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Abstract. We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in
the Sobolev and the fractional Sobolev spaces of order 0 < s ≤ 1. In particular, we show that the range of
the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous
known results reveal only some special ranges of parameters even in the case s = 1. The known proofs used
the Riesz potential and inequalities for fractional integrations. Our proof is new, elementary, and is based on
one-dimensional case. Applications on compact embeddings are also mentioned.
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1. Introduction

Let d ≥ 1, p ≥ 1, q ≥ 1, τ≥ 1, 0 < a ≤ 1, α,β,γ ∈R be such that

1

τ
+ γ

d
,

1

p
+ α

d
,

1

q
+ β

d
> 0, (1)

and the following balance law holds

1

τ
+ γ

d
= a

(
1

p
+ α−1

d

)
+ (1−a)

(
1

q
+ β

d

)
. (2)

Define σ by
γ= aσ+ (1−a)β. (3)

Assume that
0 ≤α−σ (4)

and
α−σ≤ 1 if

1

τ
+ γ

d
= 1

p
+ α−1

d
. (5)
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Caffarelli, Kohn, and Nirenberg [12] (see also [11]) established the following famous Caffarelli,
Kohn and Nirenberg (CKN) inequalities, for u ∈C 1

c (Rd ),∥∥|x|γu
∥∥

Lτ(Rd ) ≤C
∥∥|x|α∇u

∥∥a
Lp (Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (6)

for some positive constant C independent of u. Quite recently, the full range of the CKN inequal-
ities has been derived by Nguyen and Squassina [24] for the fractional Sobolev spaces W s,p (Rd )
with 0 < s < 1 and p > 1. More precisely, let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, and
α1,α2,β,γ ∈R. Set α=α1 +α2 and define σ by (3). Assume that

1

τ
+ γ

d
= a

(
1

p
+ α− s

d

)
+ (1−a)

(
1

q
+ β

d

)
, (7)

and the following conditions hold

0 ≤α−σ (8)

and

α−σ≤ s if
1

τ
+ γ

d
= 1

p
+ α− s

d
. (9)

Nguyen and Squassina [24, Theorem 1.1] proved, for some positive constant C ,

(i) if 1
τ +

γ
d > 0, then for all u ∈C 1

c (Rd ), it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C

(ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|α1p |y |α2p

|x − y |d+sp
dxdy

) a
p ∥∥∥|x|βu

∥∥∥1−a

Lq (Rd )
, (10)

(ii) if 1
τ +

γ
d < 0, then for all u ∈C 1

c (Rd \ {0}), it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C

(ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|α1p |y |α2p

|x − y |d+sp
dxdy

) a
p ∥∥∥|x|βu

∥∥∥1−a

Lq (Rd )
, (11)

In the case 1
τ +

γ
d = 0, a log-correction is required, and the conditions (8) and (9) are replaced by

0 ≤α−σ≤ s. (12)

Denote BR the open ball centered at the origin with radius R. Assume additionally that τ > 1.
Nguyen and Squassina [24, Theorem 3.1] showed that there exists a positive constant C such that
for all u ∈C 1

c (Rd ) and for all R1,R2 > 0, we have

(i) if 1
τ +

γ
d = 0 and suppu ⊂ BR2 , then(ˆ

Rd

|x|γτ
lnτ(2R2/|x|) |u|

τdx

) 1
τ

≤C

(ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|α1p |y |α2p

|x − y |d+sp
dxdy

) a
p ∥∥∥|x|βu

∥∥∥1−a

Lq (Rd )
, (13)

(ii) if 1
τ +

γ
d = 0, and suppu ∩BR1 =;, then(ˆ

Rd

|x|γτ
lnτ(2|x|/R1)

|u|τdx

) 1
τ

≤C

(ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|α1p |y |α2p

|x − y |d+sp
dxdy

) a
p ∥∥∥|x|βu

∥∥∥1−a

Lq (Rd )
. (14)

Note that the conditions 1
p + α

d , 1
q + β

d > 0 are not required in these inequalities. In the case
a = 1 and 1/τ+γ/d > 0, several special ranges of parameters were previously derived in [1,17,21].
These works are partially motivated from new characterizations of Sobolev spaces using non-
local, convex functionals proposed by Bourgain, Brezis, and Mironescu [6] (see also [8]). Related
characterizations of Sobolev spaces with non-local, non-convex functionals can be found in [7,
9, 10, 22] and the references therein. The proof given in [24] (see also [25]) is new. It is based on
the dyadic decomposition of the real space, Gagliardo–Nirenberg’s inequalities for annulus, and
a trick on summation processes to bring the information from a family of annulus to the whole
space. Combining these ideas with the techniques in [23], which are used to prove new Sobolev’s
inequalities, we established the full range of Coulomb–Sobolev inequalities [20]. In the case s = 1,
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inequality (6) also holds in the case 1/τ+γ/d < 0, and similar results as in (13) and (14) are valid
in the case 1/τ+γ/d = 0. We present these results in Section 4 (see Theorem 16 and Theorem 17).

In this paper, we investigate the CKN inequalities for radial functions. We show that the
previous results also hold for some negative range ofα−σ (compare with (4) and (8)). The fact that
the range of the parameters of a family of inequalities can be larger when a symmetry condition is
imposed is a well-known phenomenon, e.g., in the context of Stein-Weis inequalities [15, 26] and
Coulomb–Sobolev inequalities [3, 4]. Various compactness results can be established using the
extended range and are useful in the proof of the existence of minimizers of variational problems.
Also, these compactness results play important roles in the analysis of various interesting physical
phenomena, see, e.g., [5, 18, 19, 28], and the references therein. It is quite surprising that very few
results have been known for the extended range of the CKN inequalities for radial functions. The
goal of this paper is to completely fill this gap for 0 < s ≤ 1.

