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Abstract. Let E = E(0,∞) be a symmetric function space and E(M ,τ) be the noncommutative symmetric
space corresponding to E(0,∞) associated with a von Neumann algebra with a faithful normal semifinite
trace. Our main result identifies the class of spaces E for which every derivation δ : A → E(M ,τ) is necessarily
inner for each C∗-subalgebra A in the class of all semifinite von Neumann algebras M as those with the Levi
property.
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1. Historical Background and Motivations

Let A be a C∗-algebra and let J be an A -bimodule [41]. A derivation δ : A → J is a linear
mapping satisfying δ(x y) = δ(x)y + xδ(y), x, y ∈ A . In particular, if a ∈ J , then δa(x) := xa − ax
is a derivation. Such derivations implemented by elements in J are said to be inner. One of the
classical problems in operator algebra theory is the question whether every derivation from A

into J is automatically inner.
At a conference held in 1953, Kaplansky asked Singer if he had an idea of what the derivations

of C (X ) (the algebra of continuous functions on a compact Hausdorff space X ) might be. A day
later, Singer gave Kaplansky a short, clever argument that such derivations must map all of C (X )
to 0 [28]. Kaplansky’s paper [31] and the strong interest in derivations of operator algebras grew
out of Singer’s result. Kaplansky showed that each derivation of a type I von Neumann algebra (for
example, B(H ), the algebra of all bounded operators on a Hilbert space H ) into itself is inner.
In the course of his argument, Kaplansky proved that each such derivation is (norm-)continuous
and conjectured that automatic continuity is true for all C∗-algebras. This conjecture was proved
a few years later by Sakai [38] and extended by Ringrose [37] to derivations of a C∗-algebra into
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a Banach bimodule. These were among the earliest automatic-continuity results. In [27, 39], it
was proved that each derivation of a C∗-algebra acting on H extends to a derivation of the
strong-operator closure of that algebra, a von Neumann algebra, and that each derivation of a
von Neumann algebra is inner. However, there exist C∗-algebras A with non-inner derivations
δ : A → A , e.g., if A is the C∗-algebra K (H ) of all compact linear operators on H , then for
any a ̸∈K (H )+C1, δa is a non-inner derivation on A [40, Example 4.1.8]. Therefore, it would
be desirable to identify those A -bimodules A such that all derivations from A into J are
necessarily inner, see e.g. [24, Section 10.11], [22] and [41, p. 60]. Recall several important results
in this direction:

(1) Derivations from a C∗-algebra A into any reflexive A -bimodule are inner [24];
(2) Derivations from a hyperfinite von Neumann algebra A into any dual normal1 A -

bimodule are inner [25];
(3) Derivations from a nuclear C∗-algebra A into a dual Banach A -module are inner [21].

Let M be a semifinite von Neumann algebra acting on a Hilbert space H equipped with
a semifinite faithful normal trace τ. Let 1 be the identity of M . Let P (M ) be the collection
of all projections in M . A densely-defined closed operator x affiliated with M is τ-measurable
(see [19]) if and only if

τ
(
e |x|(n,∞)

)→ 0, n →∞,

where e |x|(n,∞) is the spectral projection of |x| corresponding to the interval (n,∞). The collec-
tion of all τ-measurable operators with respect to M is denoted by S (M ,τ). Let x ∈ S(M ,τ). The
generalised singular value function µ(x) : t →µ(t ; x), t > 0, of the operator x is defined by setting

µ(t ; x) = inf
{∥∥xp

∥∥∞ : p ∈P (M ),τ(1−p) ≤ t
}

,

where ∥·∥∞ denotes the usual operator norm. If x ∈ S(M ,τ) satisfies that µ(∞; x) = 0, then x is
said to be a τ-compact operator. The collection of all τ-compact operators in S(M ,τ) is denoted
by S0(M ,τ). Let E be a linear subset in S(M ,τ) equipped with a complete norm ∥·∥E . We say that
E is a symmetric space if for x ∈ E , y ∈ S(M ,τ) and µ(y) ≤µ(x) imply that y ∈ E and

∥∥y
∥∥

E ≤ ∥x∥E .
If E is a symmetric space, then the carrier projection cE ∈P (M ) is defined by setting

cE =∨
{p : p ∈P (M ), p ∈ E }.

