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Abstract. We show the local null-controllability of a fluid-structure interaction system coupling a viscous
incompressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary
small parts of the fluid domain and of the beam domain. In order to show the result, we first use a change
of variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in
a cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for
the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result on
the nonlinear system is obtained by a fixed-point argument.
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1. Introduction

We consider a fluid-structure interaction system composed by a viscous incompressible fluid,
modeled by the Navier–Stokes system, and by an elastic structure located at a part of the bound-
ary of the fluid domain. We assume that the structure displacement is governed by a damped
beam equation. The corresponding model has been introduced in [47] as a first model to study
the blood flow in vessels. To simplify our work, we consider here a particular geometry in dimen-
sion 2 of space (see Figure 1). The fluid domain is confined into an infinite strip where the bot-
tom boundary is fixed and where the top boundary corresponds to the beam. We also assume
periodic condition in the x1 variables. To be more precise, we set

I :=R/(2πZ),
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and for any deformation ζ : I → (−1,∞), we consider the fluid domain associated with this
deformation:

Ωζ = {(x1, x2) ∈I ×R ; x2 ∈ (0,1+ζ(x1))} . (1)

Then the fluid-structure interaction system writes

∂t w + (w ·∇)w −divT(w,π) = 1ω f t > 0, x ∈Ωζ(t ),

div w = 0 t > 0, x ∈Ωζ(t ),

w(t , x1,1+ζ(t , x1)) = (∂tζ)(t , x1)e2, t > 0, x1 ∈I ,

w = 0 t > 0, x ∈ Γ0,

∂t tζ+α1∂
4
x1
ζ−α2∂

2
x1
ζ−α3∂t∂

2
x1
ζ=−H̃ζ(w,π)+1J g t > 0, x1 ∈I ,

w(0, · ) = w0 inΩζ0
1
, ζ(0, · ) = ζ0

1, ∂tζ(0, · ) = ζ0
2 in I ,

(2)

where

α1 > 0, α2 ⩾ 0, α3 > 0,

and where

Γ0 =I × {0}.

In the above system, we have used the following notations: (e1,e2) is the canonical basis ofR2 and

T(w,π) = 2D(w)−πI2, D(w) = 1

2

(∇w + (∇w)∗
)

, (3)

H̃ζ(w,π)(t , x1) = [
(1+|∂x1ζ|2)1/2 [T(w,π)n] (t , x1,1+ζ(t , x1)) ·e2

]
. (4)

We have also denoted by n the unit exterior normal to Ωζ(t ). In (2), w and π are respectively the
velocity and the pressure of the fluid and they satisfy the Navier–Stokes system (two first lines),
with no-slip boundary conditions (third and forth equations). The elastic displacement satisfies
the damped beam equation written in the fifth line of (2). Finally, our aim is to control (2) by
using two distributed controls f and g respectively localized in an arbitrary small nonempty open
subset ω ofΩ and in an arbitrary small nonempty open subset J of I .

Let us remark that the well-posedness and the stabilization of system (2) have been already
studied in the literature. Let us quote some of the corresponding articles: [13] (existence of weak
solutions), [5, 21, 35, 40] (existence of strong solutions), [48] (stabilization of strong solutions), [1]
(stabilization of weak solutions around a stationary state). We can also mention some works de-
voted to the case δ= 0 (undamped beam equation/wave equation): [12, 20, 43] (weak solutions),
[2–4,22] (strong solutions). Some authors have tackled the study of more complex models: [33,34]
(linear elastic Koiter shell), [44] (dynamic pressure boundary conditions), [45, 46] (3D cylindrical
domain with nonlinear elastic cylindrical Koiter shell), [51] and [52] (nonlinear elastic and ther-
moelastic plate equations), [38, 39] (compressible fluids), etc.