We first concentrate on the setting of the fractional Sobolev spaces. The following notation is
used. For p > 1, 0 < s < 1, α ∈ R, Λ > 1, open Ω ⊂ Rd , and a measurable function g defined in Ω,
we set

∥g∥p

Ẇ s,p,α,Λ(Ω)
=
ˆ
Ω

ˆ
Ω

|g (x)− g (y)|p |x|αp

|x − y |d+sp
χΛ(|x|, |y |)dx dy, (15)

where, for r1,r2 ≥ 0, we denote

χΛ(r1,r2) =
{

1 forΛ−1r1 ≤ r2 ≤Λr1,

0 otherwise.
(16)

The dot in the LHS of (15) means that only the information of the “semi-norm” is considered.
Our first main result is the following one dealing with the case where 1/τ+γ/d ̸= 0.

Theorem 1. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, and Λ > 1. Define σ
by (3). Assume (7) and

−(d −1)s ≤α−σ< 0. (17)

We have, for some positive constant C ,

(i) if 1
τ +

γ
d > 0, then for all radial u ∈ L1

loc (Rd \ {0}) with compact support in Rd , it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (18)

(ii) if 1
τ +

γ
d < 0, then for all radial u ∈ L1

loc (Rd \ {0}) which is 0 in a neighborhood of 0, it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
. (19)

Remark 2. In (18) and (19), the following convention is used: +∞.0 = 0.(+∞) = 0, (+∞)0 = 1 (this
corresponds to the case a = 1), and +∞≤+∞.

Remark 3. The condition α−σ ≥ −(d −1)s is in fact optimal, see Proposition 15. In this paper,
we only discuss standard parameters in the Lp -scale of the integrability. With this in mind, when
we mention Lq and Lτ, then q and τ are assumed to be greater than or equal to 1 and when we
mention W s,p the parameter s is assumed in (0,1) and p is assumed to be greater than 1 then.
The full range is understood under this circumstance. Part of the arguments can be extended for
example to the case 0 < τ < 1 as in [24]. Nevertheless, to keep the presentation simple and to
avoid the confusion, we do not pursue this direction.

Remark 4. Combining (10), (11), and Theorem 1 yields that, in the radial case, (10) and (11) hold
if one replaces (8) and (9) by the condition −(d −1)s ≤α−σ and (9).

Concerning the limiting case 1/τ+γ/d = 0, we obtain the following result.
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Theorem 5. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ≥ 1, 0 < a ≤ 1, α, β, γ ∈R, µ> 1, andΛ> 1. Assume
that τ≤ µ. Define σ by (3). Assume (7) and (17). There exists a positive constant C such that for all
radial u ∈ L1

l oc (Rd \ {0}) and for all R1,R2 > 0, we have

(i) if 1
τ +

γ
d = 0 and suppu ⊂ BR2 , then it holds;(ˆ

Rd

|x|γτ
lnµ(2R2/|x|) |u|

τdx

) 1
τ

≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (20)

(ii) if 1
τ +

γ
d = 0, and suppu ∩BR1 =;, then it holds(ˆ

Rd

|x|γτ
lnµ(2|x|/R1)

|u|τdx

) 1
τ

≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
. (21)

Remark 6. The convention in Remark 2 is also used in Theorem 5.

Remark 7. If 1/q +β/d > 0, by considering a smooth function u which is 1 in a neighborhood
of 0 we can establish the necessity of the log-term in i ) of Theorem 5. Similarly, if 1/q +β/d < 0,
by considering a smooth function u which is 1 outside BR for some large R the necessity of the
log-term in i i ) can be established.

Remark 8. Combining (13), (14), and Theorem 5 yields that, in the radial case, (13), (14) hold if
one replaces (12) by the condition −(d −1)s ≤α−σ≤ s.

There are very few results known for the extended range of the CKN inequalities in the frac-
tional Sobolev spaces for radial functions (the case s = 1 will be discussed in the last paragraph
of Section 4). It was shown by Rubin [26] (see also [3, Theorem 4.3]) that (10) holds under the as-
sumption (17) and 1/τ+γ/d > 0 in the case where a = 1, τ≥ p = 2, andα= 0. The same result was
proved in [15, Theorem 1.2]. These proofs are based on inequalities for fractional integrations.
Our proof is different and quite elementary. It is based on an improvement of the fractional CKN
inequalities in one dimensional case and a simple use of polar coordinates. This strategy can be
easily extended to other contexts. The improvement was implicitly appeared in [24] and will be
described briefly later. The same idea can be applied to the case s = 1 and will be presented in
Section 4. Applications to the compact embedding will be given in Section 5. In particular, we
derive the compact embedding of W s,p (Rd ) into Lq (Rd ) for radial functions if p < q < d p

d−sp for
0 < s ≤ 1 and sp < d . This result was previously obtained via various technique such as Strauss’
lemma, Riesz-potential, fractional integration, Rubin’s lemma, atomic decomposition, etc.

It is worth noting that whether radial functions are optimal in Caffarelli–Kohn–Nirenberg
inequalities is an old question that goes back to the nineties. see e.g., [13,14,16] and it may happen
that the optimal functions are not radial for certain choices of the parameters, and that loss of
compactness may occur along sequences of non- radial functions.

The paper is organized as follows. The improvement of the fractional CKN inequalities are
given in Section 2. The proofs of Theorem 1 and Theorem 5 are given in Section 3. The results in
the case s = 1 are given in Section 4. Section 5 is devoted to the compactness results.

2. Improvements of the fractional Caffarelli–Kohn–Nirenberg inequalities

In this section, we will establish slightly more general versions of the fractional CKN inequalities.
These improvements appear very naturally in the proof of Theorem 1 and Theorem 5 when polar
coordinates are used.

