rational Cherednik algebra has rank one over Q when restricted
to each block of the algebra.

In this paper, we show that if H is a prime algebra that is a free Frobenius extension over a regular central
subalgebra R, and the centre of H is normal Gorenstein, then each central quotient A of H by a maximal
ideal m of R satisfies the rank-one property with respect to the Cartan matrix of A. Examples where the result
is applicable include graded Hecke algebras, extended affine Hecke algebras, quantized enveloping algebras
at roots of unity, non-commutative crepant resolutions of Gorenstein domains and 3 and 4 dimensional PI
Sklyanin algebras.

In particular, since the multiplicity matrix for restricted rational Cherednik algebras has the rank-one
property if and only if its Cartan matrix does, our result provides a different proof of the original conjecture.

Résumé. Une conjecture du deuxième auteur, qui a été prouvée par Bonnafé–Rouquier, dit que la matrice de
multiplicité des bébé modules de Verma de l’algèbre rationnelle restreinte de Cherednik est de rang un surQ
lorsqu’elle est restreinte à chaque bloc de l’algèbre.

Dans cet article nous montrons que si H est une algèbre première qui est une extension libre de Frobenius
sur une sous-algèbre centrale régulière R, et si le centre de H est Gorenstein normal, alors chaquequotient
central A de H par un idéal maximalm de R satisfait la propriété de rang un par rapport à la matrice de Cartan
de A. Les exemples où le résultat est applicable incluent les algèbres de Hecke graduées, les algèbres de Hecke
affines étendues, les algèbres enveloppantes quantifiées aux racines de l’unité, les résolutionscrépantes non
commutatives des domaines de Gorenstein et les algèbres PI Sklyanin à dimension 3 et 4.

En particulier, puisque la matrice de multiplicité pour les algèbres de Cherednik rationnelles restreintes
a la propriété de rang un si et seulement si sa matrice de Cartan l’a aussi, notre résultat fournit une preuve
différente de la conjecture originale.
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1. Introduction

It was conjectured by the second author [23, Question. 2(ii)] that baby Verma modules over the
restricted rational Cherednik algebra satisfy a remarkable rank-one property. Namely, if ∆(λ),
resp. L(λ), denotes the baby Verma module, resp. irreducible module, associated to λ ∈ IrrW ,
then the multiplicity matrix M , given by

Mλ,µ := [∆(λ) : L(µ)],

has rank one over Q when restricted to each block of the algebra. This conjecture was confirmed
by Bonnafé–Rouquier [4, Proposition 14.4.2], whose ingenious proof makes use of a splitting
extension of the centre of the (un-restricted) rational Cherednik algebra, together with properties
of the corresponding decomposition map to the restricted rational Cherednik algebra. Let C
denote the Cartan matrix of the algebra. The baby Verma modules for the restricted rational
Cherednik algebra satisfy BGG reciprocity, C = M T M , from which it is easily seen (Section 3) that
the rank-one property can equivalently be stated as saying that the Cartan matrix of each block
of the restricted rational Cherednik algebra has rank one. This reformulation makes no explicit
mention of baby Verma modules.

In this article we give a completely different proof of the rank-one property. Our proof applies
to a broader class of algebras, including for instance quantum groups at roots of unity, and makes
use of the fact that these algebras are free Frobenius R-algebras, for an appropriate regular central
subalgebra R. In particular, our result applies to all but two of the families of examples considered
in [9].

In the introduction, we assume for simplicity that K is an algebraically closed field of charac-
teristic zero; in the body of the paper we prove a more general result that does not require this
assumption. We start with H a (unital) affine K-algebra and central subalgebra R ⊂ H such that
H is a free Frobenius extension of R; see Section 2.1.

We assume that R is regular, H is prime and the centre Z := Z (H) of H is Gorenstein and
integrally closed. Let m be a maximal ideal of R and A = H/mH . The K-algebra A is finite
dimensional and split. Let K0(A) be the Grothendieck group of finitely generated projective A-
modules and G0(A) the Grothendieck group of all finitely generated A-modules. The Cartan map
is the canonical map C : K0(A) →G0(A). IfΛ is a (finite) set parametrizing isomorphism classes of
simple A-modules, with representatives L(λ) for each λ ∈Λ, then we can think of C as a |Λ|× |Λ|
matrix whose entries are the multiplicities [P (λ) : L(µ)], where P (λ) is the projective cover of L(λ).
If A = A1⊕·· ·⊕Ak is the block decomposition of A then C admits a corresponding decomposition
C =C1 ⊕·· ·⊕Ck , where Ci is the Cartan matrix of Ai .

