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Abstract. This paper studies the unique continuation problem for the heat equation. We prove a so-called
conditional stability estimate for the solution. We are interested in local estimates that are Hölder stable with
the weakest possible norms of data on the right-hand side. Such an estimate is useful for the convergence
analysis of computational methods dealing with data assimilation. We focus on the case of a known solution
at initial time and in some subdomain but that is unknown on the boundary. To the best of our knowledge,
this situation has not yet been studied in the literature.

Résumé. Cette contribution traite du problème de continuation unique pour l’équation de la chaleur. Nous
prouvons une estimée conditionnelle de stabilité pour la solution de ce problème. Nous sommes intéressés
par une estimée locale qui est Hölder-stable avec les normes les plus faibles possibles pour le terme de
droite. Une telle estimée est utile pour l’analyse de convergence des méthodes de calcul traitant du problème
d’assimilation de données. Nous nous intéressons en particulier au cas où la solution est connue à l’instant
initial et dans un certain sous-domaine mais est inconnue sur la frontière du domaine. Cette situation ne
semble pas avoir été déjà traitée dans la littérature.
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1. Introduction

The goal of the present work is to derive a conditional stability estimate for the data assimilation
problem subject to the heat equation. This problem consists in finding the solution to the heat
equation in a target subdomain with the knowledge of its values in another subdomain and of
its initial datum. The main difficulty is that the boundary conditions of the problem are not
known. This situation frequently arises in variational data assimilation, when a background
state obtained from a previous assimilation cycle is available as (approximate) initial condition.
Integration of such a background state is a requirement in weather forecasting, but also for
optimization algorithms that divide the assimilation window into several shorter time intervals
and perform assimilation on these intervals sequentially. Stability estimates for this situation do
not appear to be available in the literature, and existing techniques cannot be adapted “off the
shelf”. Therefore, we give a self-contained proof with special care taken to design an estimate on
a form that is readily applicable to the error analysis of numerical schemes in the spirit of [2,3,6].

More precisely, letΩ⊂Rn (n ∈ {1,2,3}) be an open bounded set, let ω⊂⊂Ω (i.e., ω⊂Ω) be the
open and non-empty subset where the solution is known, and let T > 0. We use the shorthand
notation L := ∂t −∆ for the space-time differential operator associated with the heat equation,
u̇ := ∂t u for the time derivative, and M := (0,T )×Ω for the space-time cylinder. We consider the
following data assimilation problem: Find u : M →R such that

L(u) = f in M , (1)

u(0, · ) = u0( · ) inΩ, (2)

u = g in (0,T )×ω, (3)

where f ∈ L2(0,T ;L2(Ω)), u0 ∈ H 1(Ω), and g ∈ H 1(0,T ; (H 1(ω))′)∩L2(0,T ; H 1(ω)) are given. Notice
that no information is given on the boundary ∂Ω. We assume that f , u0 and g are chosen so that
there exists a solution to the data assimilation problem (1)-(3). Since this problem is ill-posed,
however, one cannot hope for a stability estimate in the usual form. Nevertheless, one can derive
a so-called conditional stability estimate which bounds the energy norm of the solution u in
a target subdomain B ⊂⊂ Ω using (i) the measurements in (0,T )×ω; (ii) the initial datum u0;
(iii) the source term f ; and (iv) an a priori bound on the solution under the form of its L2-norm
over the whole domainΩ. Our main result establishes Hölder stability of the solution to the data
assimilation problem in the interior of the target space-time subdomain.

Theorem 1 (Three-cylinders inequality). Letω⊂⊂Ω be open and non-empty, and let 0 < T1 < T .
Let B ⊂⊂ Ω be open and connected. Then there are C > 0 and κ ∈ (0,1) such that any space-time
function u in the space

H 1(0,T ; H−1(Ω))∩L2(0,T ; H 1(Ω)) (4)

satisfies

∥u∥L2(0,T1;H 1(B)) ≤C (∥u∥L2((0,T )×ω) +F (u))κ(∥u∥L2((0,T )×Ω) +F (u))1−κ, (5)

where

F (u) := ∥u|t=0∥L2(Ω) +∥L(u)∥L2(0,T ;H−1(Ω)). (6)

The proof of Theorem 1, which hinges on a suitable pointwise Carleman estimate, is developed
through the following two sections.

