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On Binary Optimal Control in H s(0,T ), s < 1/2

Sur le Contrôle Optimal Binaire en H s(0,T ), s < 1/2
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Abstract. The function space H s (0,T ), s < 1/2, allows for functions with jump discontinuities and is thus
attractive for treating optimal control problems with discrete-valued control functions. We show that while
arbitrary chattering controls are impossible, there exist feasible controls in H s (0,T ) that have countably jump
discontinuities with jump height one in each of countably many pairwise disjoint intervals. However, under
mild assumptions, we show that certain types of jump discontinuities cannot be optimal. The derivation
of meaningful optimality conditions via a direct variational argument using simple feasible perturbations
remains a major challenge; as illustrated by an example.

Résumé. L’espace fonctionnel H s (0,T ), s < 1/2, est compatible avec les discontinuités et est par conséquent
un candidat de choix pour résoudre des problèmes de contrôle optimal avec des fonctions de contrôle à
valeurs discrètes. Nous montrons que, bien que les contrôles fortement oscillants soient impossibles, il
existe des contrôles admissibles dans H s (0,T ) ayant un nombre fini de discontinuités avec un saut de 1
pour chacune des paires dénombrables d’intervalles disjoints. Cependant, sous des hypothèses raisonnables,
nous montrons que certaines de ces discontinuités ne peuvent pas être optimaux. Établir des conditions
d’optimalité pertinentes via un argument variationnel avec des perturbations admissibles simples constitue
un défi majeur, ce que nous illustrons par un exemple.

Manuscript received 14 September 2022, revised 19 December 2022 and 8 March 2023, accepted 19 April 2023.

1. Introduction

A number of recents works have demonstrated the need for time-dependent, discrete-valued
decision variables in the context of optimal control of (partial) differential equations, see [5–7].
This presents a unique challenge for optimal control in which the control variables are often
taken in Lp -spaces. The latter is typically easier to work with both theoretically and numerically
and it allows for jump discontinuities in the optimal controls. However, if our feasible set has the
form

Uad := {u : [0,T ] →R : u measurable,u(t ) ∈ {0,1, . . . , N }, t ∈ (0,T )},
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where T > 0 and N ∈ N, then it is not weakly closed in L2. If we seek more regular controls, e.g.,
H 1(0,T ), then the feasible set will only contain constant functions due to absolute continuity of
H 1(0,T ) functions. We may also look beyond the Hilbert space setting as in [8] and formulate an
optimal control problem with controls in BV (0,T ). There are several theoretical advantages. For
instance, if the total variation seminorm is used as a regularizer in the objective, then any optimal
control will have a finite number of jumps. As shown in [8], this yields an intuitive stationarity
concept. However, BV (0,T ) is not a Hilbert space, so the derivation of a convergent function-
space-based numerical method is rather delicate. In addition, the TV-seminorm is non-smooth.

In light of these issues, we propose to use controls in Sobolev–Slobodeckij spaces H s (0,T ) with
s < 1/2. Our goal is to investigate whether this provides a viable alternative Hilbert space setting
that straddles the inadequacy of L2(0,T ) and restrictiveness of H 1(0,T ). Moreover, H s (0,T ) allows
for a wavelet expansion based on classical Haar wavelets and thus a natural discretization for the
control problem, cf. [2] The advantages over the other approaches are

(1) H s (0,T ) functions with s < 1/2 allow for jump discontinuities. In particular, the continu-
ous embedding of H s (0,T ) into C ([0,T ]) for s > 1/2, [3, Theorem 8.2], does not hold.

(2) H s (0,T ) with s < 1/2 is a real separable Hilbert space.
(3) The feasible set Uad is weakly closed in H s (0,T ), s < 1/2, and allows for more than

constant functions.
(4) H s (0,T ) functions admit a wavelet expansion based on classical Haar wavelets, which

provides a natural discretization scheme and easy treatment of Uad.

The purpose of this short note is to address the fundamental differences that may arise for binary
or integer-valued controls in H s (0,T ) as opposed to L2, H 1 or BV by way of examples in the
following sections:

in §2 Feasible sets of the type Uad are weakly closed in H s (0,T ).
in §2 Certain types of chattering controls, [1, 4], are ruled out in the H s -setting.
in §3 There exist H s (0,T ) functions with countably many jump discontinuities.
in §4 There exist H s (0,T ) functions with countably many pairwise disjoint neighborhoods

containing countable many discontinuities.
in §5 Controls with certain types of jump discontinuities are generally not optimal.
in §6 The stationarity concept defined in [8] for controls in BV cannot be transferred directly.