A standard strategy to study this kind of systems consists in using a change of variables to
write the fluid system into a cylindrical domain, and then in linearizing the system after this
transformation. A large part of the work is thus devoted to the corresponding linear system,
the results for the nonlinear system are deduced by estimating the coefficients coming from the
change of variables and by using a fixed-point argument. We follow here this approach and after
a change of variable and a linearization (see Section 6 for the details), we are reduced to work on
the spatial domain

Ω :=Ω0 =I × (0,1)
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Ωζ

Γ0

−− −−

{x2 = 1+ζ(x1)}

0 2π

1

Ω

Γ0

−− −−

Γ1 (beam)

0 2π

1

Figure 1. Our geometry

(see Figure 1) and to show the null controllability of the following linear system

∂t w −∆w +∇π= 1ω f in (0,T )×Ω,

div w = 0 in (0,T )×Ω,

w = 0 on (0,T )×Γ0,

w = (∂tζ)e2 on (0,T )×Γ1,

∂2
t ζ+α1∂

4
x1
ζ−α2∂

2
x1
ζ−α3∂t∂

2
x1
ζ=−T(w,π)n ·e2 +1J g in (0,T )×I ,

w(0, · ) = w0 inΩ,

ζ(0, · ) = ζ0
1, ∂tζ(0, · ) = ζ0

2 in I ,

(5)

where

Γ1 =I × {1}.

In what follows, to simplify the notation, we take

α1 =α2 =α3 = 1.

The values of these constants do not play any role in our study. As it is standard (see, for instance,
[53, Theorem 11.2.1, p. 357]), the controllability of (5) is equivalent to an observability inequality
for the adjoint system

∂t u −∆u +∇p0 = 0 in (0,T )×Ω,

divu = 0 in (0,T )×Ω,

u = 0 on (0,T )×Γ0,

u = ∂tηe2 on (0,T )×Γ1,

∂2
t η+∂4

x1
η−∂2

x1
η−∂t∂

2
x1
η=−T(u, p0)n|Γ1 ·e2 in (0,T )×I ,

u(0, · ) = u0 inΩ,

η(0, · ) = η0
1, ∂tη(0, · ) = η0

1 in I .

(6)

Before writing the corresponding observability inequality, let us mention an important remark
and introduce some notation. We set

L2
0(I ) :=

{
f ∈ L2(I ) ;

∫ 2π

0
f (x1) dx1 = 0

}
.

Remark 1. Using the particular geometry considered here, we can simplify the above adjoint
system. First on Γ1, n = e2 and using (3), we deduce

−T(u, p0)n ·e2 =−2∂x2 u2 +p0 = 2∂x1 u1 +p0 = p0 on Γ1, (7)

since u1(x1,1) = 0 for x1 ∈I .
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Moreover, using the incompressibility of the fluid and the boundary conditions, we de-
duce that

0 =
∫
Ω

divu dx = d

dt

∫ 2π

0
η dx1.

Assuming that η0
1 ∈ L2

0(I ) then, we deduce that for all t ⩾ 0, η(t , · ) ∈ L2
0(I ). Using this condition

on the beam equation leads to the following condition on the pressure:∫ 2π

0
p0(t , x1,1) dx1 = 0. (8)

In particular, in contrast with the standard Stokes system, the pressure is not determined up to a
constant.

We define the operators associated with the beam equation:

D(A1) := H 4(I )∩L2
0(I ), A1η := ∂4

x1
η−∂2

x1
η, (9)

D(A2) := H 2(I )∩L2
0(I ), A2η :=−∂2

x1
η. (10)

We also define the Hilbert space of states for our system:

H := {
(u,η1,η2) ∈ L2(Ω)×D(A1/2

1 )×L2
0(I ) ; u2 = η2 on Γ1, u2 = 0 on Γ0, divu = 0 inΩ

}
, (11)

endowed with the canonical scalar product of L2(Ω)×D(A1/2
1 )×L2(I ). With the above remark

and notation, the adjoint system writes

∂t u −∆u +∇p0 = 0 in (0,T )×Ω,

divu = 0 in (0,T )×Ω,

u = 0 on (0,T )×Γ0,

u = ∂tηe2 on (0,T )×Γ1,

∂2
t η+ A1η+ A2∂tη= p0|Γ1

in (0,T )×I ,

u(0, · ) = u0 inΩ,

η(0, · ) = η0
1, ∂tη(0, · ) = η0

2 in I ,

(12)

with the condition (8). Our main result stated below is an observability inequality for (12):