Carleman estimates for parabolic problems can be found in [1, 8, 10, 12, 15]. However, most
works in the literature are concerned with the initialization problem [3, 6, 12], where boundary
conditions are known, but not the initial condition. Here, we are instead interested in the
opposite case, where the initialization problem has been solved and therefore the initial datum
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is known, but the boundary conditions are unknown. The estimate derived in Theorem 1 uses
the initial datum in the upper bound and bounds the solution up to the initial time. Instead,
in the usual setting in which the initial datum is unknown, the solution is estimated only in a
space-time subdomain that is kept away from the initial time; see for instance [6, Theorems 1&2].
Furthermore, a similar control problem is considered in [7] where well-posedness is proven
using Carleman estimates. The main difference with the present work is that the function that
is estimated therein vanishes on the lateral boundary instead of the initial time; consequently,
the weight function that is used in the proof is singular at the initial time.

The rest of this contribution is organized as follows. In Section 2, we prove a pointwise
Carleman estimate. In Section 3, this estimate is used to prove a preliminary three-cylinders
inequality. This result is then adapted to complete the proof of Theorem 1.

2. A pointwise Carleman estimate

The main result of this section is the pointwise Carleman estimate established in Lemma 2. We
consider two functions ρ ∈ C 3(M) and w ∈ C 2(M) and a real number τ > 0. Notice that the
functions ρ and w both depend on time t ∈ [0,T ] and space x ∈ Ω, i.e., we have ρ = ρ(t , x) and
w = w(t , x). In Section 3, the function w will be chosen in a specific way in terms of the function
u in Theorem 1, and the real number τ will be chosen large enough. A specific choice for the
function ρ will be made as well.

In what follows, we suppose that ∇ρ ̸= 0 in M . We denote by λ> 0 a bound on D2ρ (uniformly
in M) and by θ > 0 a real number such that θ ≤ |∇ρ|2 ≤ θ−1 (uniformly in M). We fix a real number
α such that α> 3θ−3λ. Here, the differential operators ∇ and D2 act only on the space variables.
Moreover, we use the shorthand notation Y ≲ Z with positive real numbers Y , Z for the inequality
Y ≤ C Z where the value of the generic constant C can change at each occurrence provided it is
independent of w and τ. The value of C can depend on ρ since this function will be fixed once
and for all in Section 3.

We introduce the following functions that are defined using ρ, w , and τ:

φ := eαρ , ℓ := τφ, v := eℓw. (7)

We also define the following auxiliary quantities:

a := 3λατφ, σ := a +∆ℓ, q := a +|∇ℓ|2, b :=−σv −2(∇v,∇ℓ), c := (|∇v |2 −qv2)∇ℓ, (8a)

r := (∇σ,∇v)v + (div(a∇ℓ)−aσ) v2, Q := q + ℓ̇, B := b − v̇ , (8b)

R := r + 1

2
Q̇v2 +div(ℓ̇∇ℓ)v2 −σℓ̇v2. (8c)

The main result of this section is that |∇w |2 + |w |2 (with weights depending on τ and ρ) can be
upper bounded by |L(w)|2 and additional terms subject to a divergence or a time derivative. This
result already contains the structure for Theorem 1. Indeed, the divergence and time-derivative
terms will disappear when an integration will be performed over M .

Lemma 2 (Pointwise Carleman estimate). There is τ0 > 0 such that for all τ > τ0 and all
w ∈C 2(M), we have

e2τφ(τ|∇w |2 +τ3|w |2)≲ e2τφ|L(w)|2 −div(b∇v + c)+div(v̇∇v + v2ℓ̇∇ℓ)− 1

2
∂t (|∇v |2 −Qv2). (9)

The rest of this section is devoted to proving Lemma 2.
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2.1. Preliminary results

The first step towards proving Lemma 2 is to upper bound e2τφ(τ|∇w |2 +τ3|w |2) as follows.