We begin with an improvement of (10) and (11).
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Theorem 9. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, and Λ > 1. Define σ
by (3). Assume (7), (8), and (9). There exists a positive constant C such that

(i) if 1
τ +

γ
d > 0, then for all u ∈ L1

loc (Rd \ {0}) with compact support in Rd , it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (22)

(ii) if 1
τ +

γ
d < 0, then for all u ∈ L1

loc (Rd \ {0}) which is 0 in a neighborhood of 0, it holds∥∥|x|γu
∥∥

Lτ(Rd ) ≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
. (23)

Concerning an improvement of (13) and (14), we have the following result.

Theorem 10. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ≥ 1, 0 < a ≤ 1,α,β, γ ∈R,µ> 1, andΛ> 1. Assume
that τ≤ µ. Define σ by (3). Assume (7) and (12). There exists a positive constant C such that for all
u ∈ L1

l oc (Rd \ {0}) and for all R1,R2 > 0, we have

(i) if 1
τ +

γ
d = 0 and suppu ⊂ BR2 , then it holds(ˆ

Rd

|x|γτ
lnµ(2R2/|x|) |u|

τdx

) 1
τ

≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (24)

(ii) if 1
τ +

γ
d = 0, and suppu ∩BR1 =;, then it holds(ˆ

Rd

|x|γτ
lnµ(2|x|/R1)

|u|τdx

) 1
τ

≤C ∥u∥a
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
. (25)

It is clear that Theorem 9 implies (10) and (11) and Theorem 10 yields (13) and (14). Theorem 9
and Theorem 10 were already implicitly contained in [24] where (10), (11), (13), and (14) were
established. For the convenience of the reader, we will describe briefly the proofs of Theorem 9
and Theorem 10 in the next two sections respectively.

2.1. Proof of Theorem 9

The proof is divided into two steps where we prove (i) and (ii) respectively.

Step 1: Proof of (i). For simplicity of arguments, we assume thatΛ> 4 from later on1.
We first consider the case 0 ≤α−σ≤ s. As in [24], for k ∈Z set

Ak :=
{

x ∈Rd ; 2k ≤ |x| < 2k+1
}

. (26)

Since α−σ≥ 0, by Gagliardo–Nirenberg inequality [24, Lemma 2.2]2, we derive that( 
Ak

∣∣∣∣u −
 

Ak

u

∣∣∣∣τ) 1
τ

≤C

(
2−(d−sp)k

ˆ
Ak

ˆ
Ak

|u(x)−u(y)|p
|x − y |d+sp

dxdy

)a/p ( 
Ak

|u(x)|q dx

)(1−a)/q

. (27)

Here and in what follows in the proof of Theorem 9, C denotes a positive constant independent
of u and k (and also independent of m, and n, which appear later), and

ffl
Ω := 1

|Ω|
´
Ω. Since

2τγk
ˆ

Ak

|u|τ ≤C 2(τγ+d)k
 

Ak

∣∣∣∣u −
 

Ak

u

∣∣∣∣τ+C 2(τγ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ ,

1In the general case, one just needs to define Ak by
{

x ∈Rd ; λk ≤ |x| <λk+1
}

with λ2 =Λ instead of (26).
2 [24, Lemma 2.2] states for functions of class C 1 up to the boundary but the same result holds for our setting by using

the standard convolution technique.



1180 Arka Mallick and Hoai-Minh Nguyen

using (7), we derive from (27) thatˆ
Ak

|u|τ|x|τγdx ≤C 2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ
+C

(ˆ
Ak

ˆ
Ak

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dx dy

) aτ
p

(ˆ
Ak

|u(x)|q |x|βq dx

) (1−a)τ
q

. (28)

Let m, n ∈Z be such that m ≤ n −2 and suppu ⊂ B2n . Summing (28) with respect to k from m
to n, we getˆ

{2m<|x|<2n+1}
|u|τ|x|τγ ≤C

n∑
k=m

2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ
+C

n∑
k=m

(ˆ
Ak

ˆ
Ak

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dx dy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak )
. (29)

Applying Lemma 11 below with κ= aτ/p and η= (1−a)τ/q after using the condition α−σ≤ s to
check that κ+η≥ 1, we derive that

n∑
k=m

(ˆ
Ak

ˆ
Ak

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dx dy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak )
≤ ∥u∥aτ

Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥(1−a)τ

Lq (Rd )
. (30)

Combining (29) and (30) yieldsˆ
{|x|>2m }

|u|τ|x|τγ ≤C
n∑

k=m
2(γτ+d)k

∣∣∣∣ 
Ak

u

∣∣∣∣τ+C∥u∥aτ
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥(1−a)τ

Lq (Rd )
. (31)

We next estimate the first term of the RHS of (31). We have, as in (27),∣∣∣∣ 
Ak

u −
 

Ak+1

u

∣∣∣∣τ ≤C

(
2(d−sp)k

ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p
|x − y |d+sp

dx dy

) aτ
p

×
( 

Ak∪Ak+1

|u(x)|q dx

) (1−a)τ
q

. (32)

With c = 2/(1+2γτ+d ) < 1, since c2γτ+d > 1 thanks to γτ+d > 0 we derive from (32) that

2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ ≤ c2(γτ+d)(k+1)
∣∣∣∣ 

Ak+1

u

∣∣∣∣τ
+C

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
. (33)

Summing this inequality with respect to k from m to n for large n, since u has a compact support
in B2n and c < 1 thanks to γτ+d > 0, we derive that

n∑
k=m

2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ ≤C
n∑

k=m

(ˆ
Ak∪Ak+1

ˆ
Rd

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dx dy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
. (34)

Applying Lemma 11 below again and letting m →−∞, we obtain∑
k∈Z

2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ ≤C ∥u∥aτ
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥(1−a)τ

Lq (Rd )
. (35)

Combining (31) and (35) and letting m →−∞, we obtain (i ) of Theorem 9. The proof of i ) in
the case 0 ≤α−σ≤ s is complete.