We say that the algebra A has the rank-one property if each matrix Ci has rank one over Q.
Though this appears at first to be a very strong property, our main result is:

Theorem 1. A has the rank-one property.

The proof of Theorem 1 centres around the Higman map τ′ : H → H , which descends to the
Higman map τ : A → A. The key result is Theorem 3(a) of Lorenz–Fitzgerald Tokoly [19] (see
also [17]), which says that the rank of the Cartan matrix C equals the dimension of Imτ as a
K-vector space. We show that this dimension equals the number of blocks of A. We do this by
identifying Imτ with the socle of the image Z ′

α in A of the Nakyama centre Zα of H .

1.1. Examples

In the motivating case, H = Hc (W ) is the rational Cherednik algebra at t = 0 associated to
the complex reflection group (h,W ). This C-algebra contains R = C[h]W ⊗C[h∗]W as a central
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subalgebra and Z is an integrally closed Gorenstein ring [12, Theorem 3.3, Lemma 3.5]. It has
been shown in [9] that H is a (symmetric) free Frobenius extension of R. If m ⊂ C[h]W ⊗C[h∗]W

is the augmentation ideal, then the central quotient A = H/mH = H c (W ) is the restricted
rational Cherednik algebra. Since this algebra satisfies BGG reciprocity, the rank-one property
with respect to the Cartan matrix C is equivalent to the rank-one property with respect to the
multiplicity matrix M .

Theorem 1 applies to many other examples commonly studied in representation theory. These
include graded Hecke algebras, extended affine Hecke algebras, affine nil-Hecke algebras, quan-
tized enveloping algebras at roots of unity, non-commutative crepant resolutions of Gorenstein
domains and 3 and 4 dimensional PI Sklyanin algebras; see Section 3.2.

2. The proof

We begin again, dropping any assumptions on the field K, unless specifically stated. Theorem 1
will follow from the more general Theorem 5 below.

2.1. The Nakayama centre

We start with H a (unital) ring and a central subring R ⊂ H such that H is a free Frobenius
extension of R. By definition, this means that H is a finite free R-module and there is an
isomorphism

φ : 1Hα−1
∼−→ HomR (H ,R) (1)

of H-bimodules, for an R-linear ring automorphism α of H . Here 1Hα−1 = H as left H-modules,
but with right action given by h · a = hα−1(a). The automorphism α is unique up to inner
automorphisms and one can check that α|Z = IdZ , where Z := Z (H). Let

Zα(H) = {h ∈ H |ha =α(a)h for all a ∈ H };

this is the Nakayama centre of H . We note that under the isomorphism φ of (1),

Zα(H)
∼−→ HomR (H/[H , H ],R). (2)

Since α|Z = IdZ , we have an identification of Z -modules Zα(H) ∼= HomR (H/[H , H ],R).
Assume that H is a prime ring. Then it is a prime PI ring since it is a finite R-module. Let

d denote the PI degree of H . Let T (H) denote the trace ring of H (see [20, Section 13.9]) and
Tr: H → T (H) the reduced trace. The following result is [5, Proposition 2.3].

Lemma 2. Assume that T (H) = H and d is invertible in H. Then the map

HomR (H/[H , H ],R)
∼−→ HomR (Z ,R), f 7−→ f |Z ,

is an isomorphism of Z -modules, with inverse g 7→ g ◦ (d−1 Tr).

Here the map d−1 Tr: H → Z is a projection, realizing Z as a direct summand of H as Z -
modules.

Lemma 3. Assume that T (H) = H and d is invertible in H. Then Zα(H) is a direct summand of H
as Z -modules.

Proof. Since Zα(H) corresponds to HomR (H/[H , H ],R) under the isomorphism φ, it suffices to
show that HomR (H/[H , H ],R) is a summand of HomR (H ,R) as Z -modules. Consider the series
of maps

Z ,→ H → H/[H , H ]
d−1 Tr−→ Z
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whose composition Z → Z is the identity. They dualise to

HomR (Z ,R)
(d−1 Tr)∗−→ HomR (H/[H , H ],R) → HomR (H ,R) →→ HomR (Z ,R),

where the composition HomR (Z ,R) → HomR (Z ,R) must again be the identity. Here we have used
the fact that Z is a summand of H to conclude that the last arrow is surjective. Since (d−1 Tr)∗

is an isomorphism by Lemma 2, we deduce that HomR (H/[H , H ],R) → HomR (H ,R) is a split
injection. □

Let m be a maximal ideal of R and A = H/mH . Let Z ′, respectively Z ′
α, denote the image of Z ,

respectively of Zα(H), in A. Lemma 3 implies that the map Zα(H) → A realises Zα(H)/mZα(H) as
a direct summand of A.