Theorem 2. Assume T > 0, ω⋐Ω and J ⋐ I are nonempty open sets. For any [u0,η0
1,η0

2] ∈ H ,
the solution of (12) satisfies

∥u(T, · )∥2
L2(Ω) +

∥∥η(T, · )∥∥2
H 2(I ) +

∥∥∂tη(T, · )∥∥2
L2(I )

⩽ k2
T

(Ï
(0,T )×ω

|u|2 dx dt +
Ï

(0,T )×J

∣∣∂tη
∣∣2 dx1 dt

)
, (13)

and we can choose kT in the form
kT =CeC /T 2

, (14)

with a constant C > 0.

The controllability of fluid-structure interaction systems has already been tackled in the case
where the structure is a rigid body in [8, 9, 16, 24, 49]. Up to our knowledge, the above theorem
is the first result of controllability for the system (5). Let us mention also [42] where the author
obtains an observability inequality for the adjoint of a linearized simplified compressible fluid-
structure model similar to our system.

Let us point out that due to the structural damping in the beam equation (−∂t∂
2
x1
ζ) the cor-

responding beam equation becomes a parabolic equation (see, for instance, [14]). In a previous
work [11], we have replaced the damped beam equation by a heat equation and we have shown
the corresponding controllability result. The proof done here is inspired by our previous work,
and in particular, in the proof of the observability, we first apply results on the heat equations
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to the fluid velocity by considering the pressure as a source term, (in the spirit of [18]). Then,
we estimate the pressure by using that it satisfies a Laplace equation. Since the boundary con-
ditions of this Laplace equation are difficult to handle, our estimates on the pressure depend on
the boundary value of the pressure and more precisely on the high frequencies of the pressure
on the boundary of the fluid domain. To conclude, we apply some energy inequalities combined
with a high frequency argument in the horizontal direction to estimate these high frequencies.
Using the microlocal analysis near boundaries and interfaces to derive Carleman estimates and
to show the controllability of coupled parabolic systems is quite standard and one can quote for
instance [6, 7, 10, 25, 28–30] and the recent books [26, 27] for elliptic counterparts).

One of the main differences with [11] is that we work here directly with the time variable
whereas in the previous work we show a spectral inequality and then use an abstract method
([31, 32]) to deduce the corresponding observability inequality. Here we do not follow the same
approach since it uses that the main operator of our system is self-adjoint, and here our main
operator is not self-adjoint or even a perturbation of a self-adjoint operator as in the framework
considered in [31]. A consequence of working directly with the time variable is that the separation
between low and high frequencies is done through a pseudo-differential operator, which symbol
depends on time, and in particular we need some standard commutator estimates from these
operators in order to handle the high frequencies.

Remark 3. With respect to [11] or to the stabilization result [1], one should expect to obtain the
controllability of (2) or of (5) without any control on the beam equation (g ≡ 0). However, with our
present approach, it seems difficult to handle the elastic displacement without any observation
on the beam equation. Even with the presence of two controls, a particular treatment of the
coupling between the pressure and the elastic displacement in the proof of the observability is
needed. Concerning the particular geometry, we are using it several times in order to simplify
several proofs but the corresponding result in a general geometry should hold even if it is not a
direct consequence of our work.

We deduce from Theorem 2 the local controllability of (2):

Theorem 4. Assume T > 0 and thatω⋐Ω and J ⋐I are nonempty open sets. There exists R0 > 0
such that for any ζ0

1 ∈D(A3/4
1 ), ζ0

2 ∈D(A1/4
1 ), w0 ∈ H 1(Ωζ0

1
) satisfying

div w0 = 0 inΩ, w0 = 0 on Γ0, w0(x1,1+ζ0
1(x1)) = ζ0

2(x1)e2 (x1 ∈I ), (15)

and ∥∥ζ0
1

∥∥
H 3(I ) +

∥∥ζ0
2

∥∥
H 1(I ) +

∥∥w0∥∥
H 1

(
Ω
ζ0

1

) ⩽R0, (16)

there exists a control

( f , g ) ∈ L2(0,T ;L2(ω))×L2(0,T ;L2(J ))

such that the solution of (2) satisfies

ζ(T, · ) = 0, ∂tζ(T, · ) = 0 in I , w(T, · ) = 0 inΩ.