Lemma 3. For all τ> 0 and all w ∈C 2(M), we have

e2τφ(τ|∇w |2 +τ3|w |2)≲ a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ))v2. (10)

Proof. We argue as in the proof of [5, Proposition 1]. For a vector X ∈Rn , we have

D2φ(X , X ) =αφ(α(∇ρ, X )2 +D2ρ(X , X )). (11)

Since the first term is positive, this implies

D2φ(X , X ) ≥αφD2ρ(X , X ) ≥−λαφ|X |2, (12)

where we recall that λ> 0 is an upper bound on D2ρ (uniformly in M). Taking X :=∇ℓ=ατφ∇ρ
in (11), we obtain

D2ℓ(∇ℓ,∇ℓ) = ταφ(α(∇ρ,∇ℓ)2 +D2ρ(∇ℓ,∇ℓ)) ≥ (ατφ)3(α|∇ρ|4 −λ|∇ρ|2).

Recalling the choice for the real number θ, this gives

D2ℓ(∇ℓ,∇ℓ) ≥ (ατφ)3(αθ2 −λθ−1). (13)

We also have

|∇ℓ|2 = τ2|∇φ|2 = (ατφ)2|∇ρ|2 ≤ (ατφ)2θ−1. (14)

Using (12) with X :=∇v , we get

2D2ℓ(∇v,∇v) ≥−2λατφ|∇v |2.

Recalling that a := 3λατφ, we obtain

a|∇v |2 +2D2ℓ(∇v,∇v) ≥λατφ|∇v |2. (15)

Combining (13) and (14), we get

(−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ))v2 ≥ (2αθ2 −5λθ−1)︸ ︷︷ ︸
=:c(α)

(ατφ)3v2. (16)

Summing (15) and (16), we see that

c(α)(ατφ)3v2 +λατφ|∇v |2 ≤ a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ))v2. (17)

Notice that the right-hand side of (17) is the one we have in the statement of Lemma 3. To bound
the left-hand side of (17) from below in terms of |∇w |2 and w2 we notice that

|∇v |2 = e2τφ|τw∇φ+∇w |2 ≥ e2τφ 1

2
|∇w |2 −e2τφ|∇φ|2τ2w2, (18)

where we used the Cauchy–Schwarz and Young inequalities. Owing to the choice α > 3θ−3λ, we
infer that

c(α)(αφ)3 −λαφ|∇φ|2 ≥ (αφ)3(2αθ2 −6λθ−1) =: cα > 0, (19)

where the first inequality comes from the definition of c(α) and −λαφ|∇φ|2 ≥ −λθ−1α3φ3 (as a
consequence of (14)) and the second inequality comes fromα> 3θ−3λ. Multiplying (18) byλατφ,
multiplying (19) by τ3v2 = e2τφτ3w2 and summing both equations gives

λατφe2τφ 1

2
|∇w |2 + cαe2τφτ3w2 ≤ c(α)(ατφ)3v2 +λατφ|∇v |2.

Invoking (17), we get

cρe2τφ(τ|∇w |2 +τ3|w |2) ≤ a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ))v2,

where cρ = min(cα,λα inf(x,t )∈M |φ(x, t )|/2) > 0. This ends the proof. □
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The next step is to observe that the terms on the right-hand side of (10) are equal to a weighted
square norm of the heat operator plus some more terms.

Lemma 4. For all τ> 0 and all w ∈C 2(M), we have

e2ℓ|L(w)|2/2 = (∆v +Qv)2/2+B 2/2

+a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2

+div(b∇v + c)−div(v̇∇v + v2ℓ̇∇ℓ)+∂t (|∇v |2 −Qv2)/2+R.

Proof. We have

e2ℓ|L(w)|2/2 = e2ℓ|∆w |2/2+e2ℓ|ẇ |2/2−e2ℓẇ∆w.

Moreover, v̇ = ∂t (eℓw) = eℓẇ + ℓ̇v . Hence, −eℓẇ =−v̇ + ℓ̇v . Straightforward computations give

eℓ∆w =∆v −σv −2(∇v,∇ℓ)+σv − (∆ℓ)v +|∇ℓ|2v =∆v +b +qv.