Standing Assumptions. We will always assume that s < 1/2 and q = 1− 2s in this article. For
T > 0 and a measurable function f : [0,T ] →R, we introduce the Sobolev–Slobodeckij seminorm:

| f |H s (0,T ) :=
(∫
τ∈(0,T )

∫
t∈(0,T )

| f (t )− f (τ)|2
|t −τ|1+2s dt dτ

) 1
2

. (1)

The norm on H s (0,T ) is given by ∥ f ∥H s (0,T ) := (∥ f ∥2
L2(0,T )

+| f |2H s (0,T ))
1
2 . All integrals in this article

are Lebesgue integrals with respect to the Lebesgue measure.

2. Weak closedness of Uad and prevention of chattering

We recall a classical example for chattering and the fact that Uad is not weakly closed in L2(0,T )
and then prove a general result that excludes such phenomena in H s (0,T ).

Example 1. Let T = 1 and N = 1. A classical example of chattering for binary functions is the
sequence (un)n ⊂Uad with un := ∑n−1

i=0 χ[2i /(2n),(2i+1)/(2n)) for n ∈N, where un alternates between
0 and 1 on subsequent uniform intervals that uniformly partition (0,1) and the interval lengths,
reciprocal to the frequency of the alternation, tend to zero for n →∞. The sequence (un)n ⊂Uad

is bounded and an approximation argument yields un * ū ≡ 0.5 in L2(0,1), implying that ū ∉Uad.
Moreover, liminfn ∥un∥L2 =p

0.5 > 0.5
p

0.5 = ∥ū∥L2 and thus un ̸→ ū in L2(0,1).
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Such sequences of functions are unbounded in H s (0,T ) and Uad is weakly closed in H s (0,T ).

Proposition 2. Let (un)n ⊂Uad be given. Then it follows that

(1) if un * u in H s (0,T ) for some u ∈ H s (0,T ), then u ∈Uad, and
(2) if un * u and un ̸→ u in L2(0,T ), then |un |H s (0,T ) →∞.

Proof. (1). Given un * u in H s (0,T ) and the compact embedding H s (0,T ) ,→c L2(0,T ), [3,
Theorem 7.1], we have un → u in L2(0,T ). Consequently, (un)n has a subsequence that converges
pointwise a.e. to the same limit u. Because the discrete set {1, . . . , N } is closed, this implies that
the limit is a.e. {1, . . . , N }-valued and thus, u ∈Uad.

(2). Indeed, if (un)n were bounded in H s (0,T ), then it would admit a subsequence that converges
in the norm in L2(0,T ) by means of the same compact embedding used above. Passing to
further subsequences we obtain un → u in L2(0,T ) for the whole sequence, which yields a
contradiction. □

3. A function in H s(0,T ) with countably many discontinuities

We first give a representation of the H s -seminorm that meets our needs and then provide our
example function.

Lemma 3. Let t̄ > 0. Let {I j ⊂ (0, t̄ ) | j ∈ J } for an ordered index set J = {1,2, . . . } ⊂ N be a set of
pairwise disjoint intervals with t̄ = sup j∈J supt∈I j

t . The lower and upper bounds of the intervals
I j are ℓ j := inft∈I j t and u j := supt∈I j

for all j ∈ J . In order to facilitate the notation below, we define
u0 := 0 and ℓ|J |+1 := t̄ if |J | <∞. Let f =∑

i∈J χIi . Then

| f |H s (0,t̄ ) =
(

1

sq

∑
i∈J

(
i−1∑
j=0

f̌i j +
|J |∑
j=i

f̂ i j

)) 1
2

,

where

0 ≤ f̌i j = (ℓi −u j )q + (ui −ℓ j+1)q − (ℓi −ℓ j+1)q − (ui −u j )q for 0 ≤ j < i

and 0 ≤ f̂ i j = (ℓ j+1 −ui )q + (u j −ℓi )q − (u j −ui )q − (ℓ j+1 −ℓi )q for 1 ≤ i ≤ j

for all i ∈ J .