The proof of Theorem 4 is quite standard from Theorem 2: we need to estimate the coefficients
of the change of variables and use a fixed point argument. Similar procedure is done to show the
well-posedness or the stabilization of the system. We only sketch the proof of Theorem 4, the
details can be found for instance in [1, 48].

The outline of the article is as follows: in the next section, we complete the functional setting
needed in this article, introduce the Carleman weights and some classical results on pseudodif-
ferential operators. Section 3 is devoted to Carleman estimates: a Carleman estimate for the heat
equation, a Carleman estimate for the damped beam equation and a Carleman estimate for the



1546 Rémi Buffe and Takéo Takahashi

pressure. Gathering them yields an estimate of the fluid velocity and pressure and of the elas-
tic displacement by terms localized in ω or in J and by high frequencies of the pressure on the
boundary. To get rid of these last terms, we show in Section 4 high frequency estimates using the
Stokes system. This allows us to show the observability inequality in Section 5. We give the sketch
of the proof of Theorem 4 in Section 6. Finally, in Appendix A, we recall some technical results
concerning the Carleman estimates of Section 3.

Notation 5. In the whole paper, we use C as a generic positive constant that does not depend on
the other terms of the inequality. The value of the constant C may change from one appearance
to another. We also use the notation X ≲ Y if there exists a constant C > 0 such that we have the
inequality X ⩽C Y .

2. Notation and preliminaries

2.1. Functional setting

We complete the notation introduced in the introduction: we consider the control operator for
the beam equation:

BJ g := PL2
0(I )

(
1J g

)
,

where PL2
0(I ) : L2(I ) → L2

0(I ) is the orthogonal projection. With the above notation and (9), (10),
the beam equation in (5) writes

∂2
t ζ+ A1ζ+ A2∂tζ= PL2

0(I )π+BJ g .

We also consider the orthogonal projection on the space H defined by (11):

P : L2(Ω)×D(A1/2
1 )×L2

0(I ) →H .

We recall (see, for instance, [1, Proposition 3.1]) that the orthogonal of H in L2(Ω)×D(A1/2
1 )×

L2
0(I ) is given by

H ⊥ =
{

(∇p,0,PL2
0(I )p|Γ1 ) ; p ∈ H 1(Ω)

}
. (17)

Then we define the space

V := {
(u,η1,η2) ∈ H 1(Ω)×D(A3/4

1 )×D(A1/4
1 ) ; u = η2e2 on Γ1, u = 0 on Γ0, divu = 0 inΩ

}
,

and the unbounded operator A associated with (5):

D(A ) := V ∩ [
H 2(Ω)×D(A1)×D(A1/2

1 )
]

, A

 u
η1

η2

 :=P

 ∆u
η2

−A1η1 − A2η2

 .

It is shown (see, for instance, [1, Proposition 3.11]) that A is the infinitesimal generator of an
analytic semigroup on H . We have in particular that if F ∈ L2(0,T ;H ), Φ0 ∈ V , then there exists
a unique solution

Φ ∈ L2(0,T ;D(A ))∩C 0([0,T ];V )∩H 1(0,T ;H )

to
dΦ

dt
=AΦ+F in (0,T ), Φ(0) =Φ0 (18)

and we have the estimate

∥Φ∥L2(0,T ;H 2(Ω)×D(A1)×D(A1/2
1 )) +∥Φ∥H 1(0,T ;L2(Ω)×D(A1/2

1 )×L2(I ))

≲ ∥F∥L2(0,T ;L2(Ω)×D(A1/2
1 )×L2(I )) +

∥∥Φ0∥∥
V . (19)
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Finally, we consider the control operator:

B

[
f
g

]
:=P

 1ω f
0

BJ g

 .