Combining previous relations, we get

e2ℓ|L(w)|2/2 = e2ℓ|∆w |2/2+|v̇ − ℓ̇v |2/2+ (−v̇ + ℓ̇v)(∆v +b +qv).

We now invoke [4, Lemma 1] (setting k := 0 therein) to obtain

e2ℓ|∆w |2/2 = (∆v +qv)2/2+b2/2

+a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2

+div(b∇v + c)+ r.

Using this identity and recalling that Q := q + ℓ̇ and B := b − v̇ , we get

e2ℓ|L(w)|2/2 = (∆v +qv)2/2+b2/2+ (v̇2 + (ℓ̇v)2)/2− v̇ ℓ̇v + (ℓ̇v − v̇)(∆v +b +qv)

+a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2 +div(b∇v + c)+ r

= (∆v +Qv)2/2+B 2/2− ℓ̇v(∆v +qv)+bv̇ − v̇ ℓ̇v + (ℓ̇v − v̇)(∆v +b +qv)

+a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2 +div(b∇v + c)+ r

= (∆v +Qv)2/2+B 2/2− v̇ ℓ̇v + ℓ̇vb − v̇(∆v +qv)

+a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2 +div(b∇v + c)+ r. (20)

It remains to rewrite −v̇ ℓ̇v + ℓ̇vb − v̇(∆v +qv). We have

−v̇∆v =−div(v̇∇v)+ (∇v,∇v̇) =−div(v̇∇v)+∂t |∇v |2/2, (21)

−v̇ ℓ̇v −qv v̇ =−Qv v̇ =−Q∂t (v2/2) =−∂t (Qv2)/2+Q̇v2/2. (22)

Moreover, we have −2(∇v,∇ℓ)ℓ̇v = −(∇(v2), ℓ̇∇ℓ) = v2 div(ℓ̇∇ℓ)−div(v2ℓ̇∇ℓ) and recalling that
b :=−σv −2(∇v,∇ℓ), we obtain

ℓ̇vb = ℓ̇v(−σv −2(∇v,∇ℓ)) =−σℓ̇v2 + v2 div(ℓ̇∇ℓ)−div(v2ℓ̇∇ℓ). (23)

The claim follows by injecting (21), (22) and (23) into (20). □

2.2. Proof of Lemma 2

The proof of Lemma 2 combines the results of Lemmas 3 and 4. We still argue as the proof of [5,
Prop. 1]. Rewriting the result of Lemma 4 under the form

a|∇v |2 +2D2ℓ(∇v,∇v)+ (−a|∇ℓ|2 +2D2ℓ(∇ℓ,∇ℓ)
)

v2

≤ e2ℓ|L(w)|2/2−div(b∇v + c)+div(v̇∇v + v2ℓ̇∇ℓ)−∂t (|∇v |2 −Qv2)/2−R,
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and applying this bound to the right-hand side of (10), we infer that

e2τφ(τ|∇w |2 +τ3|w |2)

≲ e2ℓ(Lw)2/2−div(b∇v + c)+div(v̇∇v + v2ℓ̇∇ℓ)−∂t (|∇v |2 −Qv2)/2−R. (24)

It only remains to bound R. We recall that

R = (∇σ,∇v)v + (div(a∇ℓ)−aσ) v2 +Q̇v2/2+div(ℓ̇∇ℓ)v2 −σℓ̇v2.

For τ> 0 large enough, we have (recall that the value of the hidden constant C in any inequality
of the form X ≲ Y can depend on ρ but is independent of τ and w)

div(a∇ℓ)−aσ= (∇a,∇ℓ)−a2 = 3λατ2|∇φ|2 − (3λατ)2φ2 ≲ τ2,

Q̇ = ȧ +2(∇ℓ̇,∇ℓ)+ ℓ̈= 3λατφ̇+2τ2(∇φ,∇φ̇)+τφ̈≲ τ2,

div(ℓ̇∇ℓ) = τ2 div(φ̇∇φ)≲ τ2,

σℓ̇= τ2(3λαφ+∆φ)φ̇≲ τ2,

and

(∇σ,∇v)v = τ(3αλ∇φ+∇∆φ,∇weℓ+∇ℓeℓw)eℓw

≲ τ(|∇w |eℓ+|∇ℓ|eℓ|w |)eℓ|w |≲ e2τφ(τ|∇w ||w |+τ2|w |2)≲ e2τφ(|∇w |2 +τ2|w |2).