The proof of i ) in the case α−σ> s and 1
τ +

γ
d ̸= 1

p + α−s
d is based on the standard interpolation

technique as in [12, 24]. One just notes that, for λ> 0,

∥u(λ·)∥Ẇ s,p,α,Λ(Rd ) =λs−α− d
p ∥u∥Ẇ s,p,α,Λ(Rd )
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since χΛ(x, y) =χΛ(λx,λy), and

∥|x|γu(λ · )∥Lτ(Rd ) =λ−γ− d
τ ∥|x|γu∥Lτ(Rd ) and ∥|x|βu(λ · )∥Lq (Rd ) =λ−β− d

q ∥|x|βu∥Lq (Rd ).

The details are omitted.

Step 2: Proof of (ii). The proof of (ii) of Theorem 9 is similar to that of (i). We only deal with the
case 0 ≤ α−σ ≤ s since the proof in the case where α−σ > s and 1

τ +
γ
d ̸= 1

p + α−s
d is only by

interpolation and almost unchanged.
Assume 0 ≤α−σ≤ s. Let m be such that u = 0 in B2m . Similar to (31), we haveˆ

{|x|<2n }
|u|τ|x|τγ ≤C

n∑
k=m

2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ+C∥u∥aτ
Ẇ s,p,α,Λ(Rd )

∥∥∥|x|βu
∥∥∥(1−a)τ

Lq (Rd )
. (36)

To estimate the first term in RHS of (36), one just needs to note that, instead of (33), we have
with c = (1+2γτ+d )/2 < 1 thanks to γτ+d < 0,

2(γτ+d)(k+1)
∣∣∣∣ 

Ak+1

u

∣∣∣∣τ ≤ c2(γτ+d)k
∣∣∣∣ 

Ak

u

∣∣∣∣τ
+C

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
.

Summing with respect to k, we also obtain (35). The conclusion now follows from (35)
and (36). □

The following simple lemma is used in the proof of Theorem 9.

Lemma 11. For κ,η≥ 0 with κ+η≥ 1, and k ∈N, we have

k∑
i=1

|ai |κ|bi |η ≤
(

k∑
i=1

|ai |
)κ (

k∑
i=1

|bi |
)η

for ai , bi ∈R. (37)

2.2. Proof of Theorem 10

As in the proof of Theorem 9, we assume that Λ > 4 for notational ease. In this proof, we use
the notations in the proof of Theorem 9. We only prove the first assertion. The second assertion
follows similarly as in the spirit of the proof of Theorem 9. Let n ∈N be such that 2n−1 ≤ R2 < 2n .

Set

ν=µ−1 > 0. (38)

Since α−σ ≥ 0, using (7), we also obtain (28). Summing (28) with respect to k from m to n, we
obtainˆ

{|x|>2m }

1

ln1+ν(2R2/|x|) |x|
γτ|u|τdx

≤C
n∑

k=m

1

(n −k +1)1+ν
∣∣∣ 

Ak

u
∣∣∣τ+C

n∑
k=m

(ˆ
Ak

ˆ
Ak

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dx dy

) aτ
p ∥|x|βu∥(1−a)τ

Lq (Ak ). (39)

As in (32), we have∣∣∣∣ 
Ak

u −
 

Ak+1

u

∣∣∣∣τ ≤C

(
2(d−sp)k

ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p
|x − y |d+sp

dx dy

) aτ
p

×
( 

Ak∪Ak+1

|u(x)|q dx

) (1−a)τ
q

. (40)
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Applying Lemma 12 below with c = (n −k +1)ν/(n −k +1/2)ν, we deduce that∣∣∣∣ 
Ak

u

∣∣∣∣τ ≤ (n −k +1)ν

(n −k +1/2)ν

∣∣∣∣ 
Ak+1

u

∣∣∣∣τ+C (n −k +1)τ−1
∣∣∣∣ 

Ak

u −
 

Ak+1

u

∣∣∣∣τ ,

since, for ν> 0,

(n −k +1)ν/(n −k +1/2)ν−1 ∼ 1

n −k +1
.

It follows from (7) and (40) that∣∣∣∣ 
Ak

u

∣∣∣∣τ ≤ (n −k +1)ν

(n −k +1/2)ν

∣∣∣∣ 
Ak+1

u

∣∣∣∣τ
+C (n −k +1)τ−1

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
.

This yields

1

(n −k +1)ν

∣∣∣∣ 
Ak

u

∣∣∣∣τ ≤ 1

(n −k +1/2)ν

∣∣∣∣ 
Ak+1

u

∣∣∣∣τ
+C (n −k +1)τ−1−ν

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
. (41)

We have, for ν> 0 and k ≤ n,

1

(n −k +1)ν
− 1

(n −k +3/2)ν
∼ 1

(n −k +1)ν+1 (42)

and, since τ≤ 1+ν,

(n −k +1)τ−1−ν ≤ 1. (43)

Summing (41) from m to n, and using (42) and (43), we derive that

n∑
k=m

1

(n −k +1)1+ν
∣∣∣ 

Ak

u
∣∣∣τ

≤C
n∑

k=m

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
. (44)

Combining (39) and (44), we obtain
ˆ

{|x|>2m }

|x|γτ
ln1+ν(2n+1/|x|) |u|

τdx

≤C
n∑

k=m

(ˆ
Ak∪Ak+1

ˆ
Ak∪Ak+1

|u(x)−u(y)|p |x|αp

|x − y |d+sp
dxdy

) aτ
p ∥∥∥|x|βu

∥∥∥(1−a)τ

Lq (Ak∪Ak+1)
.