We remark that, replacing the von Neumann algebra M by the reduced von Neumann algebra
McE

, it is often assumed that the carrier projection of E is equal to 1, see e.g. [17].
If x, y ∈ S(M ,τ), then x is said to be submajorized by y , denoted by x ≺≺ y , if∫ t

0
µ(s; x)ds ≤

∫ t

0
µ(s; y)ds for all t ≥ 0.

A symmetric space E ⊂ S(M ,τ) is called strongly symmetric if its norm ∥·∥E has the additional
property that ∥x∥E ≤ ∥∥y

∥∥
E whenever x, y ∈ E satisfy x ≺≺ y . In addition, if x ∈ S(M ,τ), y ∈ E and

x ≺≺ y imply that x ∈ E and ∥x∥E ≤ ∥∥y
∥∥

E , then E is called fully symmetric space (of τ-measurable
operators). If E is a strongly symmetric space with cE = 1 (or a symmetric space affiliated with a
semifinite von Neumann algebra which is either atomless or atomic with all minimal projections
having equal trace), then we have [17, 32]

(L1 ∩L∞)(M ,τ) ⊂ E ⊂ (L1 +L∞)(M ,τ). (1)

If E is a symmetric space, then the norm ∥·∥E is called order continuous if ∥xα∥E → 0
whenever {xα} is a downwards directed net in E+ satisfying xα ↓ 0. A symmetric space E is said
to have theLevi property [1, Definition 7]2, if for every upwards directed net {xβ} in E+, satisfying

1Let M be a von Neumann algebra. An M -bimodule X is said to be a dual normal X -bimodule if X is a dual space
and the maps m 7→ mx and m 7→ xm are both ultraweak-weak∗ continuous from M into X for each fixed element x ∈ X .

2The Soviet school on Banach lattices used the term monotone complete norm or property (B), see also [1, p. 89].
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supβ
∥∥xβ

∥∥
E
< ∞, there exists an element x ∈ E+ such that xβ ↑ x in E . It is well known that if a

norm is Levi, then necessarily it is also weak Fatou, i.e., there exists a constant K ≥ 1 such that

0 ≤ xβ ↑ x =⇒∥x∥E ≤ K lim
β

∥∥xβ
∥∥

E
.

If the constant K is 1, then E is said to have the Fatou property. If E has the Fatou property and
order continuous norm, then it is said to be a KB-space (or Kantorovich–Banach space)[17].

The so-called Köthe dual is identified with an important part of the dual space. If E is a
symmetric space, then the Köthe dual E× of E is defined by

E× =
{

x ∈ S(M ,τ) : sup
∥y∥E ≤1,y∈E

τ(|x y |) <∞
}

,

and for every x ∈ E×, we set ∥x∥E× = sup
{
τ(|y x|) : y ∈ E ,

∥∥y
∥∥

E ≤ 1
}

[17].
Reciprocally, a wide class of symmetric spaces of τ-measurable operators is representable

as E(M ,τ), the noncommutative symmetric space associated with a given symmetric function
space E(0,∞) and a given von Neumann algebra M equipped with a semifinite faithful normal
trace τ: let (E(0,∞),∥·∥E(0,∞)) be a symmetric function space on the semi-axis (0,∞). The space

E(M ,τ) = {x ∈ S(M ,τ) :µ(x) ∈ E(0,∞)}

equipped with the norm ∥x∥E(M ,τ) := ∥∥µ(x)
∥∥

E(0,∞) is a symmetric operator space affiliated with
M with cE =1, see e.g. [30], [17, Proposition 28]. For convenience, we denote ∥·∥E(M ,τ) by ∥·∥E .

