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Surfaces of infinite-type are non-Hopfian

Les surfaces de type infini sont non-Hopfian
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Abstract. We show that finite-type surfaces are characterized by a topological analogue of the Hopf property.
Namely, an oriented surface Σ is of finite-type if and only if every proper map f : Σ → Σ of degree one is
homotopic to a homeomorphism.

Résumé. Nous montrons que les surfaces de type fini sont caractérisées par un analogue topologique de la
propriété de Hopf. A savoir, une surface orientée Σ est de type fini si et seulement si toute application propre
f : Σ→Σ de degré un est homotope à un homéomorphisme.
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1. Introduction

All surfaces will be assumed to be connected and orientable throughout this note. We will say a
surface is of finite-type if its fundamental group is finitely generated; otherwise, we will say it is of
infinite-type.

Recall that a group G is said to be Hopfian if every surjective homomorphism ϕ : G →→ G is
an isomorphism. It is well known that a finitely generated free group is Hopfian, for instance, as
a consequence of Grushko’s theorem. On the other hand, a free group generated by an infinite
set S is not Hopfian as a surjective function f : S → S that is not injective extends to a surjective
homeomorphism on the free group generated by S which is not injective.

In this note, we show that there is an analogous characterization for orientable surfaces of
finite-type. The natural topological analog of a surjective homomorphism is a proper map of
degree one, and that of an isomorphism is a homotopy equivalence.

One-half of this characterization is classical, namely that any proper map of degree one from a
surface of finite-type to itself is a homotopy equivalence. For instance, a theorem of Olum (see [2,
Corollary 3.4]) says that every proper map of degree one between two oriented manifolds of the
same dimension is π1-surjective. Now, the fundamental group of any surface is residually finite
(see [4]). Also, any finitely generated residually finite group is Hopfian. Thus, every degree one
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self map of a finite-type surface is a weak homotopy equivalence, hence a homotopy equivalence
by Whitehead’s theorem.

Our main result is that infinite-type surfaces are not Hopfian.

Theorem 1. Let Σ be any infinite-type surface. Then there exists a proper map f : Σ→Σ of degree
one such that π1( f ) : π1(Σ) →π1(Σ) is not injective. In particular, f is not a homotopy equivalence.

2. Background

A surface is a connected, orientable two-dimensional manifold without boundary and a bordered
surfaces is a connected, orientable two-dimensional manifold wit non-empty boundary. A (pos-
sibly bordered) subsurface Σ′ of a surface Σ is an embedded submanifold of codimension zero.

LetΣ be a non-compact surface. A boundary component ofΣ is a nested sequence P1 ⊇ P2 ⊇ ·· ·
of open, connected subsets of Σ such that the followings hold:

• the closure (in Σ) of each Pn is non-compact,
• the boundary of each Pn is compact, and
• for any subset A with compact closure (in Σ), we have Pn ∩ A =∅ for all large n.

We say that two boundary components P1 ⊇ P2 ⊇ ·· · and P ′
1 ⊇ P ′

2 ⊇ ·· · of Σ are equivalent if
for any positive integer n there are positive integers kn ,ℓn such that Pkn ⊆ P ′

n and P ′
ℓn

⊆ Pn . For a
boundary component P = P1 ⊇ P2 ⊇ ·· · , we let [P] to denote the equivalence class of P .

The space of ends Ends(Σ) of Σ is the topological space having equivalence class of boundary
components of Σ as elements, i.e., as a set Ends(Σ) := {

[P]
∣∣P is a boundary component

}
; with

the following topology: For any set X with compact boundary, at first, define

X † := {
[P = P1 ⊇ P2 ⊇ ·· · ]∣∣X ⊇ Pn ⊇ Pn+1 ⊇ ·· · for some large n

}
.

Now, take the set of all such X † as a basis for the topology of Ends(Σ). The topological space
Ends(Σ) is compact, separable, totally disconnected, and metrizable, i.e., homeomorphic to a
non-empty closed subset of the Cantor set.

For a boundary component [P] with P = P1 ⊇ P2 ⊇ ·· · , we say [P] is planar if Pn are
homeomorphic to open subsets R2 for all large n. Define Endsnp(Σ) := {

[P] : [P] is not planar
}
.

Thus, Endsnp(Σ) is a closed subset of Ends(Σ). Also, define the genus of Σ as g (Σ) := sup g (S),
where S is a compact bordered subsurface of Σ.