Lemma 4. Let m⊂ R be a maximal ideal, contained in the regular locus. Assume that:

(1) The integer d is invertible as an element of H.
(2) Z is Gorenstein and integrally closed.

Then Z /mZ is a Frobenius algebra, the morphism Z /mZ → Z ′ is an isomorphism and
Zα(H)/mZα(H) ∼= Z ′

α is a free rank-one Z ′-module.

Proof. First we note that the fact that Z integrally closed implies that the trace ring T (H) of H
equals H ; see [20, Proposition 13.9.5]. Then, as noted previously, the fact that the integer d is
invertible as an element of H means that Z is a direct summand of H as a Z -module. It follows
that the canonical map Z /mZ → Z ′ is an isomorphism.

Since H is a free R-module, it follows that Z is a projective R-module. Let Rm denote the
localization of R at m and Zm = Z ⊗R Rm. Then Zm is a free Rm-module. Therefore, we need
to show that Z /mZ = Zm/mZm is Frobenius. Since Rm is assumed to be a regular local ring, mRm

is generated by a regular sequence f1, . . . , fk . This sequence is also regular in Zm. It follows from
Proposition 3.1.19(b) of [10] that Zm/mZm is zero-dimensional Gorenstein. This means it is a
Frobenius algebra.

The hypothesis of Lemma 2 hold and hence HomR (H/[H , H ],R) ∼= HomR (Z ,R) as Z -modules.
Now, HomR (Z ,R)m ∼= HomRm (Zm,Rm) as Zm-modules. Since H is prime, Z is a domain and
hence equi-dimensional. Also, R is a regular ring and thus Gorenstein. Under these hypothesis, [5,
Proposition 2.6] says that Zm being Gorenstein is equivalent to HomRm (Zm,Rm) ∼= Zm as Zm-
modules. Since HomR (H/[H , H ],R) is isomorphic to Zα(H) by (2), we deduce that Zα(H)m ∼= Zm.
This implies that Zα(H)/mZα(H) is isomorphic to Z /mZ . □

2.2. The main theorem

Let K denote the residue field of R at m. Then A is a finite-dimensional K-algebra. We assume
that A is split overK. Let p ≥ 0 denote the characteristic ofK.

The centre of A is denoted Z (A). Clearly Z ′ ⊂ Z (A), but in general the inclusion is strict. As
in the introduction, A = A1 ⊕ ·· · ⊕ Ak is the block decomposition of A and C = C1 ⊕ ·· · ⊕Ck the
corresponding decomposition of the Cartan matrix. We set CK : K0(A)⊗ZK→ G0(A)⊗ZK with
decomposition CK = CK,1 ⊕ ·· · ⊕CK,k . We call the rank of CK over K the p-rank of C (abuse of
language).

Theorem 5. If the p-rank of every CK,i is non-zero then the p-rank of each CK,i is exactly one.

We note that if K has characteristic zero then it is automatic that the rank (= p-rank) of each
block of C is at least one. Therefore, Theorem 1 is a direct consequence of Theorem 5.
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2.3. Proof of Theorem 5

Recall that we have assumed the following hold.

(1) H is a free Frobenius R-algebra.
(2) R is a regular ring.
(3) Z = Z (H) is Gorenstein and integrally closed.
(4) A := H/mH is split overK := R/m, for m◁R maximal.
(5) The p-rank of every block Ci of C is non-zero.
(6) H is a prime ring whose PI degree is invertible in H .

The isomorphsim (1) defines an R-linear pairing on H by (g ,h) := φ(1)(g h). We fix a pair
{g j : j ∈ I } and {h j : j ∈ I } of dual R-bases for H , meaning that (gi ,h j ) = δi , j . This allows us to
define the Higman map

τ : H → H , τ(x) = ∑
j∈I

g j xh j .

By [18, Lemma 2.13], the image of τ is a Z -submodule of Zα(H).
The R-linear automorphism α descends to a K-linear automorphism α′ of A and the iso-

morphism (1) induces an isomorphism 1 A(α′)−1
∼→ HomK(A,K). Thus, A is also Frobenius with

{g j : j ∈ I } and {h j : j ∈ I } giving dual bases. Again, there is a Higman map τ′ : A → A, τ′(x) =∑
j∈I g j xh j , with image Imτ′ contained in Zα′ (A). In the case where A is symmetric, this image is

called the Higman ideal or projective centre of A.
By construction, there is a commutative diagram

H A

Zα(H) Zα′ (A).