Proof. We reformulate the integral formulation of the squared Sobolev–Slobodeckij semi-
norm (1) and apply | f (t )− f (τ)| ∈ {0,1} as well as the fundamental theorem of calculus to de-
duce:

| f |2H s (0,t̄ ) =
∫
τ∈(0,t̄ )

∫
t∈(0,t̄ )

| f (t )− f (τ)|
|t −τ|1+2s dt dτ

= 2
∑
i∈J

∑
j∈J∪{0}

∫
τ∈Ii

∫
t∈(u j ,ℓ j+1)

1

|t −τ|1+2s dt dτ

= 1

s

∑
i∈J

∑
j∈J∪{0}

∫
(u j ,ℓ j+1)

∣∣|ui − t |−2s −|ℓi − t |−2s ∣∣︸ ︷︷ ︸
=: fi j (t )≥0

dt ,

We distinguish the (by definition) mutually exclusive and exhaustive cases u j ≤ ℓ j+1 ≤ ℓi ≤ ui

and ℓ j+1 ≥ u j ≥ ui ≥ ℓi in order to determine the value of
∫ ℓ j+1

u j
fi j for all i ∈ J and j ∈ J ∪ {0}.

Case u j ≤ ℓ j+1 ≤ ℓi ≤ ui . All t ∈ (u j ,ℓ j+1) satisfy (ui − t ) ≥ (ℓi − t ) ≥ 0, which gives (ℓi − t )−2s −
(ui − t )−2s ≥ 0. Then the fundamental theorem of calculus gives∫

(u j ,ℓ j+1)
fi j (t )dt = −1

q

(
(ℓi −ℓ j+1)q − (ℓi −u j )q − (ui −ℓ j+1)q + (ui −u j )q )

.
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Figure 1. Visualization of f as constructed in Example 4.

Case ℓ j+1 ≥ u j ≥ ui ≥ ℓi . All t ∈ (u j ,ℓ j+1) satisfy 0 ≤ (t −ui ) ≤ (t −ℓi ), which gives (t −ui )−2s −
(t −ℓi )−2s ≥ 0. Then the fundamental theorem of calculus gives∫

(u j ,ℓ j+1)
fi j (t )dt = 1

q

(
(ℓ j+1 −ui )q − (u j −ui )q − (ℓ j+1 −ℓi )q + (u j −ℓi )q )

.

Combining both cases with the reformulation of the | f |2
H s (0,t̄ )

yields the claim. □

The following example provides a binary-valued function that is a sum of characteristic
functions of countably many pairwise disjoint intervals. We will see that our choice of the
intervals implies that the value of its H s (0,T )-seminorm is finite.

Example 4. Let T = 1. We define interval boundaries ℓi and ui for i ∈N as follows:

ui := 1−2−2i for all i ∈N and ℓi := 1−2−(2i−1) for all i ∈N,

that is u1 = 3
4 , u2 = 15

16 , . . . , and ℓ1 = 1
2 , ℓ2 = 7

8 , . . . . Moreover, we define Ii := [ℓi ,ui ) for all
i ∈N. Our function of interest is f :=∑∞

i=1χIi . Lebesgue’s dominated convergence theorem gives
f ∈ L2(0,T ). By construction, the intervals Ii are pairwise disjoint (with ℓ1 < u1 < ℓ2 < u2 < . . . )
and Lemma 3 may be applied with the choices t̄ = T and J =N. In order to determine | f |H s (0,T ),
we need to compute the terms f̌i j and f̂ i j . We distinguish the two cases regarding the order of i
and j .

Case f̌i j for 0 ≤ j ≤ i −1. We consider the terms (before taking their power to q) that make up f̌i j

one by one:

ℓi −u j = 1−22( j−i )+1

22 j
, ui −ℓ j+1 = 2−1 −22( j−i )

22 j
, ℓi −ℓ j+1 = 2−1 −22( j−i )+1

22 j
, ui −u j = 1−22( j−i )

22 j
.

Case f̂ i j for 1 ≤ i ≤ j . We consider the terms (before taking their power to q) that make up f̂ i j

one by one:

ℓ j+1 −ui = 1−22(i− j )−1

22i
, u j −ui = 1−22(i− j )

22i
, ℓ j+1 −ℓi = 2−22(i− j )−1

22i
, u j −ℓi = 2−22(i− j )

22i
.

We visualize f in Figure 1. We prove that its H s -norm is bounded in Theorem 5 below.

Theorem 5. The function f from Example 4 has countably many discontinuities with jump
height 1 and | f |H s (0,T ) <∞.

Proof. The countably many support intervals of f are pairwise disjoint and have positive dis-
tance between each other. Combining this with the fact that f is binary-valued, we obtain that f
has countably many discontinuities with jump height 1. It remains to show that | f |H s (0,T ) <∞.