Theorem 2 (Kerékjártó’s classification theorem [7, Theorem 1]). LetΣ1,Σ2 be two non-compact
surfaces. Then Σ1 is homeomorphic to Σ2 if and only if g (Σ1) = g (Σ2), and there is a homeomor-
phism Φ : Ends(Σ1) → Ends(Σ2) with Φ

(
Endsnp(Σ1)

)= Endsnp(Σ2).

Let Σ be a non-compact surface, and let Enp(Σ) ⊆ E (Σ) be two closed, totally-disconnected
subsets of S2 such that the pair Endsnp(Σ) ⊆ Ends(Σ) is homeomorphic to the pair Enp(Σ) ⊆
E (Σ). Consider a pairwise disjoint collection {Di ⊆ S2 \ E (Σ) : i ∈ A } of closed disks, where
0 ≤ |A | ≤ g (Σ), such that the following holds: For p ∈ S2, any open neighborhood (in S2) of p
contains infinitely many Di if and only if p ∈ Enp(Σ). [7, Theorem 2] describes constructing such
a collection of disks.

Now, let M := (S2 \ E (Σ)) \
⊔

i∈A int(Di ) and N := ⊔
i∈A S1,1, where S1,1 is the genus one

compact bordered surface with one boundary component. Define a non-compact surfaceΣhandle

as follows: Σhandle := M
⊔
∂M≡∂N N . Then we have the following theorem.

Theorem 3 (Richards’ representation theorem [7, Theorems 2 and 3]). The surface Σhandle is
homeomorphic to Σ.
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3. Proof of Theorem 1

Let M and N be two non-compact, oriented, connected, boundaryless smooth n-manifolds.
Then the singular cohomology groups with compact support H n

c (M ;Z) and H n
c (N ;Z) are infinite

cyclic with preferred generators [M ] and [N ]. If f : M → N is a proper map then the degree of f is
the unique integer deg( f ) defined as follows: H n

c ( f )([N ]) = deg( f ) · [M ]. Note that deg is proper-
homotopy invariant and multiplicative. See [2, Section 1] for more details.

We will use the following well-known characterization of degree.

Lemma 4 ([2, Lemma 2.1b.]). Let f : M → N be a proper map between two non-compact,
oriented, connected, boundaryless smooth n-manifolds. Let D be a smoothly embedded closed disk
in N and suppose f −1(D) is a smoothly embedded closed disk in M such that f maps f −1(D)
homeomorphically onto D. Then deg( f ) = +1 or −1 according as f | f −1(D) → D is orientation-
preserving or orientation-reversing.

We will prove Theorem 1 by considering the following three cases:

(1) Σ has infinite genus.
(2) Σ has finite genus and the set of isolated points I (Σ) of E (Σ) is finite.
(3) Σ has finite genus and the set of isolated points I (Σ) of E (Σ) is infinite.

Remark 5. If Σ is an infinite-type surface of a finite genus, then E (Σ) is an infinite set.

Our first result proves Theorem 1 in the case with infinite genus.

Theorem 6. Let Σ be a surface of the infinite genus. Then there exists a degree one map f : Σ→ Σ

which is not π1-injective.

Proof. Since Σ has infinite genus, there exists a compact bordered subsurface S ⊂ Σ such
that S has genus one and one boundary component. Define Σ′ := Σ/S be the quotient of Σ
with S pinched to a point and let q : Σ → Σ′ be the quotient map. Thus, Σ′ is also an infinite
genus surface. Further, there are compact sets in K ⊂ Σ and K ′ ⊂ Σ′ whose complements are
homeomorphic, so the pair (E (Σ),Enp(Σ)) is homeomorphic to the pair (E (Σ′),Enp(Σ′)). Hence,
by Theorem 2, there is a homeomorphism ϕ : Σ′ →Σ.

Let f : Σ→ Σ be the composition f = ϕ ◦ q . By Lemma 4, the quotient map q : Σ→ Σ′ is of
degree ±1. Thus, deg( f ) = ±1 as homeomorphisms have degree ±1. Notice that f sends ∂S to
a point. But ∂S does not bound any disk in Σ, i.e., ∂S represents a primitive element of π1(Σ),
see [1, Theorem 1.7. and Theorem 4.2.]. Hence, f is not π1-injective. If deg( f ) = 1, then we are
done. Otherwise, we replace f by f ◦ f to get a map that has degree one and is not injective
on π1. □

For the remaining two cases, we use a map from the sphere to the sphere, which has degree
±1 but with some disks identified. We will replace these disks with appropriate surfaces to get Σ.