Due to the rapid development of noncommutative analysis and motivated by questions due
to Johnson et al., there are a number of papers concerning various versions of the following
question [3, 4, 10]:

Question 1. Assume that M is a von Neumann algebra equipped with a faithful normal semifi-
nite trace τ. Let E be a symmetric space of τ-compact operators affiliated with M . How can one
identity those E such that derivations from an arbitrary C∗-subalgebra A of M into E are neces-
sarily inner?

Experts in the operator theory are probably more familiar with symmetrically normed ideals
in B(H ), which are a special case of noncommutative symmetric spaces. Various versions of
Question 1 for derivations with values in ideals of a von Neumann algebra were asked and
discussed in [5, 6, 22, 26, 29, 35, 36].

The Johnson–Parrott–Popa Theorem and Its Semifinite Versions

Johnson and Parrott [26] initiated the study of derivations with values in ideals of a von Neumann
algebra by showing that derivations from an abelian/properly infinite von Neumann subalgebra
of B(H ) into the algebra K (H ) of all compact operators on H are inner. However, they failed to
resolve the case when A is a type II1 von Neumann algebra, which remained open until Popa’s
penetrating work [35] in 1987. This result is now known as the so-called the Johnson–Parrott–
Popa theorem: every derivation from an arbitrary von Neumann subalgebra A of B(H ) into K (H )
is inner. Note that the condition that A is a von Neumann algebra can not be relaxed to the setting
of a C∗-subalgebra of B(H ) as mentioned above.

A natural development of the Johnson–Parrott–Popa theorem is to establish a suitable semifi-
nite version of the result. In 1985, Kaftal and Weiss [29] proved that if A is an abelian (or prop-
erly infinite) von Neumann subalgebra of M containing the center Z (M ) of M , then any deriva-
tion δ : A → J (M ) is inner, where J (M ) is an ideal of M generated by all finite projections
in a semifinite von Neumann algebra M . This result was later extended to the setting of more
general von Neumann subalgebras by Popa and Rădulescu [36]. However, Popa and Rădulescu



1360 Jinghao Huang and Fedor Sukochev

established the existence of non-inner derivations δ : A → J (M ) for a specific semifinite von
Neumann algebra M and an abelian von Neumann subalgebra A of M , which is the first non-
vanishing 1-cohomological result in the theory of von Neumann algebras.

In 1987, Christensen [11] introduced the notion of generalized compacts associated with a von
Neumann algebra and showed that derivations from a properly infinite von Neumann algebra
into the generalized compacts associated with this von Neumann algebra are inner. However,
the question whether derivations from a type II1 von Neumann algebra into the generalized
compacts associated with this von Neumann algebra are inner was left open, which was recently
answered in the affirmative in [20]. We note that the ideals considered in [11, 20, 29, 36] are
not necessarily symmetrically normed ideals in a semifinite von Neumann algebra (see e.g. [6,
Section 2.3]) and these results lie outside of the scope covered by Question 1.

In our recent joint paper [6] with Ber and Levitina, we established the Johnson–Parrott–Popa
theorem for another type of semifinite version of the ideal K (H ), namely the ideal C0(M ,τ)
of τ-compact operators in a semifinite von Neumann algebra M : every derivation from a von
Neumann subalgebra of M into C0(M ,τ) is necessarily inner. Even though C0(M ,τ) and J (M )
are similar in many respects (see [6]), our result is in strong contrast with the result in [36] and
our result seems to be spiritually closer to the original Johnson–Parrott–Popa theorem, since we
do not impose any additional condition on the von Neumann subalgebra A .

Derivations into an Ideal of a von Neumann Algebra

An important class of ideals in a von Neumann algebra is given by the Schatten–von Neumann
p-classes. In [22], Hoover used the Ryll-Nardzewski fixed point theorem (as suggested by John-
son [24, 26]) and the reflexivity of the Schatten–von Neumann p-class Cp (H ), 1 < p < ∞, to
show that every derivation from a C∗-subalgebra of B(H ) into Cp (H ) is inner. Actually, the Ryll-
Nardzewski fixed point theorem is applicable to all reflexive A -bimodules (in particular, non-
commutative Lp -spaces when 1 < p < ∞), see e.g. [24, Theorem 3.4]. Hoover also resolved the
special case for the trace class C1(H ) by a p-convexification technique [22].