We use the structure of | · |H s (0,T ) given by Lemma 3. We estimate the terms f̌i j (for 0 ≤ j ≤ i −1)
and f̂ i j (for 1 ≤ i ≤ j ):

0 ≤ f̌i j = (ℓi −u j )q − (ui −u j )q︸ ︷︷ ︸
≤0

+ (ui −ℓ j+1)q − (ℓi −ℓ j+1)q︸ ︷︷ ︸
≥0

≤ (ui −ℓ j+1)q − (ℓi −ℓ j+1)q ,

0 ≤ f̂ i j = (u j −ℓi )q − (ℓ j+1 −ℓi )q︸ ︷︷ ︸
≤0

+ (ℓ j+1 −ui )q − (u j −ui )q︸ ︷︷ ︸
≥0

≤ (ℓ j+1 −ui )q − (u j −ui )q .
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We insert the formulas for the differences stated in Example 4 and employ the fact that (a+b)r ≤
ar +br holds for all a, b ≥ 0 and r ∈ (0,1] to deduce f̌i j ≤ 2−2i q and f̂ i j ≤ 2−(2 j+1)q . This implies
the sums

i−1∑
j=0

f̌i j ≤ i

4i q
and

∞∑
j=i

f̂ i j ≤ 1

2q

∞∑
j=i

1

4 j q
= 1

2q

( ∞∑
j=0

1

4 j q
−

i−1∑
j=0

1

4 j q

)
= 1

2q

1

1−4−q

1

4qi
.

We obtain
∞∑

i=1

(
i−1∑
j=0

f̌i j +
∞∑

j=i
f̂ i j

)
≤

∞∑
i=0

i

4i q
+ 1

2q

1

1−4−q

(
1

1−4−q −1

)
= 4−q

(1−4−q )2 + 1

2q

4−q

(1−4−q )2 ,

which in turn gives | f |H s (0,T ) <∞ by means of the formula from Lemma 3. □

4. A function in H s(0,T ) with countably many pairwise disjoint neighborhoods con-
taining countably many discontinuities

We start from the function constructed above to further construct a function that has countably
many discontinuities in each of countably many pairwise disjoint intervals. Let f be a binary
function such that the infimum of its support is strictly greater than zero. We first bound | f |H s (0,T )

by | f |H s (0,t̄ ), where t̄ is the supremum of the support of f , and a constant that only depends on t̄ .
Then we show that it is possible to scale the end points of the support intervals such that a) the
support of the function with scaled interval end points is strictly left of the support of f and b)
the H s (0,T )-norm of the function with scaled interval end points is less than q | f |H s (0,T ). Then we
construct a sequence of such scalings recursively to obtain the desired function.

In this section we always assume that s < 1/2. Let {I j ⊂ (0,T ) | j ∈ J } for a countable index
set J be a set of pairwise disjoint intervals. Let f = ∑

i∈J χIi . Let t̄ := sup j∈J supt∈I j
t and t :=

inf j∈J inft∈I j t denote the upper and lower bound of the support of f .

Lemma 6.

If t̄ < T , then | f |H s (0,T ) ≤
(
| f |2H s (0,t̄ ) +

1

s(1−2s)
t̄ 1−2s

) 1
2

.

If t > 0, then | f |H s (0,T ) ≤
(
| f |2H s (t,T ) +

1

s(1−2s)
t1−2s

) 1
2

.

Proof. The arguments for the first and second claim are completely analogous so that we only
show the first claim. Thus let t̄ < T . Because the function f is binary-valued, we obtain that

| f |2H s (0,T ) = | f |2H s (0,t̄ ) +2
∫

t∈(0,t̄ )

∫
τ∈(t̄ ,T )

f (t )

(τ− t )1+2s dτdt︸ ︷︷ ︸
=:r ( f )

.

We estimate f (t ) ≤ 1 for all t ∈ [0, t̄ ] and deduce with the fundamental theorem of calculus:

r ( f ) ≤ −1

2s

∫
(0,t̄ )

(
(T −t )−2s−(t̄−t )−2s)dt = 1

2s(1−2s)

(
(T −t̄ )1−2s−T 1−2s︸ ︷︷ ︸

≤0

+t̄ 1−2s
)
≤ t̄ 1−2s

2s(1−2s)
. □

For a set A ⊂R and a positve scalar α> 0, we introduce the notation αA := {αa |a ∈ A}.