Thus, for τ> 0 large enough, we have

|R|≲ e2τφ(|∇w |2 +τ2|w |2).

This shows that for τ> 0 large enough, R can be absorbed in the left-hand side of (24). The proof
is complete.

3. Proof of Theorem 1

The goal of this section is to prove Theorem 1. First, using the pointwise Carleman estimate
from Section 2, we establish a preliminary three-cylinders inequality (Proposition 5). Then we
conclude the proof of Theorem 1 by improving on the norms used on the right-hand side of the
preliminary three-cylinders inequality.

3.1. Preliminary three-cylinders inequality

In the earlier work [6], a three-cylinders inequality was proved via a reduction to Isakov’s Carle-
man estimate [9]. The change in the present three-cylinders inequality is that we prove stability
up to t = 0, to the price of requiring an estimate on the initial datum in the right-hand side. The
proof by Isakov does not keep track of the boundary term at t = 0, and for this reason we are
forced to give a full proof of an analogous Carleman estimate that handles that term (Lemma 2
and its integrated version (26)). Notice also that the time-dependent part of our weight function
is different from that in [6], since we want to provide stability up to t = 0. The same observation
also holds for the cutoff function. In addition, contrary to Isakov, we derive our bound starting
from a pointwise Carleman estimate (Lemma 2) that is not yet available in the context of the heat
equation to the best of our knowledge.

Carleman estimates with boundary terms are typically somewhat more complicated to prove
than those for compactly supported functions. Often the former estimates are called global and
the latter local. In this sense, the estimate in the present paper is local in space but global in
time. To our knowledge, this combination has not been studied previously. Yet, it is of interest in
applications, for example those in weather forecasting, where repeated data assimilation tasks
require a background state to initialize the simulation.
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Figure 1. Choice of the cutoff function χ.

Proof. The idea is to integrate the pointwise Carleman estimate (9) using adequate functions ρ1

and w .2

(1) Choice of the function ρ. Let 0 < r0 < r1 and r2 < r3 < r4 < d(x0,∂Ω). Define B j = B(x0,r j ),
j ∈ {0,3,4}. We choose a function ρ1 ∈ C∞(Ω) such that −r0/2 ≥ ρ1 > −r0 in B0 and that ρ1(x) =
−d(x, x0) outside B0 (notice that ρ1 < 0). Setting I := (0,T ), I1 := (0,T − �), and I2 := (0,T − �/2),
we choose a function ρ2 ∈C∞(R) such that ρ2(s) ≤−r3 for s ≥ T −�/2 and ρ2 = 0 in I1 (notice that
ρ2 ≤ 0). We define ρ(t , x) := ρ1(x)+ρ2(t ). Notice that |∇ρ| = 1 outside B0. We use the notation (see
Figure 1)

Q1 := I2 × (B1 \ B0), Q2 := ((I \ I2)× (B4 \ B0))∪ (I × (B4 \ B3)), Q3 := I2 × (B3 \ B1).

We also define Φ(r ) := e−αr . Recalling that φ = eαρ , we observe that the following bounds hold
true:

φ≤Φ(r3) in Q2,

φ≥Φ(r2) in I1 × (B2 \ B1).