Lemma 7. There exist pairwise disjoint closed disks D0,D1 ⊆S2 and a map f : S2 →S2 such that
the following hold:

• f −1(D0) =D0 and f |D0 : D0 →D0 is the identity map.
• f −1(D1) is the union of pairwise-disjoint closed disks D1,1,D1,2, and D1,3 in S2; and

f |D1k : D1k →D1 is a homeomorphism for each k ∈ {1,2,3}.

Further, there is a loop γ in S2 \ int(D0 ∪D1,1 ∪D1,2 ∪D1,3) which is not homotopically trivial in
S2 \ int(D0 ∪D1,1 ∪D1,2 ∪D1,3) but such that f (γ) is null-homotopic in S2 \ int(D0 ∪D1).

Proof. For each k ∈ {0,1,2,3}, choose (ak ,bk ) ∈ R2 such that if we define Bk :={
(x, y) ∈R2 : (x −ak )2 + (y −bk )2 ≤ 1

}
, then {B0,B1,B2,B3} is a pairwise-disjoint collection

of closed disks.
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Define X := S2 \
⋃3

i=0 int(Bi ) and Y := S2 \
⋃1

i=0 int(Bi ). Next, define a map f : ∂X → Y as
follows:

• f |∂Bk
: ∂Bk → ∂Bk is the identity map for each k ∈ {0,1};

• f |∂B2 : ∂B2 → ∂B1 is defined as f (x, y) := (−x +a2 +a1, y −b2 +b1) for all (x, y) ∈ ∂B2.
• f |∂B3 : ∂B3 → ∂B1 is defined as f (x, y) := (x −a3 +a1, y −b3 +b1) for all (x, y) ∈ ∂B3.

θ0

γ0

θ1l θ2l θ3

θ1u θ2u

γ0

γ1

γ1

γ2

γ2

Figure 1. The four-holed sphere X by attaching a 2-cell.

For each k ∈ {0,1,2}, let γk : [0,1] ,→ X be an embedding such that im(γk )∩ ∂X consists of
γk (0) = (ak +1,bk ) ∈ ∂Bk and γk (1) = (ak+1 −1,bk+1) ∈ ∂Bk+1.

Define Γ0 : [0,1] → Y as Γ0(t ) := γ0(t ) for all t ∈ [0,1]. Let Γ1,Γ2 : [0,1] → Y be the constant
loops based at the points (a1 +1,b1) ∈ ∂Y and (a1 −1,b1) ∈ ∂Y , respectively.

Next, define X (1) := ∂X ∪im(γ0)∪im(γ1)∪im(γ2). Extend f : ∂X → Y to a map X (1) → Y , which
we again denote by f : X (1) → Y , by mapping γ0 onto Γ0 by the identity, and, for each k = 1,2,
mapping γk to the constant loop Γk .

Let θ0 (resp. θ3) be the simple loop that traverses ∂B0 (resp. ∂B3) in the counter-clockwise
direction starting from (a0 +1,b0) (resp. (a3 −1,b3)).

Let θ1,l (resp. θ1,u) be the simple arc that traverses ∂B1∩{y ≤ b1} (resp. ∂B1∩{y ≥ b1}) counter-
clockwise direction. Similarly, define θ2,l and θ2,u .

Now, X ∼= X (1) ∪ϕD2, (see Figure 1) where the attaching map ϕ : S1 → X (1) can be described as

ϕ := θ0 ∗γ0 ∗θ1,l ∗γ1 ∗θ2,l ∗γ2 ∗θ3 ∗γ2 ∗θ2,u ∗γ1 ∗θ1,u ∗γ0.

Notice that f (γ1) = Γ1 and f (γ2) = Γ2 are constant loops. Also, as in Figure 2, f ◦θ1,l = f ◦θ2,l

and f ◦θ1,u = f ◦θ2,u . Thus, f ◦ϕ is homotopic to ( f ◦θ0)∗Γ0 ∗ ( f ◦θ3)∗Γ0.
If r : Y ∼= S1 × [0,1] → S1 is the projection then r ◦ f ◦θ0 and r ◦ f ◦θ3 traverse S1 in opposite

directions. Since r is a strong deformation retract, ( f ◦θ0)∗Γ0 ∗ ( f ◦θ3)∗Γ0, and hence f ◦ϕ is
null-homotopic. Now, the null-homotopic map f ◦ϕ : S1 → Y can be extended to a map D2 → Y .
Thus f : X (1) → Y can be extended to a map X ∼= X (1) ∪ϕD2 → Y , which will be again denoted by
f : X → Y .