Lemma 7. Let t > 0 and t̄ ≤ T . Let p ∈ (0,1). Then there existsα0 > 0 such that for allα ∈ (0,α0) the
quantities f (α) :=∑

i∈J χαIi , t(α) := inf j∈J inft∈αI j t , and t̄ (α) := sup j∈J supt∈αI j
t satisfy

(1) t̄ (α) < t,

(2)
(

1
s(1−2s) (t̄ (α))1−2s

) 1
2 < p

(
1

s(1−2s) t̄ 1−2s
) 1

2
, and

(3) | f (α)|H s (0,t̄ (α)) ≤ p| f |H s (0,t̄ ).
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Proof. Clearly, t̄α = αt̄ , which implies (1) and (2) for all α that are sufficiently small. Lemma 3
gives that | f |2

H s (0,t̄ )
can be written as a sum of terms of the form a(b − c)1−2s such that a, b, c > 0

and b and c are lower and upper bounds of intervals I j . After scaling with α, the bounds are
αb and αc for the corresponding intervals αI j . Consequently, | f (α)|2

H s (0,t̄ (α))
can be written as

the same sum with the terms a(b − c)1−2s replaced by a(αb −αc)1−2s . This yields | f (α)|H s (0,t̄ (α)) =
α

1−2s
2 | f |H s (0,t̄ ), which proves the third claim. □

Theorem 8. Let t > 0 and t̄ ≤ T . Let p ∈ (0,1). Then there exists a sequence (αk )k∈N ⊂ (0,1] such

that the functions f (αk ) =∑
i∈J χαk Ii

have pairwise disjoint supports and satisfy the estimate∣∣∣∣∣ ∞∑
k=1

f (αk )

∣∣∣∣∣
H s (0,T )

≤
(
| f |H s (0,t̄ ) +

(
1

s(1−2s)
t̄ 1−2s

) 1
2

)
1

1−p
.

Proof. We proceed inductively and construct the sequence (αk )k∈N such that the estimates

| f (αk )|
H s (0,t̄ (αk ))

≤ pk−1| f |H s (0,t̄ ) and

(
1

s(1−2s)
(t̄ (αk ))1−2s

) 1
2 ≤ pk−1

(
1

s(1−2s)
t̄ 1−2s

) 1
2

and the fact that the functions f (α1), . . . , f (αk ) satisfy

0 < minsupp f (αk ) < maxsupp f (αk ) < ·· · < minsupp f (α1) < maxsupp f (α1)

hold for all k ∈N. This implies that the functions f (αk ) have pairwise disjoint supports. Then the
claim follows from∣∣∣∣∣ ∞∑

k=1
f (αk )

∣∣∣∣∣
H s (0,T )

≤
∞∑

k=1

∣∣∣ f (αk )
∣∣∣

H s (0,T )
≤

∞∑
k=1

| f (α)|
H s (0,t̄ (αk ))

+
(

1

s(1−2s)
(t̄ (αk ))1−2s

) 1
2

≤
(
| f |H s (0,t̄ ) +

(
1

s(1−2s)
t̄ 1−2s

) 1
2

) ∞∑
k=1

pk−1 =
(
| f |H s (0,t̄ ) +

(
1

s(1−2s)
t̄ 1−2s

) 1
2

)
1

1−p
,

where the second inequality follows from Lemma 6 and the inequality (a + b)
1
2 ≤ a

1
2 + b

1
2 for

positive scalars a and b.
We set α1 := 1, which gives f (α1) = f and asserts the base case of our induction. Assume that

the claims holds for some k ∈N. We apply Lemma 7 to deduce that there is αk+1 such that

0 < minsupp f (αk+1) < maxsupp f (αk+1) < minsupp f (αk ) < maxsupp f (αk )

holds as well as the estimates

| f (αk+1)|
H s (0,t̄ (αk+1))

≤ p| f (αk )|
H s (0,t̄ (αk ))

≤
induction

pk | f |H s (0,t̄ ),(
1

s(1−2s)
(t̄ (αk+1))1−2s

) 1
2 ≤ p

(
1

s(1−2s)
(t̄ (αk ))1−2s

) 1
2 ≤

induction
pk

(
1

s(1−2s)
t̄ 1−2s

) 1
2

,

which closes the induction and the proof. □

Corollary 9. Let s < 1/2. There exists a binary-valued function F ∈ H s (0,T ) such that there are
countably many pairwise different t ∈ [0,T ] with associated ε> 0 such that F has countably many
discontinuities in Bε(t )∩ (0,T ).