Using the above notation and (17), we can write (5) as

d

dt

 w
ζ

∂tζ

=A

 w
ζ

∂tζ

+B

[
f
g

]
in (0,T ),

 w
ζ

∂tζ

 (0) =
w0

ζ0
1
ζ0

2

 . (20)

We say that the above system is null-controllable in time T > 0 if for any
[
w0, ζ0

1, ζ0
2

] ∈ H , there
exists a control

[
f , g

] ∈ L2(0,T ;L2(ω)×L2(J )) such that the solution of the above system satisfies w
ζ

∂tζ

 (T ) = 0.

A classical result (see, for instance, [53, Theorem 11.2.1, p. 357]) states that the null-controllability
is equivalent to the final-state observability of the adjoint system: there exists kT > 0 such that for

any

[
u0

η0
1

η0
2

]
∈H , the solution of

d

dt

 u
η1

η2

=A ∗
 u
η1

η2

 in (0,T ),

 u
η1

η2

 (0) =
 u0

−η0
1

η0
2

 (21)

satisfies ∥∥∥∥∥∥
 u
η1

η2

 (T )

∥∥∥∥∥∥
2

H

⩽ k2
T

∫ T

0

∥∥∥∥∥∥B∗
 u
η1

η2

 (t )

∥∥∥∥∥∥
2

L2(ω)×L2(J )

dt . (22)

One can show that

D(A ∗) =D(A ), A ∗
 u
η1

η2

=P

 ∆u
−η2

A1η1 − A2η2


and

B∗
 u
η1

η2

=
[

u|ω
η2|J

]
.

Setting η=−η1 we see that (21) writes as (12) or in the following abstract form

d

dt

 u
η

∂tη

=A

 u
η

∂tη

 in (0,T ),

 u
η

∂tη

 (0) =
u0

η0
1
η0

2

 . (23)

The observability inequality (22) writes as (13).

2.2. Weight functions for the Carleman estimates

We consider nonempty open subsets J0 ⋐J andω0 ⋐ω and (see, for instance, [19, Lemma 1.1],
[53, Theorem 9.4.3]) two smooth functions ψI and ψΩ satisfying

ψI > 0 in I , ψ′
I (x1) = 0 ⇒ x1 ∈J0, (24)

ψΩ > 0 inΩ, ψΩ = 0 and ∂nψΩ =−1 on ∂Ω, ∇ψΩ(x) = 0 ⇒ x ∈ω0, (25)
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with
J0 ⋐J , ω0 ⋐ω. (26)

In fact, using our particular geometry, one can show directly the existence of such functions
ψI and ψΩ. We set ψ1(x1) := 2 + sin(x1) and we consider ψ2 ∈ C∞([0,1]), ψ2(x2) = x2 in a
neighborhood of 0, ψ2(x2) = 1− x2 in a neighborhood of 1 and ψ′

2(x2) = 0 ⇔ x2 = 1/2. We also
consider θ ∈C∞(R) with compact support in (0,1) and such that θ ≡ 1 in a neighborhood of 1/2.
Then for ε> 0 small enough,

ψ̃Ω(x1, x2) =ψ2(x2)+εθ(x2)ψ1(x1)

satisfies ψ̃Ω > 0 in Ω, ψ̃Ω = 0 and ∂nψ̃Ω =−1 on ∂Ω and it has only two critical points: (π/2,1/2)
and (−π/2,1/2). By a change of variables on ψ1 and on ψ̃Ω (see, for instance, [53, Proposi-
tion 14.3.1]), we obtain functions ψI and ψΩ satisfying (24) and (25).