Indeed, the first bound is a consequence of the fact that ρ2(s) ≤ −r3 for s ≥ T − �/2 and ρ1(x) =3

−d(x, x0) outside B0. The second bound comes from ρ2 = 0 in I1 and ρ1(x) ≥−r2 in B2 \ B1.4

(2) Choice of the function w . We define a cutoff functionχ ∈C∞
0 ((−1,T )×(B4\B0)) that satisfies5

χ= 1 in Q3 and 0 ≤χ≤ 1 in (−1,T )×B4; see Figure 1. We then set w :=χu.6

(3) Integrating (9) over I ×Ω and observing that ∇ρ does not vanish on I × (B4 \ B0), we get for
all τ> 0 large enough,
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|L(w)|2e2τφd xd t +
�

B4\B0

(|∇w |2 +τ2|w |2)e2τφd x|t=0. (26)

Indeed, the divergence terms on the right-hand side of (9) disappear since
�

B4\B0
div(A) =�

∂(B4\B0) An = 0 for any A that fulfills A = 0 on ∂(B4 \B0). Moreover, concerning the time-derivative
on the right-hand side of (9), we used that for all τ> 0 large enough, Q = a+|∇�|2+ �̇� τ2 so that

−
�T

0

�

B4\B0

∂t (|∇v |2 −Qv2) =
�

B4\B0

(|∇v |2 −Qv2)d x|t=0 �
�

B4\B0

(|∇w |2 +τ2|w |2)e2τφd x|t=0,

where the hidden constant depends in particular on the first-order derivatives of ρ in time and in7

space.8

Figure 1. Choice of the cutoff function χ.

Proposition 5 (Preliminary three-cylinders inequality). Let x0 ∈Ω and 0 < r1 < r2 < d(x0,∂Ω).
Write B j = B(x0,r j ), j ∈ {1,2}. Let 0 < ϵ < T . Then there are C > 0 and κ ∈ (0,1) such that for all
u ∈C 2(R×Ω),

∥u∥L2(0,T−ϵ;H 1(B2)) ≤C (∥u∥L2(0,T ;H 1(B1)) +∥L(u)∥L2((0,T )×Ω) +∥u|t=0∥H 1(Ω))
κ∥u∥1−κ

L2(0,T ;H 1(Ω)). (25)

Proof. The idea is to integrate the pointwise Carleman estimate (9) using adequate functions ρ
and w .

Step 1. Choice of the function ρ. Let 0 < r0 < r1 and r2 < r3 < r4 < d(x0,∂Ω). Define B j =
B(x0,r j ), j ∈ {0,3,4}. We choose a function ρ1 ∈ C∞(Ω) such that −r0/2 ≥ ρ1 > −r0 in B0 and
that ρ1(x) = −d(x, x0) outside B0 (notice that ρ1 < 0). Setting I := (0,T ), I1 := (0,T − ϵ), and
I2 := (0,T −ϵ/2), we choose a function ρ2 ∈C∞(R) such that ρ2(s) ≤−r3 for s ≥ T −ϵ/2 and ρ2 = 0
in I1 (notice that ρ2 ≤ 0). We define ρ(t , x) := ρ1(x)+ρ2(t ). Notice that |∇ρ| = 1 outside B0. We use
the notation (see Figure 1)

Q1 := I2 × (B1 \ B0), Q2 := ((I \ I2)× (B4 \ B0))∪ (I × (B4 \ B3)), Q3 := I2 × (B3 \ B1).

We also define Φ(r ) := e−αr . Recalling that φ = eαρ , we observe that the following bounds hold
true:

φ≤Φ(r3) in Q2,

φ≥Φ(r2) in I1 × (B2 \ B1).

Indeed, the first bound is a consequence of the fact that ρ2(s) ≤ −r3 for s ≥ T − ϵ/2 and ρ1(x) =
−d(x, x0) outside B0. The second bound comes from ρ2 = 0 in I1 and ρ1(x) ≥−r2 in B2 \ B1.

Step 2. Choice of the function w . We define a cutoff function χ ∈ C∞
0 ((−1,T ) × (B4 \ B0)) that

satisfies χ= 1 in Q3 and 0 ≤χ≤ 1 in (−1,T )×B4; see Figure 1. We then set w :=χu.