Proof. The function f defined in Example 4, has countably many discontinuities in any ball
around T intersected with (0,T ). Let F := ∑∞

k=1 f (αk ) for the sequence (αk )k∈N from Theorem 8

for f and an arbitrary p ∈ (0,1). Then the functions f (αk ) have pairwise disjoint supports and
each of them has countably many discontinuities in any ball around maxsupp f (αk ) Moreover,
Theorem 8 yields boundedness of |F |H s (0,T ). □
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Figure 2. Visualization of F as constructed in Corollary 9 for the choices q = 1/2 and s = 1/4
based on f defined in Example 4.

We visualize the construction in Corollary 9 in Figure 2 for q = 1/2 and s = 1/4 with αk

constructed iteratively by the choice αk = αk−12−i with the smallest possible i ∈N such that the
three conditions of Lemma 7 are met, which yields of αk = 0.03125k−1 for all k ∈N.

5. Controls with isolated small jump discontinuities are generally non-optimal

In the space BV (0,T ), a switch from zero to one and back (or vice versa) cannot be optimal if
the width of the switch is too small, because the induced increase of the total variation is always
equal to two. More specifically, if the objective has the form J ( f )+TV( f ), where J is continuous
with respect to some Lp -norm, p ∈ [1,∞), then a small perturbation f̃ of f with such an isolated
switch will always yield TV( f̃ ) = TV( f )+2, whereas J ( f̃ ) can be made arbitrarily close to J ( f ).

We show that a similar, albeit weaker, result holds true for H s (0,T ). Specifically, if f̃ ∈ H s (0,T )
has an interval in which it switches (potentially several times) from zero to one and back that is
isolated in the sense that to its left and right there is a wide enough interval on which f̃ is zero,
then f̃ cannot be optimal if the width of the interval is too small.

To be clear, we consider a binary-valued function f ∈ H s (0,T ) and positive scalars 0 ≤ tL < tℓ <
tr < tR ≤ T with tℓ− tL = ε, tR − tr = ε, and tr − tℓ = δ for ε > 0 and δ > 0 such that f (t ) = 0 for
a.e. t ∈ (tL , tR ). Moreover, we define f̃ := f +χI h for a measurable set I h ⊂ (tℓ, tr ) and h = |I h | > 0,
in particular 0 < h ≤ δ. Thus f̃ is one on a set I h of measure h that is surrounded by intervals of
length of at least ε, where it is zero.

The objective of an H s -regularized (integer) optimal control problem reads

J ( f ) := J ( f )+ α

2
∥ f ∥2

L2(0,T ) +
α

2
| f |2H s (0,T )

for some α> 0. We obtain the following certificate of non-optimality for f̃ .

Theorem 10. Let J : L1(0,T ) → R be Lipschitz continuous. Let f , f̃ ∈ H s (0,T ) be as above with
arbitrary but fixed ε > 0. There is δ0 > 0 such that if δ ≤ δ0, then J ( f ) < J ( f̃ ) holds regardless of
the specific positions of tL , tR , tℓ, and tr in [0,T ].

Proof. We define I m := {t ∈ (0, tL) ∪ (tR ,T ) | f (t ) = 1}, Om := {t ∈ (0, tℓ) ∪ (tr ,T ) | f (t ) = 0}, and
Oh := (tℓ, tr ) \ I h . We deduce

1

2
| f̃ |2H s (0,T ) −

1

2
| f |2H s (0,T ) =

∫
t∈I m∪I h

∫
τ∈Om∪Oh

1

|t −τ|1+2s dτdt −
∫

t∈I m

∫
τ∈Om∪(tℓ,tr )

1

|t −τ|1+2s dτdt

=
∫

t∈I h

∫
τ∈Om∪Oh

1

|t −τ|1+2s dτdt −
∫

t∈I m

∫
τ∈I h

1

|t −τ|1+2s dτdt

≥ a(h)+b(h)− c(h)−d(h)

with

a(h) :=
∫

t∈(tr −h,tr )

∫
τ∈(tL ,tℓ)

1

|t −τ|1+2s dτdt , b(h) :=
∫

t∈(tℓ,tℓ+h)

∫
τ∈(tr ,tR )

1

|t −τ|1+2s dτdt ,

c(h) :=
∫

t∈(0,tL )

∫
τ∈(tℓ,tℓ+h)