Applying Lemma 11 with κ= aτ/p and η= (1−a)τ/q , we derive thatˆ
{|x|>2m }

|x|γτ
ln1+ν(2n+1/|x|) |u|

τdx ≤C∥u∥aτ
Ẇ s,p,α,Λ(Rd )

∥|x|βu∥(1−a)τ
Lq (

⋃∞
k=m Ak ).

This yields the conclusion. □

In the proof of Theorem 10, we used the following elementary lemma which was stated in [24,
Lemma 3.2]. For the completeness, we give the proof below.

Lemma 12. Let M > 1 and τ ≥ 1. There exists C = C (M ,τ) > 0, depending only on M and τ such
that, for all 1 < c < M,

(|a|+ |b|)τ ≤ c|a|τ+ C

(c −1)τ−1 |b|τ for all a,b ∈R. (45)
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Proof. The inequality is trivial when τ= 1. We next only deal with the case τ> 1.
Without loss of generality, one might assume that a ≥ 0 and b ≥ 0. Inequality (45) is clear if

a = 0 or b = 0. Thus it suffices to consider the case where a > 0 and b > 0. This will be assumed
from now on. Set x = a/b. Multiplying two sides of the inequality by a−τ, it is enough to prove
that, for some C > 0,

(1+x)τ ≤ c + C

(c −1)τ−1 xτ for x > 0. (46)

There exists x0 > 0 such that, for 0 < x < x0,

(1+x)τ ≤ 1+2τx.

On the other hand, we have

c + C

(c −1)τ−1 xτ = 1+ (c −1)+ C

(c −1)τ−1 xτ ≥ 1+ τ−1

τ
(c −1)+ 1

τ

C

(c −1)τ−1 xτ.

Applying the Young inequality, we obtain

τ−1

τ
(c −1)+ 1

τ

C

(c −1)τ−1 xτ ≥ (c −1)
τ−1
τ

C
1
τ x

(c −1)
τ−1
τ

≥ 2x if C >C1 := 2τ.

Thus (46) holds for 0 < x < x0 for C ≥C1.
It is clear that there exists C2 > 0 such that (46) holds for x ≥ x0 for C ≥C2.
By choosing C = max{C1,C2}, we obtain (46) and the conclusion follows. □

Remark 13. Lemma 12 is stated in [24] for τ> 1. Nevertheless, the result is trivial for τ= 1.

3. The Caffarelli–Kohn–Nirenberg inequalities for radial functions in the fractional
Sobolev spaces

This section containing two subsections is devoted to the proofs of Theorem 1 and Theorem 5. In
the first subsection, we present a lemma which brings the situation in the radial case into the one
of one dimensional space via polar coordinates. The proof of Theorem 1 is given in the second
subsection by applying Theorem 9 in one dimensional space and using the lemma in the first
subsection.

3.1. A useful lemma

The improvement forms of the CKN inequalities are inspired by the following lemma.

Lemma 14. Let d ≥ 2, 0 < s < 1, 1 ≤ p <∞, α ∈ R, Λ > 1, and let u ∈ L1
loc (Rd \ {0}) be radial. We

have, with û(r ) = u(rσ) for some σ ∈Sd−1 and for r > 0,

ˆ ∞

0

ˆ ∞

0

|û(r1)− û(r2)|p rαp+(d−1)
1 χΛ(r1,r2)

|r1 − r2|1+sp dr1dr2

≤C

ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|αpχΛ(|x|, |y |)
|x − y |d+sp

dx dy, (47)

where C is a positive constant depending only on d , s, α, p, andΛ.

Proof. The proof is simply based on the use of the polar coordinates. Using these coordinates,
we haveˆ

Rd

ˆ
Rd

|u(x1)−u(x2)|p |x|αpχΛ(|x1|, |x2|)
|x1 −x2|d+sp

dx1 d x2

=
ˆ ∞

0

ˆ ∞

0
|û(r1)− û(r2)|p rαp+(d−1)

1 r d−1
2 χΛ(r1,r2)

ˆ
Sd−1

ˆ
Sd−1

dσ1dσ2

|r1σ1 − r2σ2|d+sp
dr1 dr2. (48)
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Since
|r1σ1 − r2σ2| = |(r1 − r2)σ1 + r2(σ1 −σ2)| ≤ |r1 − r2|+ |r2||σ1 −σ2|,

it follows that, forΛr1 ≤ r2 ≤Λr1,ˆ
Sd−1

ˆ
Sd−1

dσ1dσ2

|r1σ1 − r2σ2|d+sp
≥C

ˆ 1

0

sd−2ds(|r1 − r2|+ |r2|s
)d+sp

≥ C

r d−1
2 |r1 − r2|1+sp

. (49)

The conclusion now follows from (48) and (49). □

3.2. Proof of Theorem 1

Denote û(r ) = u(rσ) with r > 0 and σ ∈Sd−1. We have, by polar coordinates,

∥|x|γu∥Lτ(Rd ) = |Sd−1| 1
τ ∥r γ+

d−1
τ û∥Lτ(0,∞), (50)

∥|x|βu∥Lq (Rd ) = |Sd−1| 1
q ∥rβ+

d−1
q û∥Lq (0,∞), (51)

and by Lemma 14,

ˆ ∞

0

ˆ ∞

0

|û(r1)− û(r2)|p rαp+d−1
1 χΛ(r1,r2)

|r1 − r2|1+sp dr1 dr2

≤C

ˆ
Rd

ˆ
Rd

|u(x)−u(y)|p |x|αpχΛ(|x|, |y |)
|x − y |d+sp

dxdy. (52)