τ τ′

ι

(3)

Note that the image of ι is Z ′
α, which is identified with Zα(H)/mZα(H) by Lemma 4. Recall that

the socle SocH M of an H-module M is the sum of all simple submodules.

Lemma 6. Imτ′ ⊂ SocZ ′ Z ′
α.

Proof. First we note that (SocA A) ∩ Z ′
α ⊂ SocZ ′ Z ′

α. Next, by diagram (3), the image of τ′ is
contained in Z ′

α since the image of τ is contained in Zα(H). On the other hand, it is explained
in [19, Section 2.4.2] (see also [18, Proposition 2.20]) that the image of τ′ is contained in SocA A.
The lemma follows. □

Let Z ′ = B1 ⊕·· ·⊕Bl denote the blocks of Z ′. Since Z ′ is Gorenstein, Lemma 4 implies that the
socles of the indecomposable summands Bi Z ′

α of Z ′
α are simple.

We note that Z (A) is split overK because we have assumed in (4) that A is split overK; see [15,
Exercise 7.5]. Since Z ′ ⊂ Z (A), the algebra Z ′ is also split over K [15]. Thus, every simple Z ′-
module is one dimensional over K and it follows from Lemma 6 that dimK Imτ′ ≤ ℓ(SocZ ′ Z ′

α),
the length of SocZ ′ Z ′

α. By Lemma 4, the latter equals ℓ(SocZ ′ Z ′). Since we have assumed by (3)
that Z ′ is Frobenius, the number of blocks of Z ′ equals the number of simple modules in the socle
of Z ′. Thus, we have shown that

dimK Imτ′ ≤ |Bl(Z ′)|.
Using once again (4) that A is split overK, the key result Theorem 3(a) of [19] says that dimK Imτ′

equals the p-rank of the Cartan map CK. Assumption (5) implies that the p-rank of C (the rank
of the map CK) is at least as big as |Bl(A)|. Müller’s Theorem [8, Proposition 2.7] implies that
|Bl(Z ′)| = |Bl(A)|. Thus, dimK Imτ≥ |Bl(A)| and hence

dimK Imτ′ ≤ |Bl(Z ′)| = |Bl(A)| ≤ dimK Imτ′.
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We deduce that |Bl(A)| = dimK Imτ′ equals the p-rank of A. Since the p-rank of each block is at
least one, we have proven Theorem 5.

We note that a consequence of the proof is that Imτ′ = SocZ ′ Z ′
α.

2.4. The Casimir map

We also have the Casimir map q : A → A given by q(a) =∑
j h j ag j . By [18, Lemma 2.13], the image

of q is contained in Z (A). It is a consequence of [18, Proposition 2.20] that both τ′ and q vanish
on rad A and have image in SocA A.

If H is the free Frobenius extension C[x]⋊S2 of C[x2] and m= (x2) then A =C[x]/(x2)⋊S2 is
precisely the example considered in Exercise 2.2.3 of [18]. This is also a special case of the graded
Hecke algebras considered in [9]. In this example, Imτ′ is one-dimensional whilst q is the zero
map. Thus, the rank of τ′ does not equal the rank of q in general for a Frobenius algebra. This
example also shows that the image of τ′ need not be central.

3. Examples

3.1. Triangular decompositions

In this section, we use freely the notation from [3]. We begin by justifying the claim made in
Section 1 that if H is a free Frobenius extension such that A is a graded algebra with triangular
decomposition then the multiplicity matrix M has the rank-one property if and only if the Cartan
matrix C does.

To be precise, we assume that H is Z-graded, R a graded (central) subalgebra and m a
homogeneous maximal ideal of R such that A = H/mH admits a triangular decomposition
A = A−⊗T ⊗ A+ as in [3, Definition 3.1]. Let B± be the subalgebras of A generated by A± and T .

Lemma 7. Assume that T is semi-simple and B− ∼= (B+)⊛ as graded T -bimodules. Then A satisfies
the rank-one property with respect to the multiplicity matrix M if and only if it does so with respect
to the Cartan matrix C .

Indeed, in this situation, C = M T M by BGG-reciprocity [3, Theorem 1.3]. Since M is integer
(and hence real) valued, the rank of C equals the rank of M and it follows that each block of M
has rank one if and only if each block of C does.