1

|t −τ|1+2s dτdt , d(h) :=
∫

t∈(tR ,T )

∫
τ∈(tr −h,tr )

1

|t −τ|1+2s dτdt ,
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where ∫
t∈I h

∫
τ∈Om∪Oh

1

|t −τ|1+2s dτdt ≥
∫

t∈I h

∫
τ∈(tL ,tℓ)∪(tr ,tR )

1

|t −τ|1+2s dτdt ≥ a(h)+b(h),

in which the first inequality is due to leaving out parts of the integration domain of the inner
integral and the second inequality is due to splitting the inner integral and replacing I h with sets
of the same Lebesgue measure h, which lead to smaller values of 1

|t−τ|1+2s in the splitted integrals.

Similarly, by adding parts of the integration domain, splitting the inner integral and replacing I h

therein so that larger values of 1
|t−τ|1+2s are attained, we obtain

−
∫

t∈I m

∫
τ∈I h

1

|t −τ|1+2s dτdt ≥−
∫

t∈(0,tL )∪(tR ,T )

∫
τ∈Ih

1

|t −τ|1+2s dτdt ≥−c(h)−d(h),

Let q = 1−2s. Then we obtain with the same computations as in Lemma 3

2sq a(h) =−(δ−h)q + (ε+δ−h)q +δq − (ε+δ)q ,

2sq b(h) =−(δ−h)q +δq + (ε+δ−h)q − (ε+δ)q ,

2sq c(h) =−εq + (ε+ tL)q + (ε+h)q − (tL +ε+h)q ,

2sq d(h) =−εq + (ε+h)q + (ε+T − tR )q − (ε+T − tR +h)q .

Clearly, ∥ f̃ − f ∥L1 = h and we obtain

2sq c(h)/h → qε−2s −q(tL +ε)−2s ≤ qε−2s ,

2sq d(h)/h → qε−2s −q(T − tR +ε)−2s ≤ qε−2s

for h ↘ 0, where the inequalities ensure that our arguments and the construction of δ0 will be
independent of the specific choice of I h ⊂ (tℓ, tr ) (and also tL , tℓ, tr , tR inside (0,T )).

We consider δ↘ 0 and δ≥ h. The functions t 7→ t q and its derivatives are Lipschitz continuous
in compact intervals around ε that are bounded away from zero and thus the mean value theorem
yields

(ε+δ−h)q − (ε+δ)q

h
=−q(ε+ξ)−2s →−qε−2s

with ξ ∈ [δ−h,h] for δ≥ h > 0 and δ↘ 0. Moreover, the mean value theorem yields

δq − (δ−h)q

h
= qξ−2s →∞

with ξ ∈ [δ−h,δ] for δ≥ h > 0 and δ↘ 0.
Because ∥g∥2

L2 = |g |L1 holds for binary-valued functions g , there is L > 0 so that J + α
2 ∥·∥2

L2 is
L-Lipschitz from L1(0,T ) to R on the set of {0,1}-valued measurable functions for some L > 0. We
combine the estimates above to obtain

liminf
δ↘0,δ≥h

J ( f̃ )−J ( f )

∥ f̃ − f ∥L1

≥−L+ liminf
δ↘0,δ≥h

2α

sq

(
δq − (δ−h)q

h

)
− 4α

s
ε−2s →∞,

which implies that there is δ0 > 0 such that for all 0 < h ≤ δ≤ δ0 we have J ( f ) <J ( f̃ ). □

In the interest of a clear presentation, we restrict to the case that f is zero on (tL , tℓ) and (tr , tR )
and f̃ is one on I h here but note that the same arguments hold true with interchanged roles of
zero and one.



Paul Manns and Thomas M. Surowiec 1539

6. The squared H s(0,T )-seminorm is not differentiable for canonical variations

In [8], the fact that a feasible control in BV (0,T ) has only finitely many switches gives rise to a
stationarity condition. Specifically, it arises from the Fermat principle d

dh J ( f h)+αTV( f h)
∣∣
h=0 = 0

where f h is identical to a given function f except that one of the switching points t of f is
perturbed from t to t +h. In this section we show that such a stationarity condition cannot hold
in H s (0,T ) because the function h 7→ 1

2 | f h |2H s is not differentiable for any isolated switching point
in (0,T ).