Note that every homeomorphism S1 → S1 can be extended to a homeomorphism D2 → D2

naturally. Thus, we can extend f : X → Y to a map S2 → S2, which will be again denoted by
f : S2 →S2. Let D0 (resp. D1) be any closed disk, which is contained in int(B0) (resp. int(B1)).

Finally, observe that if γ = θ1u ∗θ1l ∗γ1 ∗θ2l ∗θ2u ∗γ1, then γ is a loop in S2 \ int(D0 ∪D1,1 ∪
D1,2∪D1,3) which is not homotopically trivial inS2 \int(D0∪D1,1∪D1,2∪D1,3), but such that f (γ)
is null-homotopic in S2 \ int(D0 ∪D1), as claimed. □

We now prove Theorem 1 in the two remaining cases, in both of which we have a finite genus
surface. Note that for a finite genus surface, all ends are planar, so in applying Theorem 2, it
suffices to consider the genus and the space of ends.
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f ◦θ0 f ◦θ3

f ◦θ2l

f ◦θ1l

f ◦θ2u

f ◦θ1u

Γ0

Figure 2. The map on the X (1)

Theorem 8. Let Σ be a finite genus infinite-type surface such that E (Σ) has finitely many isolated
points. Then there is a degree one map f : Σ→Σ which is not π1-injective.

Proof. Let I (Σ) be the set of all isolated points of E (Σ), let k ∈N∪ {0} be the cardinality of I (Σ),
and let g be the genus of Σ. Then C (Σ) := E (Σ) \I (Σ) is a non-empty, perfect, compact, totally-
disconnected, metrizable space as it is infinite (by Remark 5) and has no isolated points. Thus
C (Σ) is a Cantor space (see [5, Theorem 8 of Chapter 12]).

Let D0,D1,D1,1,D1,2,D1,3 ⊆S2, f : S2 →S2, and let γ be as in the conclusion of Lemma 7. Let
C1 ⊂ int(D1) be a subset homeomorphic to the Cantor set and let I ⊂ int(D0) be a set consisting
of k points (hence homeomorphic to I (Σ)). Let C1, j = f −1(C1)∩D1, j for j = 1,2,3. Note that each
C1, j is homeomorphic to the Cantor set. See Figure 3.

As f −1(D0) = D0 and f |D0 : D0 → D0 is the identity map, we can say that f −1(I ) = I .
Let Σ1 be the surface obtained from S2 \ (I ∪C1) by attaching g handles along disjoint disks
∆k ⊂ int(D0) \I , 1 ≤ k ≤ g and let Σ2 be the surface obtained from S2 \ (I ∪C1,1 ∪C1,2 ∪C1,3) by
attaching g handles along the (same) disks ∆k , 1 ≤ k ≤ g . Then f induces a proper map, which
we also call f , from Σ2 to Σ1. By Lemma 4, deg( f ) =±1.

Further, we claim that f : Σ2 →Σ1 is not injective on π1. Namely, the fundamental group of Σ2

is the amalgamated free product of four groups, one of which isπ1(S2 \int(D0∪D1,1∪D1,2∪D1,3)).
As γ is not homotopic to the trivial loop in S2 \ int(D0 ∪D1,1 ∪D1,2 ∪D1,3), and components of an
amalgamated free product inject, γ is not homotopic to the trivial loop in Σ2. However, f (γ) is
homotopic to the trivial loop in S2 \ int(D0 ∪D1) and hence in Σ1. Hence, f is not injective on π1.

Both Σ1 and Σ2 have genus the same as Σ, and the space of ends homeomorphic to that of Σ
(as a finite disjoint union of Cantor spaces is a Cantor space by the universality of the Cantor set)
with all ends planar. Hence, by Theorem 2 both Σ1 and Σ2 are homeomorphic to Σ.

IdentifyingΣ1 andΣ2 withΣ by homeomorphisms, we get a proper map f : Σ→Σwhich is not
injective on π1. As homeomorphisms have degree ±1, it follows that deg( f ) =±1. Replacing f by
f ◦ f if necessary, we obtain a proper map of degree one that is not injective on π1. □

Theorem 9. Let Σ be a finite genus surface such that E (Σ) has infinitely many isolated points.
Then there is a degree one map f : Σ→Σ which is not π1-injective.
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C1,1

Σ2
∼=Σ

Σ1
∼=Σ

f

∂D0 ∂D1,1 ∂D1,2 ∂D1,3

∂D0 ∂D1

C1,2 C1,3

C1

Figure 3. A non π1-injective degree ±1 map f : Σ→Σ, where g = 3 and |I | = 4.