Let M be a von Neumann algebra equipped with a semifinite faithful normal trace τ. Denote
by Lp (M ,τ), p ≥ 1, the noncommutative Lp -space affiliated with M , and denote Cp (M ,τ) :=
Lp (M ,τ)∩M . In general, Cp (M ,τ) is not reflexive even for 1 < p < ∞ and therefore the Ryll-
Nardzewski fixed point theorem can not be applied directly (the method used in [3] or [34]
is not applicable, either). In 1985, using Johnson and Parrott’s trick [26], Kaftal and Weiss [29]
showed that every derivation from an abelian (or properly infinite) von Neumann subalgebra of
M into the Cp ideal of M is inner when 1 ≤ p <∞. However, the case for general von Neumann
subalgebras of M was left unanswered. Using noncommutative integration techniques, it was
proved in [5] that derivations from a C∗-subalgebra of M into any symmetric KB-ideal of M

are inner, which, in particular, fully resolves the untreated cases for derivations with values in
Cp (M ,τ) in the paper [29] by Kaftal and Weiss. For the special case when A is a von Neumann
subalgebra of M , it is shown in [6] that derivations from A into any ideal of τ-compact operators,
generated by a noncommutative strongly symmetric space E having the Fatou property, are
inner; it was shown in [7, 8] that derivations from a (not necessarily semifinite) von Neumann
algebra M into any ideal of M are inner.

2. Derivations into Symmetric Spaces of Possibly Unbounded Operators

An important class of A -bimodules is given by the noncommutative Lp -spaces. Since a non-
commutative Lp -space is reflexive if 1 < p <∞, it follows immediately from Johnson’s result that
derivations into a noncommutative Lp -space, 1 < p < ∞, are inner. Let U (A ) be the unitary
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group of a unital C∗-algebra A . Consider a derivation δ from A into a reflexive A -bimodule J .
Since the unit ball of a reflexive Banach space is weakly compact, it follows that the set

Kδ := conv{δ(u)u∗ | u ∈U (A)}
∥·∥J 3

is weakly compact in J . Therefore, one can easily apply the Ryll-Nardzewski fixed point theorem
to prove the innerness of δ. Recall, also, that every derivation from a hyperfinite von Neumann
algebra A into a dual normal A -bimodule is inner. However, the predual (i.e., a noncommutative
L1-space) of a semifinite von Neumann algebra M is not reflexive unless the underlying von
Neumann algebra is finite-dimensional, which is the main obstacle to resolve derivation problem
for noncommutative L1-spaces; moreover, in general, a noncommutative L1-space does not even
have a predual (i.e., it does not have the “dual normal” property), which makes this problem even
harder.

Hoover [22] resolved the special case for the trace class. The case for derivations from a C∗-
subalgebra of a finite von Neumann algebra M into the predual of M was resolved by Bunce
and Paschke in [10], where they also proved the derivations from a semifinite von Neumann
algebra M into its predual M∗ are automatically inner (see also [21] for the case of type III von
Neumann algebras). However, it was a long-standing open question whether every derivation a
C∗-subalgebra of M into M∗ must be inner [10, p. 247], which was resolved completely by Bader,
Gelander and Monod in 2012 [3] (see also [34] for a slightly different proof due to Pfitzner). Bader,
Gelander and Monod considered the so-called Chebyshev center (which is weakly compact) in
the so-called L-embedded Banach spaces4 (e.g. the predual of a von Neumann algebra), where
the Ryll-Nardzewski fixed point theorem is applicable. Hereby, they provided a beautiful and
short resolution to the derivation problem for noncommutative L1-spaces. In fixed point theory,
it is natural to claim only convex compactness instead of compactness [34, Remark 8]. Therefore,
the idea used by Pfitzner in [34] seems to be more natural, where he introduced a new topology for
general L-embedded spaces (in particular, for the predual of von Neumann algebras) and apply a
variant of the Ryll-Nardzewski fixed point theorem to a weakly compact convex set. This direction
of thought has been completed in [23], which shows that derivations into L-embedded symmetric
spaces are inner. It is worth mentioning that derivations from a semifinite von Neumann algebra
into a symmetric space affiliated with itself are necesarily inner [4].