Thus, for graded algebras with a triangular decomposition, the rank-one property can be
encoded as

[∆(λ) : L(ρ)]dimK∆(µ) = [∆(µ) : L(ρ)]dimK∆(λ) (4)

for all λ,ρ,µ ∈ IrrT . Indeed, the fact that each block of M has rank one implies that there exist
rational numbers aλ,bλ such that [∆(λ) : L(ρ)] = aλbρ . If d :=∑

µbµdimKL(µ), then dimK∆(λ) =
aλd . Hence, both sides of (4) equal aλaµbρd .

In particular, Lemma 7 applies to H = Hc (W ), the rational Cherednik algebra and m◁R :=
C[h]W ⊗C[h∗]W the augmentation ideal. The quotient A = H/mH = H c (W ) is the restricted
rational Cherednik algebra.

3.2. Other examples

In this section, we assume all algebras are defined over an algebraically closed field of characteris-
tic zero. In addition to rational Cherednik algebras (I), most examples in [9] satisfy the hypothesis
of Theorem 5. Numbered as in [9], they are:
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(II) Graded Hecke algebras with R = Z regular.
(III) The extended affine Hecke algebra with R = Z .
(IV) Affine nil-Hecke algebra with R = Z .
(V) Quantized enveloping algebra at an ℓth root of unity with R = Z0 the ℓ-centre. The ℓ-

centre is the localization of a polynomial ring [7, III, Theorem 6.2(2)] and hence regular.
The actual centre Z is a complete intersection ring (and hence Gorenstein) by [11,
Theorem 21.3]. Moreover, it is shown in the proof of [11, Theorem 21.5] that it is an
integrally closed domain.

It is noted in [13, Remark 5.4] that the centre of (VI) Quantum Borels, considered in [9], is
Gorenstein if and only if each simple factor of G is of type Br ,Cr ,Dr (r even) E6,E7,E8 or G2.
When this is the case, the other hypothesis of Theorem 5 hold (with R = Z+ of [9, Section 7]) since
the centre is actually smooth. However, the examples (VII) Quantized function algebras of [9] do
not satisfy the hypothesis of Theorem 5 because their centres are not Gorenstein [13, Remark 5.4].

We note that example (V) is Z-graded and the restricted quantum group A is equal to H/mH
for a graded maximal ideal m◁R. Then A admits a triangular decomposition, implying that it has
the rank-one property with respect to baby Verma modules. This was also shown in [2, Proposi-
tion 4.16(2)] using results from the literature on the multiplicities [∆(λ) : L(µ)]. As explained in
the proof of [2, Proposition 4.16(2)], this implies that Lusztig’s small quantum group also satisfies
the rank-one property.

The results of [5] provide other important examples satisfying the hypothesis of Theorem 5.
Firstly, we may take H to be a non-commutative crepant resolution of an integrally closed
Gorenstein domain over an algebraically closed field of characteristic zero; see [5, Example 2.22].
Secondly, we may take H to be a 3 or 4 dimensional PI Sklyanin algebra [5, Example 2.24].

The main result of [16] says that, for a filtered algebra, being a free Frobenius extension lifts
from the associated graded. This provides an effective way of checking the property for a large
class of examples.

Finally, we expect that quiver Hecke algebras (KLR algebras) [14,22] also satisfy the hypothesis
of Theorem 1.

3.3. Positive characteristic

As explained in [2, Proposition 4.16(1)], combining results in the literature on the representation
theory of the restricted enveloping algebra of simple Lie algebras in positive characteristic allows
one to show that these algebras have the rank-one property. Therefore, it is natural to ask to
what extent our result extends to algebras in positive, or mixed, characteristic. In these situations,
assumption (5) of Section 2.3 can fail. However, in the case H =U (g), for g a simple Lie algebra
over an algebraically closed field of characteristic p > 0, the second Kac–Weisfeiler conjecture [21]
provides an effective way of showing that (5) holds for regular charactersχ. For rational Cherednik
algebras at t = 1, the result [1, Proposition 6.8] is similarly applicable.

Rather, it is assumption (6) that causes difficulties since the PI degree is always zero in K in
these examples. Recall that (6) is used to argue that Z and Zα are summand of H . It raises the
question: is Z a direct summand of H in either of these two examples?

When g= psln , with n = d pm > 4, m ≥ 1 and 1 ≤ d < p, it follows from [6] that Z is not a direct
summand of H . If Z were a summand of H then it would be Cohen–Macaulay since H is Cohen–
Macaulay, but that contradicts [6, Theorem L(1)]. We do not know whether Z is a summand of H
when g also satisfies Jantzen’s standard assumptions; see (1)–(3) in [6, Introduction].
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