We only show the result for points, where the function switches from 0 to 1 but the similar
arguments hold for switches from 1 to 0 as well. Before stating the result, we define our base
function. Let f ∈ H s (0,T ) be binary-valued and not constant. Let t ∈ (0,T ) satisfy limt̃↑t f (t̃ ) = 0 <
1 = limt̃↓t f (t̃ ). We can write f and 1− f (a.e.) as

f =χI +χJt and 1− f =χO +χRt

where Jt = (t , t̄ ) for some t̄ ∈ (t ,T ] and Rt = (t, t ) for some t ∈ [0, t ) and further disjoint sets I and
O. We also define

fh :=χI +χJt+h

for all h ∈ (t− t , t̄ − t ) as well as Jt+h := (t +h, t̄ ) and Rt+h = (t, t +h).

Proposition 11. Let f , t , fh for h ∈ (t − t , t̄ − t ) be as introduced above. Then the function
h 7→ 1

2 | fh |2H s is not differentiable at zero. Specifically,

limsup
h→0

| fh |2H s (0,T ) −| f0|2H s (0,T )

2h
=−∞.

Proof. We observe

1

2
| fh |2H s (0,T )−

1

2
| f0|2H s (0,T ) =

∫
σ∈I∪Jt+h

∫
τ∈O∪Rt+h

1

|τ−σ|1+2s dτdσ−
∫
σ∈I∪Jt

∫
τ∈O∪Rt

1

|τ−σ|1+2s dτdσ,

which gives

1

2
| fh |2H s (0,T ) −

1

2
| f0|2H s (0,T ) =

∫
σ∈Jt+h

∫
τ∈O

1

|τ−σ|1+2s dτdσ−
∫
σ∈Jt

∫
τ∈O

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:A(h)

+
∫
σ∈I

∫
τ∈Rt+h

1

|τ−σ|1+2s dτdσ−
∫
σ∈I

∫
τ∈Rt

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:B(h)

+
∫
σ∈Jt+h

∫
τ∈Rt+h

1

|τ−σ|1+2s dτdσ−
∫

Jt

∫
Rt

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:C (h)

.

We analyze the rows on the right hand side one by one. For the first row, we obtain

A(h)

h
=−

∫
σ∈O

1

h

∫
τ∈[t ,t+h]

1

|τ−σ|1+2s dτdσ →
h→0

−
∫

O

1

|t −σ|1+2s dσ

by virtue of Lebesgue’s dominated convergence theorem. Simiarly, we obtain

B(h)

h
=

∫
σ∈I

1

h

∫
τ∈[t ,t+h]

1

|τ−σ|1+2s dτdσ →
h→0

∫
I

1

|t −σ|1+2s dσ
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for the second row. The third row can be rewritten as

C (h) =−
∫
σ∈[t ,t+h]

∫
τ∈Rt

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:C1(h)

+
∫
σ∈Jt

∫
τ∈[t ,t+h]

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:C2(h)

−
∫
σ∈[t ,t+h]

∫
τ∈[t ,t+h]

1

|τ−σ|1+2s dτdσ︸ ︷︷ ︸
=:C3(h)

.

For the first two of these three terms we obtain
C1(h)

h
→

∫
Rt

1

|t −τ|1+2s dτ and
C2(h)

h
→

∫
Jt

1

|t −σ|1+2s dσ,

where we have used Lebesgue’s dominated convergence theorem again. We continue and analyze
C3(h). Because all other terms are bounded (after dividing by h and passing to the limit h → 0),
the claim holds if C3(h)/h is unbounded below.

We consider the case h > 0. Then elementary computations yield

−C3(h) = 1

2s

∫
[t ,t+h]

∣∣(σ− t )−2s − ((t +h)−σ)−2s ∣∣dσ

= 1

s

∫
[t ,t+0.5h]

(σ− t )−2s − ((t +h)−σ)−2s dσ

= 1

s(1−2s)

(
(σ− t )1−2s ∣∣σ=t+0.5h

σ=t + ((t +h)−σ)1−2s ∣∣σ=t+0.5h
σ=t

)
= 1

s(1−2s)

(
h1−2s

21−2s + h1−2s

21−2s −h1−2s
)

.

We consider the case h < 0. Then elementary computations similarly yield

−C3(h) = 1

2s

∫
[t ,t+h]

∣∣(t −σ)−2s − (σ− (t +h))−2s ∣∣dσ= −1

s(1−2s)

( |h|1−2s

21−2s + |h|1−2s

21−2s −|h|1−2s
)

.

This implies C3(h)
h →−∞ for h → 0. □
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