Extend û in R as an even function and still denote the extension by û. We have

∥|ξ|γ+ d−1
τ û∥Lτ(R) ∼ ∥r γ+

d−1
τ û∥Lτ(0,∞) (53)

∥|ξ|β+ d−1
q û∥Lτ(R) ∼ ∥rβ+

d−1
q û∥Lq (0,∞), (54)

andˆ
R

ˆ
R

|û(ξ1)− û(ξ2)|p |ξ1|αp+d−1χΛ(|ξ1|, |ξ2|)
|ξ1 −ξ2|1+sp dξ1 dξ2

≤ 4

ˆ ∞

0

ˆ ∞

0

|û(r1)− û(r2)|p rαp+d−1
1 χΛ(r1,r2)

|r1 − r2|1+sp dr1 dr2. (55)

Hereafter in this proof, two quantities are ∼ if each one is bounded by the other up to a positive
constant depending only on the parameters.

It thus suffices to prove

∥|ξ|γ+ d−1
τ û∥Lτ(R) ≤C∥û∥a

Ẇ
s,p,α+ d−1

p ,Λ
(R)

∥|ξ|β+ d−1
q û∥1−a

Lτ(R). (56)

This is in fact a consequence of Theorem 9 in one dimensional case. To this end, let first rewrite
the conclusion of Theorem 9 in one dimensional case. Let 0 < s′ < 1, p ′ > 1, q ′ ≥ 1 τ′ ≥ 1, 0 < a′ ≤ 1,
α′, β′, γ′ ∈R and define σ′ by σ′ ∈R by γ′ = a′σ′+ (1−a′)β′. Assume that

1

τ′
+γ′ = a′

(
1

p ′ +α′− s′
)
+ (1−a′)

(
1

q ′ +β′
)

, (57)

0 ≤α′−σ′, (58)

and
α′−σ′ ≤ s′ if

1

τ′
+γ′ = 1

p ′ +α′− s′. (59)

Then, if 1
τ′ +γ′ > 0, it holds∥∥∥|x|γ′g∥∥∥

Lτ′ (R)
≤C

∥∥g
∥∥a′

Ẇ s′ ,p′ ,α′ ,4(R)

∥∥∥|x|β′
g
∥∥∥1−a′

Lq′ (R)
for g ∈ L1

l oc (R\ {0}), with compact support in R,

(60)
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and if 1
τ′ +γ′ < 0, it holds∥∥∥|x|γ′g∥∥∥

Lτ′ (R)
≤C

∥∥g
∥∥a′

Ẇ s′ ,p′ ,α′ ,4(R)

∥∥∥|x|β′
g
∥∥∥1−a′

Lq′ (R)
for g ∈ L1

l oc (R) with 0 ̸∈ supp g . (61)

We are applying (60) and (61) with s′ = s, a′ = a, p ′ = p, q ′ = q , τ′ = τ,α′ =α+ d−1
p , β′ =β+ d−1

q ,

γ′ = γ+ d−1
τ , aσ′+ (1−a)β′ = γ′. Then clearly,

1

τ′
+γ′ = d

τ
+γ,

1

p ′ +α′− s′ = d

p
+α− s,

1

q ′ +β′ = d

q
+β.

Hence (57) follows from (7).
We next compute α′−σ′. Since aσ′+ (1− a)β′ = γ′ = γ+ d−1

τ and aσ+ (1− a)β = γ, it follows
that

a(σ′−σ) = d −1

τ
− (1−a)(β′−β) = d −1

τ
− (1−a)(d −1)

q

= (d −1)

(
1

τ
− 1−a

q

)
(7)= a(d −1)

(
1

p
+ α−σ− s

d

)
.

It follows that

α′−σ′ =α+ d −1

p
−σ− (d −1)

(
1

p
+ α−σ− s

d

)
= α−σ

d
+ s(d −1)

d
.

This yields that α′−σ′ ≥ 0 if and only if α−σ≥−s(d −1).
The conclusion now follows from (60) and (61). □

3.3. Proof of Theorem 10

The proof is in the same spirit of the one of Theorem 9. For the convenience of the reader, we
briefly describe the main lines. Denote û(r ) = u(rσ) with r > 0 and σ ∈ Sd−1. We have, by polar
coordinates, (ˆ

Rd

|x|γτ
lnµ(2R2/|x|) |u|

τdx

)1/τ

= |Sd−1|1/τ

(ˆ ∞

0

r γτ+d−1

lnµ(2R2r )
|û|τdr

)1/τ

(62)

and (ˆ
Rd

|x|γτ
lnµ(2|x|/R1)

|u|τdx

)1/τ

= |Sd−1|1/τ

(ˆ ∞

0

r γτ+(d−1)

lnµ(2r /R1)
|û|τdr

)1/τ

. (63)

Extend û in R as an even function and still denote the extension by û. Using (51) and (52), as
in (56), it suffices to prove that if supp û ⊂ BR2 ⊂R, then it holds(ˆ

R

|ξ|(γ+ d−1
τ )τ

lnµ(2R2/|ξ|) |û|
τdξ

) 1
τ

≤C ∥û∥a

Ẇ
s,p,α+ d−1

p ,Λ
(R)

∥∥∥|ξ|β+ d−1
q |û|1−a

∥∥∥
Lq (R)

, (64)

and if supp û ∩BR1 =;, then it holds(ˆ
R

|ξ|(γ+ d−1
τ )τ

lnµ(2|ξ|/R1)
|û|τdξ

) 1
τ

≤C ∥û∥a

Ẇ
s,p,α+ d−1

p ,Λ
(R)

∥∥∥|ξ|β+ d−1
q |û|1−a

∥∥∥
Lq (R)

. (65)

The conclusion now follows from Theorem 10 as in the proof of Theorem 5. The details are
omitted. □

We next show the optimality of condition α−σ≥−(d −1)s given in (17).