Proof. Let I (Σ) be the set of all isolated points of E (Σ) and let g be the genus of Σ. Let
D0,D1,D1,1,D1,2,D1,3 ⊆S2, f : S2 →S2, and let γ be as in the conclusion of Lemma 7. Let E be a
subset of int(D0) such that E is homeomorphic to E (Σ). Also, let p1 ∈ int(D1) and p1,i ∈ int(D1,i ),
i = 1,2,3 be points such that f (p1,i ) = p1 for each i = 1,2,3. See Figure 4.

Recall that f −1(D0) = D0 and f |D0 : D0 → D0 is the identity map. Thus f −1(E ) = E . Now,
let Σ1 be the surface obtained from S2 \ (E ∪ {p1}) by attaching g handles along disjoint disks
∆k ⊂ int(D0) \ I , 1 ≤ k ≤ g and let Σ2 be the surface obtained from S2 \ (E ∪ {p1,1, p1,2, p1,3}) by
attaching g handles along the same disks ∆k , 1 ≤ k ≤ g . Then f induces a proper map, which we
also call f , from Σ2 to Σ1. By Lemma 4, deg( f ) =±1.

Further, we claim that f : Σ2 →Σ1 is not injective on π1. Namely, the fundamental group of Σ2

is the amalgamated free product of four groups, one of which isπ1(S2 \int(D0∪D1,1∪D1,2∪D1,3)).
As γ is not homotopic to the trivial loop in S2 \ int(D0 ∪D1,1 ∪D1,2 ∪D1,3), and components of an
amalgamated free product inject, γ is not homotopic to the trivial loop in Σ2. However, f (γ) is
homotopic to the trivial loop in S2 \ int(D0 ∪D1) and hence in Σ1. Hence, f is not injective on π1.

Both Σ1 and Σ2 have genus the same as Σ and, by Lemma 10 below, E (Σ1) and E (Σ2) are
homeomorphic to E (Σ). Further, all ends of Σ, Σ1 and Σ2 are planar. Hence, by Theorem 2 both
Σ1 and Σ2 are homeomorphic to Σ.

IdentifyingΣ1 andΣ2 withΣ by homeomorphisms, we get a proper map f : Σ→Σwhich is not
injective on π1. As homeomorphisms have degree ±1, it follows that deg( f ) =±1. Replacing f by
f ◦ f if necessary, we obtain a proper map of degree one that is not injective on π1. □
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Σ2
∼=Σ

Σ1
∼=Σ

f
∂D0

∂D1,1 ∂D1,2 ∂D1,3

∂D0

∂D1

p1,1 p1,2 p1,3

p1

Figure 4. A non π1-injective degree ±1 map f : Σ→Σ, where g = 5 and I is an infinite set.

Lemma 10. Let E be a closed totally disconnected subset of S2. Let I be the set of all isolated
points of E . Assume I is infinite. If F is a finite subset of S2 \ E , then E ∪F is homeomorphic
to E .

Proof. Let A := {a1, a2, . . . } be a subset of I such that an → ℓ ∈ E (A exists as E is compact and
infinite). Define B := A ∪F . Write B as B = {b1,b2, . . . }. Then the map g : E ∪F → E defined
by

g (z) :=
{

z if z ∈ (E ∪F ) \B,

an if z = bn ∈B,

is a homeomorphism. To prove this, note that g is a bijection from a compact space to a Hausdorff
space, so it suffices to show that g is continuous. But observe that g restricted to the closed set
(E ∪F ) \B is the identity, so g is continuous on (E ∪F ) \B. Also g restricted to the closed set
B∪ {ℓ} is continuous as bn → ℓ and g (bn) = an → ℓ = g (ℓ), and all other points of B∪ {ℓ} are
isolated. Thus g is continuous, as required. □

Remark 11. In the paper [3], the authors have proved that for every infinite-type surface Σ,
there exists a subsurface homeomorphic to Σ such that the inclusion map is not homotopic to
a homeomorphism. As our surfaces are connected, this type of inclusion map can’t be proper
because of the following two facts:

• Any injective map between two boundaryless topological manifolds of the same dimen-
sion is an open map. This follows from the invariance of domain.

• Any proper map between two topological manifolds is a closed map, as manifolds are
compactly generated spaces, see [6].
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Also, notice that all our results are related to proper maps.
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