3. Main Results and Methods

L-embedded Banach spaces are very special in the field of Banach spaces, and the method used
in [3] (or [34]) does not have any chance to deliver the full answer on Question 1. This fact was
emphaiszed in [3, Section 3], where the following points were raised:

(a) In marked contrast to the classical fixed point theorems, there is no hope to find a fixed
point inside a general bounded closed convex subset of L1 · · · the weak compactness
· · · seems almost unavoidable · · ·

(b) · · · a canonical norm one projection V ∗∗ →V is not enough.
(c) It would be interesting to find a purely geometric version of the proposition · · ·

The fact that the “fixed point” obtained in [3] is not inside a general bounded closed convex subset
of L1 leads to extra difficulties in the general case. Our principal result provides a complete answer
to Question 1 above.

3This convex set Kδ was first considered by Kadison, in connection with innerness of derivations on finite von
Neumann algebras, and using a fixed point method.

4That is, a Banach space V whose bidual can be decomposed as V ∗∗ =V ⊕1 V0 for some V0 ⊂V ∗∗ (and ⊕1 indicates
that the norm is the sum of the norms on V and V0).
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Recall the noncommutative version of Grothendieck’s theorem established in [2] stating that
an arbitrary bounded linear map from a C∗-algebra into a weakly sequentially complete Banach
space is weakly compact. Moreover, a symmetric K B-function space F (0,∞) generates a weakly
sequentailly complete noncommutative symmetric space F (M ,τ) [17]. We obtain that deriva-
tions into F (M ,τ) must be weakly compact. However, it is not enough to show that the convex set
Kδ is weakly compact in F (M ,τ), see e.g., the case when F (0,∞) = L1(0,∞) and M is a non-finite
semifinite von Neumann algebra [42, Theorem III.5.4]. We need the following result to guarantee
the weak compactness of Kδ, whose proof relies on the weak compactness criteria in symmetric
spaces obtained in [13, 18].

For a Banach space X , we denote by BX the unit ball of X .

Proposition 2. Let M be a von Neumann algebra equipped with a semifinite faithful normal
trace τ. Assume that E is a strongly symmetric K B-space such that E× ⊂ S0(M ,τ). Let A be a C∗-
subalgebra M and let T be a bounded linear operator from A into E . Then, the set

BM T (BA )BM := {aT (x)b : a,b ∈ BM , x ∈ BA }

is relatively weakly compact in E .

For derivations into noncommutative symmetric spaces, we have the following consequence.

Proposition 3. Let M be a von Neumann algebra equipped with a semifinite faithful normal trace
τ and let A be a unital C∗-subalgebra M . Assume that E is a strongly symmetric KB-space such
that E× ⊂ S0(M ,τ). Let δ : A → E be a derivation. Then,

{δ(u)u∗ | u ∈U (A )}

is relatively weakly compact in E . Consequently, the closure conv{δ(u)u∗ | u ∈U (A )}
∥·∥E

of the
convex hull is weakly compact.