Step 3. Integrating (9) over I ×Ω and observing that ∇ρ does not vanish on I × (B4 \ B0), we get
for all τ> 0 large enough,∫ T

0

∫
Ω

(τ|∇w |2 +τ3|w |2)e2τφdxdt =
∫ T

0

∫
B4\B0

(τ|∇w |2 +τ3|w |2)e2τφdxdt

≲
∫ T

0

∫
B4\B0

|L(w)|2e2τφdxdt +
∫

B4\B0

(|∇w |2 +τ2|w |2)e2τφdx|t=0. (26)
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Indeed, the divergence terms on the right-hand side of (9) disappear since
∫

B4\B0
div(A) =∫

∂(B4\B0) An = 0 for any A that fulfills A = 0 on ∂(B4 \B0). Moreover, concerning the time-derivative
on the right-hand side of (9), we used that for all τ> 0 large enough, Q = a+|∇ℓ|2+ ℓ̇≲ τ2 so that

−
∫ T

0

∫
B4\B0

∂t (|∇v |2−Qv2)dxdt =
∫

B4\B0

(|∇v |2−Qv2)dx|t=0 ≲
∫

B4\B0

(|∇w |2+τ2|w |2)e2τφdx|t=0,

where the hidden constant depends in particular on the first-order derivatives of ρ in time and in
space.

Step 4. The next step is to replace w by u in (26). To this end, we define the commutator

[L,χ](u) := L(χu)−χL(u) = (∂tχ−∆χ)u −2(∇u,∇χ). (27)

Since L(w) = L(χu) = χL(u) + [L,χ](u), we have |L(w)|2 ≲ |L(u)|2 + |[L,χ](u)|2. Moreover, the
commutator [L,χ] vanishes on Q3 since χ = 1 on Q3. Therefore, the first term on the right-hand
side of (26) satisfies∫ T

0

∫
B4\B0

|L(w)|2e2τφdxdt ≲
∫

(0,T )×B4

|L(u)|2e2τφdxdt +
∫

Q1∪Q2

|[L,χ](u)|2e2τφdxdt

≲ e2τ∥L(u)∥2
L2((0,T )×B4) +e2τ∥u∥2

L2(0,T ;H 1(B1)) +e2τΦ(r3)∥u∥2
L2(0,T ;H 1(B4)), (28)

where we used φ ≤ 1, φ ≤ Φ(r3) in Q2, and the fact that [L,χ](u) can be bounded by L2- and
H 1-norms of u owing to (27). (Notice that the hidden constant above depends on the first-order
derivatives in time and first- and second-order derivatives in space of χ. Therefore, the constant
in (28) blows up as ϵ→ 0, or if r4 → d(x0,∂Ω).) Consider now the second term on the right-hand
side of (26). First, we notice that ∥∇w∥L2(B4\B0) ≲ ∥u∥H 1(B4\B0). For the low-order term, we observe
that ρ ≤−r0/2 implies φ< 1 and, therefore, τ2e2τφ≲ e2τ for τ> 0 large enough. It follows that for
τ> 0 large enough, ∫

B4\B0

(|∇w |2 +τ2|w |2)e2τφdx|t=0 ≲ e2τ∥u|t=0∥2
H 1(Ω). (29)

Furthermore, using χ = 1, i.e. w = u, as well as φ≥Φ(r2) in I1 × (B2 \ B1), we infer that, for τ ≥ 1,
the left-hand side of (26) can be bounded from below by∫

I1×(B2\B1)

(
τ|∇u|2 +τ3|u|2)e2τφdxdt ≥ e2τΦ(r2)∥u∥2

L2(0,T−ϵ;H 1(B2\B1)). (30)

Altogether, the inequalities (26) and (28)-(30) imply that, for τ> 0 large enough,

∥u∥L2(0,T−ϵ;H 1(B2))

≲ eτ
(∥L(u)∥L2((0,T )×B4) +∥u∥L2(0,T ;H 1(B1)) +∥u|t=0∥H 1(Ω)

)+e−pτ∥u∥L2(0,T ;H 1(B4)),

with p :=Φ(r2)−Φ(r3) > 0. Here, we used that e2τ(1−Φ(r2)) < e2τ sinceΦ(r2) > 0.