Proposition 15. The conditionα−σ≥−(d−1)s in (17) is necessary for the assertions in Theorem 1
to hold.
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Proof. Let v ∈ C∞
c (R) with supp v ⊂ (0,1). For large R > 0 define uR (x) := v(|x| −R), for x ∈ Rd .

Clearly, uR ∈C∞
c (Rd ) with suppuR ⊂AR,R+1, where for any b,c ∈ (0,∞), with b < c, the set Ab,c is

defined by
Ab,c := {x ∈Rd : b < |x| < c}.

We denote

γ′ := d −1

τ
+γ, α′ := d −1

p
+α, β′ := d −1

q
+β.

One can check that
∥uR∥Ẇ s,p,0,Λ(Rd ) ≤C ∥uR∥W 1,p (Rd ) ≤C R

d−1
p , (66)

and since suppuR ⊂AR,R+1,

∥uR∥Ẇ s,p,α,Λ(Rd ) ≤ ∥uR∥Ẇ s,p,α,Λ
(
ARΛ−1,(R+1)Λ×ARΛ−1,(R+1)Λ

) ≤C Rα ∥uR∥Ẇ s,p,0,Λ(Rd ) . (67)

Combining (66) and (67) yields
∥uR∥a

Ẇ s,p,α,Λ(Rd )
≤C Raα′

. (68)

On the other hand, one can check that∥∥|x|γuR
∥∥

Lτ(Rd ) ∼ Rγ′ and
∥∥∥|x|βuR

∥∥∥1−a

Lq (Rd )
∼ R(1−a)β′

. (69)

Therefore, if either (18) or (19) holds then using them for u = uR , we conclude form (68) and (69)

Rγ′ ≤C Raα′+(1−a)β′
for R large and C > 0 independent of R,

which is possible only when α−σ≥−(d −1)s. The proof is complete. □

4. The Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev
spaces

In this section, we present the result in the case s = 1. We first state variants/improvements of
the CKN inequalities in the Sobolev spaces which follows directly from the approach given in [24]
(see also the proof of Theorem 9). We begin with the case 1/τ+γ/d ̸= 0.

Theorem 16. Let d ≥ 1, p ≥ 1, q ≥ 1, τ≥ 1, 0 < a ≤ 1, and α,β,γ ∈ R. Define σ by (3). Assume (2),
(4), and (5). We have, for some positive constant C ,

(i) if 1
τ +

γ
d > 0, then for all u ∈ L1

loc (Rd \ {0}) with compact support in Rd , it holds∥∥|x|τu
∥∥

Lτ(Rd ) ≤C
∥∥|x|α∇u

∥∥a
Lp (Rd \{0})

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (70)

(ii) if 1
τ +

γ
d < 0, then for all u ∈ L1

loc (Rd \ {0}) which is 0 in a neighborhood of 0, (70) holds.

Concerning the limiting case 1/τ+γ/d = 0, one has the following result.

Theorem 17. Let d ≥ 1, p ≥ 1, q ≥ 1, τ≥ 1, 0 < a ≤ 1, and α,β,γ ∈R, and µ> 1. Assume that τ≤µ.
Define σ by (3). Assume (2) and

0 ≤α−σ≤ 1. (71)

There exists a positive constant C such that for all u ∈ L1
l oc (Rd \ {0}) and for all R1,R2 > 0, we have

(i) if 1
τ +

γ
d = 0 and suppu ⊂ BR2 , then(ˆ

Rd

|x|γτ
lnµ(2R2/|x|) |u|

τdx

) 1
τ

≤C∥|x|α∇u∥a
Lp (Rd \{0})

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
, (72)

(ii) if 1
τ +

γ
d = 0, and suppu ∩BR1 =;, then(ˆ

Rd

|x|γτ
lnµ(2|x|/R1)

|u|τdx

) 1
τ

≤C∥|x|α∇u∥a
Lp (Rd \{0})

∥∥∥|x|βu
∥∥∥1−a

Lq (Rd )
. (73)
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We are ready to state the corresponding results in the radial case. We begin with the case
1/τ+γ/d ̸= 0.

Theorem 18. Let d ≥ 2, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1 and α,β,γ ∈ R. Define σ by (3). Assume (2)
and

−(d −1) ≤α−σ< 0. (74)

We have, for some positive constant C ,

(i) if 1
τ +

γ
d > 0, then for all radial u ∈ L1

loc (Rd \ {0}) with compact support in Rd , (70) holds;
(ii) if 1

τ +
γ
d < 0, then for all radial u ∈ L1

loc (Rd \ {0}) which is 0 in a neighborhood of 0, (70)
holds.

Concerning the limiting case 1/τ+γ/d = 0, we obtain the following result.

Theorem 19. Let d ≥ 2, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α,β,γ ∈ R, and µ > 1. Assume that
τ ≤ µ. Define σ by (3). Assume (2) and (74). There exists a positive constant C such that for all
u ∈ L1

loc (Rd \ {0}) and for all 0 < R1 < R2, we have

(i) if 1
τ +

γ
d = 0 and suppu ⊂ BR2 , then (72) holds.

(ii) if 1
τ +

γ
d = 0, and suppu ∩BR1 =;, then (73) holds.

Remark 20. The convention in Remark 2 is also used in Theorem 16, Theorem 17, Theorem 18,
and Theorem 19. In these theorems, the quantity ∥|x|α∇u∥Lp (Rd \{0}) is also considered as infinity
if ∇u ̸∈ [Lp

l oc (Rd \ {0})]d .