Assume that E is a strongly symmetric space with cE = 1. Note that, if τ(1) < ∞, then the
condition E× ⊂ S0(M ,τ) holds for any symmetric space E . If τ(1) =∞, then E× ⊂ S0(M ,τ) if and
only if E ∩M ⫌ L1(M ,τ)∩M . Indeed, assume that E ∩M ⫌ L1(M ,τ)∩M . Then, there exists
an element 0 ≤ z ∈ E ∩M but z ∉ L1(M ,τ). In particular, we have τ(z) = ∞. By the definition
of Köthe duals, we infer that 1 ∉ E×, which, in turn, implies that E× ⊂ S0(M ,τ). On the other
hand, assume by contradiction that L1(M ,τ) ∩M is not a proper subspace of E ∩M . By (1),
we have L1(M ,τ)∩M ⊂ E ∩M . Therefore, we obtain that E ∩M = L1(M ,τ)∩M . By the fact

that E
(1)⊂ (L1 +L∞)(M ,τ), we obtain that for any element x ∈ E , µ(x)χ(0,1) ∈ L1(0,1). Hence, all

elements in E belong to L1(M ,τ). Therefore, E× ⊃ L1(M ,τ)× = M [14, Definition 5.1]. That is,
E× ̸⊂ S0(M ,τ), which completes the proof.

Now, one may apply the Ryll-Nardzewski fixed point theorem to obtain the following result for
a wide class of noncommutative symmetric spaces.

Lemma 4. Let M be a von Neumann algebra with a faithful normal semifinite trace τ and let A

be a unital C∗-subalgebra of M . Let E a strongly symmetric K B-space such that E× ⊂ S0(M ,τ).

For every derivation δ : A → E , there exists an element a ∈ conv{δ(u)u∗ | u ∈U (A)}
∥·∥E

such that
δ= δa on A . In particular, ∥a∥E ≤ ∥δ∥A→E .

For the case of general noncommutative symmetric spaces (in particular, L1(M ,τ)), we need
the following noncommutative version of the “reflexive gate type” result. Here, we recall the
reflexive gate type result [33, Corollary 3.2.3] since it seems not to be well-known but plays a
significant role in our approach: if E(0,1) ̸= L1(0,1) and E(0,1) ̸= L∞(0,1), then there exist two
reflexive symmetric spaces F1(0,1) and F2(0,1) such that F2(0,1) ⊂ E(0,1) ⊂ F1(0,1). The main
ingredients of the proof of [33, Corollary 3.2.3] are the construction of a Lorentz space which
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embeds into E(0,1) continuously, and a p-convexification technique. For the case when the
measure/trace is infinite, we need the famous Davis–Figiel–Johnson–Pełczyński construction for
reflexive spaces[12].

Theorem 5. Let M be a von Neumann algebra equipped with a semifinite faithful normal trace
τ. Let E be a strongly symmetric space such that E×× ⊂ S0(M ,τ). Then, there exists a symmetric
K B-function space F (0,∞) such that

E ⊂ F (M ,τ).

It is important to emphasize that the Fatou/Levi property was hatched in the theory of Banach
lattices [1, 9], and was even included into the original definition of Banach function spaces over
σ-finite measure spaces. The property is somewhat analogous to the so-called “dual normal”
property. The importance of the Fatou/Levi property in the theory of Banach function spaces
and symmetric operator spaces is hard to overestimate [14–16]. It seems appropriate to recall
here that every derivation from a hyperfinite von Neumann algebra A into a dual normal A -
bimodule is inner. Recall also, that derivations from a nuclear C∗-algebra A into a dual Banach
A -module are inner. However, Theorem 6 below holds for arbitrary C∗-subalgebras A of M and
for symmetric spaces which may not have a predual.

Theorem 6. Let M be a von Neumann algebra with a faithful normal semifinite trace τ and
let A be a C∗-subalgebra of M . If E is a strongly symmetric space of τ-compact operators (i.e.,
E ⊂ S0(M ,τ)5) having the Fatou property (resp., the Levi property), then every derivation δ : A → E

is inner. That is, there exists an element a ∈ conv{δ(u)u∗ | u ∈U (A )}
tτ ⊂ E with ∥a∥E ≤ ∥δ∥A→E

(resp., ∥a∥E ≤ c ∥δ∥A→E for some constant c depending on E only) such that δ= δa on A .