We also denote by ℓ the function defined by

ℓ(t ) := t (T − t ). (27)

Let us consider Ψ := ∥∥ψI

∥∥
L∞(I ) +

∥∥ψΩ∥∥
L∞(Ω) and for λ ⩾ µ > 0, let us define the following

functions

ϕ(t , x1, x2) := 1

ℓ(t )2 (eλψΩ(x1,x2)+µψI (x1)+8λΨ−e10λΨ), ξ(t , x1, x2) := 1

ℓ(t )2 eλψΩ(x1,x2)+µψI (x1)+8λΨ,

(28)

ϕ0(t , x1) := 1

ℓ(t )2 (eµψI (x1)+8λΨ−e10λΨ), ξ0(t , x1) := 1

ℓ(t )2 eµψI (x1)+8λΨ. (29)

We also define for λ⩾µ> 0 the function

ψ(x1, x2) := µ

λ
ψI (x1)+ψΩ(x1, x2). (30)

2.3. Spatial truncation

In order to use pseudodifferential operators in the x1 variables, we consider that our functions
are 2π-periodic functions defined in the domains

Ω∞ :=R× (0,1), Γ∞0 :=R× {0}, Γ∞1 :=R× {1}.

In the adjoint system (12), we also replace the pressure p0 that satisfies (8) by a pressure p
satisfying another condition. More precisely, we consider ω1 an open set such that ω0 ⋐ ω1 ⋐ ω

and we define
cp (t ) :=−

∫
ω1

p0(t , x) dx

and
p := p0 + cp . (31)

Then the pressure p verifies the condition∫
ω1

p(t , x) dx = 0 in (0,T ). (32)

We consider χ∞ ∈C∞(R; [0,1]) with compact support and such that χ∞ ≡ 1 in [0,2π]. We set

u∞ :=χ∞u, p∞ :=χ∞p, η∞ :=χ∞η. (33)

Then we deduce from (12) that
∂t u∞−∆u∞+∇p∞ = f (1) in (0,T )×Ω∞,

divu∞ = f (2) in (0,T )×Ω∞,

u∞ = 0 on (0,T )×Γ∞0 ,

u∞ = ∂tη
∞e2 on (0,T )×Γ∞1 ,

(34)
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and
∆p∞ = f (3) in (0,T )×Ω∞, (35)

where

f (1) :=−(
χ∞

)′′ u−2
(
χ∞

)′
∂x1 u+(

χ∞
)′ pe1, f (2) := (

χ∞
)′ u1, f (3) = (χ∞)′′p +2(χ∞)′∂x1 p. (36)

2.4. Pseudodifferential operators

We consider a parameter τ⩾ 1 and an order function

Λτ(k) :=
√
τ2 +k2 (k ∈R), (37)

where k corresponds to the Fourier variable associated with x1. For m ∈ R, we denote by Sm
τ the

space of complex smooth functions a = a(x1,k,τ) defined on R×R× [1,∞) and such that for all
α,β ∈N there exists Cα,β > 0∣∣∣∂αx1

∂
β

k a(x1,k,τ)
∣∣∣⩽Cα,βΛ

m−β
τ (k) ((x1,k,τ) ∈R×R× [1,∞)). (38)

For instance, we haveΛm
τ ∈ Sm

τ and for any C ∈R, the function

(k,τ) 7→ τ2 −C k2

τ2 +k2

is in S0
τ. We also recall the following classical lemma (see, for instance, [26, Proposition 2.3] or [23,

p. 73, Lemma 18.1.10] in the classical setting)

Lemma 6. If a ∈ S0
τ and χ0 ∈C∞(R). Then χ0(a) ∈ S0

τ.

From a ∈ Sm
τ , we can define the following operator on the Schwartz space on R :[

Op(a)u
]

(x1) := 1

2π

Ï
R2

e i k(x1−y1)a(x1,k,τ)u(y1) dy1dk.

We can also extend this operator to the Schwartz space on [0,T ]×R× [0,1] by a similar formula:[
Op(a)u

]
(t , x1, x2) := 1

2π

Ï
R2

e i k(x1−y1)a(x1,k,τ)u(t , y1, x2) dy1dk.

From symbolic calculus, we have the following results (see, for instance, [26, pp. 27-28, Theo-
rem 2.22 and Corollary 2.23])

Theorem 7. Let m,m′ ∈ R and let a ∈ Sm
τ , b ∈ Sm′

τ . Then there exist c ∈ Sm+m′
τ and d ∈ Sm+m′−1

τ

such that
Op(a)◦Op(b) = Op(c), [Op(a),Op(b)] = Op(d).