Remark 21. By similar considerations as in Remark 7, we can conclude that the log-term is
necessary in Theorem 19.

Theorem 18 and Theorem 19 are direct consequences of Theorem 16 and Theorem 17 in the
one dimensional case. The proofs are as in the spirit of the proof of Theorem 1 and Theorem 5
but simpler where a variant of Lemma 14 is not required. The details are left to the reader.

Concerning the optimality of the condition of (74), we have the following result whose proof is
similar to the one of Proposition 15 and omitted.

Proposition 22. The conditionα−σ≥−(d−1) in (74) is necessary for the assertions in Theorem 18
to hold.

We end this section by mentioning what has been proved previously. In the case 1/τ+γ/d > 0,
under the following additional requirement (see [15, the first inequality in (1.8) and (1.10)])

a(α−1−σ)

d
+ 1−a

q
≥ 0 and

1

p
+ α−1

d
> 0,

assertion i ) of Theorem 18 was previously proved in [15] by a different approach via the Riesz
potential and inequalities on fractional integrations.

5. Applications to the compactness

In this section, we derive several compactness results from previous inequalities for radial case.
We only consider the case 1/τ+γ/d > 0. We begin with the following result.

Proposition 23. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a < 1, α, β, γ ∈ R, and Λ > 1 be such
that 1/τ+γ/d > 0. Define σ by (3). Assume (7),

α−σ> 0, and
1

p
+ α− s

d
̸= 1

q
+ β

d
.
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Assume that the embedding W s,p (B1)∩Lq (B1) into Lτ(B1) is compact. Let (un)n ⊂ L1
loc (Rd ) with

compact support be such that the sequences
(∥un∥Ẇ s,p,α,Λ(Rd )

)
n and

(∥|x|βun∥Lq (Rd )

)
n are bounded.

Then, up to a subsequence, (|x|γun)n converges in Lτ(Rd ).

Proof. One just notes that for γ′ sufficiently close to γ, one can choose 0 < a′ < 1 close to a such
that the assumptions of Proposition 23 hold with (a,γ) being replaced by (a′,γ′). This implies, by
Theorem 9 (see also (10)) that, for ε> 0 sufficiently small,

(∥|x|γ+εun∥Lτ ) and (∥|x|γ−εun∥Lτ ) are bounded.

The conclusion follows since the embedding W s,p (BR ) ∩ Lq (BR ) into Lτ(BR ) is compact for
R > 0. □

In the case s = 1, one has the following result, whose proof is almost identical and omitted.

Proposition 24. Let d ≥ 1, p ≥ 1, q ≥ 1, τ≥ 1, 0 < a < 1, and α,β,γ ∈R be such that 1/τ+γ/d > 0.
Define σ by (3). Assume (2),

α−σ> 0, and
1

p
+ α−1

d
̸= 1

q
+ β

d
.

Assume that the embedding W 1,p (B1) ∩ Lq (B1) into Lτ(B1) is compact. Let (un)n ⊂ L1
l oc (Rd )

with compact support be such that the sequences
(∥|x|α∇un∥Lp (Rd )

)
n and

(∥|x|βun∥Lq (Rd )

)
n are

bounded. Then, up to a subsequence,
(|x|γun

)
n converges in Lτ(Rd ).

Here are the variants for radial functions, whose proof are almost the same and omitted.

Proposition 25. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a < 1, α, β, γ ∈ R, and Λ > 1 be such
that 1/τ+γ/d > 0. Define σ by (3). Assume (7),

α−σ>−(d −1)s, and
1

p
+ α− s

d
̸= 1

q
+ β

d
.

Assume that the embedding W s,p (B1) ∩ Lq (B1) into Lτ(B1) is compact. Let (un)n ⊂ L1
loc (Rd ) be

radial such that the sequences
(∥un∥Ẇ s,p,α,Λ(Rd )

)
n and

(∥|x|βun∥Lq (Rd )

)
n are bounded. Then, up to

a subsequence,
(|x|γun

)
n converges in Lτ(Rd ).

Proposition 26. Let d ≥ 2, p ≥ 1, q ≥ 1, τ≥ 1, 0 < a < 1, andα,β,γ ∈R. Defineσ by (3). Assume (2),

α−σ>−(d −1), and
1

p
+ α−1

d
̸= 1

q
+ β

d
.

Assume that the embedding W 1,p (B1) ∩ Lq (B1) into Lτ(B1) is compact. Let (un)n ⊂ L1
loc (Rd ) be

radial with compact support such that the sequences
(∥|x|α∇un∥Lp (Rd )

)
n and

(∥|x|βun∥Lq (Rd )

)
n

are bounded. Then, up to a subsequence,
(|x|γun

)
n converges in Lτ(Rd ).

We obtain the following corollary after using the density of the radial functions C∞
c (Rd ) in the

class of radial functions in W s,p (Rd ).

Corollary 27. Let d ≥ 2, 0 < s ≤ 1, p ≥ 1 and sp < d. Assume that p < τ< pd/(d − sp) and (p > 1
if s < 1). Let γ1 > 0 and γ2 < 0 be such that, for j = 1,2,

1

p
− s

d
< 1

τ
+ γ j

d
< 1

p
.

Then the embedding W s,p (Rd ) into Lτ(|x|γ j ,Rd ) for radial functions is compact. As a consequence,
the embedding W s,p (Rd ) into Lτ(Rd ) in the class of radial functions is compact.

Remark 28. The fact that the embedding W s,p (Rd ) into Lτ(Rd ) in the class of radial functions is
compact is known, see e.g., [5, 19, 28] in the case s = 1 and [27] in the case 0 < s < 1 (whose proof
is based on the atomic decomposition). The ideas to derive the compactness as presented here
are quite standard, see, e.g., [2].
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