Proof. Without loss of generality, we may assume that the carrier projection cE = 1, A is unital
and E has the Fatou property.

Since E has the Fatou property and E ⊂ S0(M ,τ), it follows that E×× ⊂ S0(M ,τ). By Theorem 5,
there exists a symmetric K B-function space F (0,∞)⫋ (L1 +C0)(0,∞) such that

E ⊂ F (M ,τ) ⊂ S0(M ,τ).

Without loss of generality, we may assume that L2(0,∞) ⊂ F (0,∞) by replacing F (0,∞) with
L2(0,∞)+F (0,∞). In particular, F (0,∞)∩L∞(0,∞)⫌ L1(0,∞)∩L∞(0,∞). In particular, F (0,∞)× ⊂
S0(0,∞), and therefore, F (M ,τ)× ⊂ S0(M ,τ).

Note that δ(A ) ⊂ E ⊂ F (M ,τ). By Lemma 4, there is an element

a ∈ conv{δ(u)u∗ | u ∈U (A )}
∥·∥F

such that δ= δa on A . Hence, there exists a sequence

(xn)∞n=1 ⊂ conv
{
δ(u)u∗ | u ∈U (A )

}
such that ∥xn −a∥F →n 0. Since F (M ,τ) is a symmetric space, it follows from [17, Proposition 20]
that xn →tτ a as n →∞6.

By Ringrose’s theorem [37], we have that δ : (A ,∥·∥∞) → (E ,∥·∥E ) is a bounded mapping. Since
E has the Fatou property, it follows that the closed ball (E ,∥·∥E ) with radius ∥δ∥A→E is closed in
S(M ,τ) with respect to the measure topology [14, 17]. Noticing that every element xn , n ≥ 1,
belongs to the ball of radius ∥δ∥A→E in E and xn → a in the measure topology, we conclude that
a ∈ E with ∥a∥E ≤ ∥δ∥A→E . □

5If τ(1) <∞, then E ⊂ S0(M ,τ) holds for any symmetric space E affiliated with M .
6For every ε,δ> 0, we define the set

V (ε,δ) = {
x ∈ S(M ,τ) : ∃ p ∈P (M ) such that

∥∥x(1−p)
∥∥∞ ≤ ε, τ(p) ≤ δ}

.

The topology generated by the sets V (ε,δ), ε,δ> 0, is called the measure topology tτ on S(M ,τ) [19]. It is well known that
the algebra S(M ,τ) equipped with the measure topology is a complete metrizable topological algebra.
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The new approach devised in this paper answers to points (a), (b) and (c) above raised in [3].
In particular, it provides an alternative proof for the resolution of the question raised by Bunce
and Paschke[10], without involving weak compactness of a subset in a L-embedded space as [3]
and [34] did.

(1) This enables us to find a “fixed point” (implementing the derivation) from a not neces-
sarily weakly compact closed convex subset of a noncommutative symmetric space.

(2) The Levi property of a symmetric space E (not necessarily an L-embedded Banach space)
is equivalent to the existence of a canonical norm one projection from the bidual E ∗∗

onto E [15, 16]7), which is enough to prove the existence of a fixed point, see Theorem 6.
(3) On the other hand, the Levi property of the space E means that E coincides with its

second Köthe dual and this geometrical condition is the only one required in Theorem 6
thus delivering (at least spiritually) an answer to the question suggested in [3, Comment
c] above.

We believe that the method developed in this work is of interest in its own right.
We also show that whenever E(0,∞) does not have the Levi property, there exist non-inner

derivations δ : A → E(M ,τ) for some semifinite von Neumann algebra M and a C∗-subalgebra
A of M .

Corollary 7. For a given symmetric function space E(0,∞) ⊂ S0(0,∞), the following two state-
ments are equivalent:

(1) for any von Neumann algebra M equipped with a semifinite faithful normal trace τ and
any C∗-subalgebra A of M , derivations δ : A → E(M ,τ) are necessarily inner;

(2) E(0,∞) has the Levi property.
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