Step 5. Finally, the claim follows by a direct application of [11, Lemma 5.2], the idea being to
optimize in τ, under the constraint τ≥ τ0 for some τ0 > 0 large enough (see also [14]). □

3.2. End of the proof

In this last step of the proof of Theorem 1, we improve the norms on the right-hand side of (25)
to ∥u|t=0∥L2(Ω), ∥L(u)∥L2(0,T ;H−1(Ω)),∥u∥L2((0,T )×ω), and ∥u∥L2((0,T )×Ω).
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Step 1. We set T1 := T − ϵ for some 0 < ϵ< T . Upon replacing ω by a smaller set, we may assume
without loss of generality that it is a ball of the form B1 := B(x0,r1) for some x0 ∈Ω. We will show
the following local version of the conditional stability estimate (5) where B is replaced by a ball of
the form B2 := B(x0,r2) with 0 < r1 < r2 < d(x0,∂Ω): For all u ∈C∞(R×Ω),

∥u∥L2(0,T1;H 1(B2)) ≲ (∥u∥L2((0,T )×B1) +F (u))κ(∥u∥L2((0,T )×Ω) +F (u))1−κ, (31)

where F (u) := ∥u|t=0∥L2(Ω)+∥L(u)∥L2(0,T ;H−1(Ω)). The general case for B follows by covering B by a
finite chain of balls starting fromω, and by iterating the local result (see [13]), up to some rescaling
in ϵ. Since smooth functions are dense in the space defined in (4), it is sufficient to consider the
case where u ∈C∞(R×Ω). In the rest of this proof, we consider B0 := B(x0,r0) and B3 := B(x0,r3)
with 0 < r0 < r1 and r2 < r3 < d(x0,∂Ω).

Step 2. Let us first weaken the norm of L(u) and u0. To this end, let w ∈ L2(0,T ; H 1(B3)) ∩
H 1(0,T ; H−1(B3)) solve

L(w) = L(u) in (0,T )×B3,

w |∂B3 = 0, w |t=0 = u|t=0,

and set v := u|(0,T )×B3 − w ∈ L2(0,T ; H 1(B3)) ∩ H 1(0,T ; H−1(B3)). Since L(v) = 0 and v |t=0 = 0,
Proposition 5 (with B0 instead of B1 and with B3 instead ofΩ) implies that

∥v∥L2(0,T1;H 1(B2)) ≤C∥v∥κL2(0,T ;H 1(B0))∥v∥1−κ
L2(0,T ;H 1(B3)). (32)

Using the standard energy estimate for the heat equation on w , ∥w∥L2(0,T ;H 1(B3)) ≲ F with F :=
∥u|t=0∥L2(Ω) +∥L(u)∥L2(0,T ;H−1(Ω)) together with the triangle inequality, we infer that

∥v∥L2(0,T1;H 1(Bi )) ≲ ∥u∥L2(0,T1;H 1(Bi )) +F, i ∈ {0,3}, (33)

and

∥u∥L2(0,T1;H 1(B2)) ≲ ∥v∥L2(0,T1;H 1(B2)) +F. (34)

Applying (32) to the right-hand side of (34) and (33) to the right-hand side of (32) we obtain

∥u∥L2(0,T1;H 1(B2)) ≲ (∥u∥L2(0,T ;H 1(B0)) +F )κ(∥u∥L2(0,T ;H 1(B3)) +F )1−κ.

Step 3. Let us finally weaken the norms of u|(0,T )×B0 and u|(0,T )×B3 . Choosing χ ∈ C∞
0 (B1) such

that χ= 1 in B0, we see that χu satisfies

L(χu) =χL(u)+ [L,χ](u), (χu)|∂B1 = 0.

Since [L,χ](u) is of first-order in space and zeroth-order in time (with respect to u), standard
energy estimates yield the following bounds:

∥u∥L2(0,T ;H 1(B0)) = ∥χu∥L2(0,T ;H 1(B0)) ≤ ∥χu∥L2(0,T ;H 1(B1))

≲ ∥χu|t=0∥L2(B1) +∥L(χu)∥L2(0,T ;H−1(B1))

≲ F +∥[L,χ](u)∥L2(0,T ;H−1(B1)) ≲ F +∥u∥L2((0,T )×B1).

Reasoning analogously, we obtain

∥u∥L2(0,T ;H 1(B3)) ≲ F +∥u∥L2((0,T )×Ω).

Putting everything together establishes (31). This ends the proof. □
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