We can extend the operator associated with a symbol of order m to Sobolev spaces. For
instance we have the following result (see [26, p. 29, Theorem 2.26])

Theorem 8. Let m,m′ ∈R, and let a ∈ Sm
τ . Then, Op(a) : H m+m′

(R) → H m′
(R) and if m,m′ ∈N, we

have ∑
i+ j⩽m′

τ2i
∥∥∥∂ j

x1
Op(a)u

∥∥∥2

L2(R)
≲

∑
i+ j⩽m+m′

τ2i
∥∥∥∂ j

x1
u

∥∥∥2

L2(R)
.

In what follows, we assume that the parameter τ is related to functions defined in Section 2.2
through the formula

τ := τ(t ) = sλe8λΨ

ℓ2(t )
. (39)

In particular, τ is a function of time and there exist s0 > 0 and λ0 > 0 such that if s ⩾ s0T 4 and
λ⩾λ0, then

τ⩾
τ

λ
⩾ 1. (40)
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Remark 9. Due to (39), the symbols in Sm
τ depends on the time variable through the parameter

τ. The continuity estimates of Theorem 8 are uniform with respect to τ, and thus with respect to
the time variable if it only appears in the parameter τ. In what follows, some symbols may depend
on time, but not as a function of τ, this occurs for instance when considering ∂tτ. In that case,
we always decompose such symbols in terms of the form b(t )a(x1,k,τ) where b is a bounded
function of time, and a ∈ Sm

τ .

An important example of symbol used in what follows is a function of the form

χ(τ,k) :=χ0

(
τ2 −C k2

τ2 +k2

)
,

where C is a constant and χ0 ∈ C∞(R). From Lemma 6, we have that χ ∈ S0
τ and one can check

that
[∂x1 ,Op(χ)] = [∂x2 ,Op(χ)] = 0.

Moreover, we have the following result on the time derivative of χ:

Lemma 10. Let χ be defined as above. Then

∂tχ ∈ ℓ′

(λs)1/2
τ

5
2 S−2

τ .

Proof. By standard computations and (39),

∂tχ(τ,k) =χ′0
(
τ2 −C k2

τ2 +k2

)
2(C +1)k2τ∂tτ(

τ2 +k2
)2 , ∂tτ=−2ℓ′

sλe8λΨ

ℓ3 . (41)

We have
sλe8λΨ

ℓ3 ⩽
τ3/2

(sλ)1/2

so that using Lemma 6 and Theorem 7, we deduce the result. □

3. Carleman estimates

In this section, we show a Carleman estimate for the solutions of (6). Using the weights introduced
in Section 2.2, we define the following weighted integrals:

I1(s,λ,η) :=λ
Ï

(0,T )×I
e2sϕ0

(
s10ξ10

0 |η|2 + s8ξ8
0|∂x1η|2 + s6ξ6

0

(|∂2
x1
η|2 +|∂tη|2

))
dt dx1

+λ
Ï

(0,T )×I
e2sϕ0 s4ξ4

0

(|∂3
x1
η|2 +|∂x1∂tη|2

)
dt dx1

+λ
Ï

(0,T )×I
e2sϕ0 s2ξ2

0

(|∂4
x1
η|2 +|∂t∂

2
x1
η|2 +|∂2

t η|2
)

dt dx1

+λ
Ï

(0,T )×I
e2sϕ0

(∣∣∂5
x1
η
∣∣2 +|∂2

t ∂x1η|2 +|∂t∂
3
x1
η|2

)
dt dx1, (42)

I2(s,λ,u) :=
Ï

(0,T )×Ω
λ2 (|∇2u|2 + (∂t u)2)e2sϕ dt dx +

Ï
(0,T )×Ω

s2λ4ξ2e2sϕ|∇u|2 dt dx

+
Ï

(0,T )×Ω
s4λ6ξ4e2sϕ|u|2 dt dx, (43)

and

I3(s,λ, p∞) :=
Ï

(0,T )×Ω∞
s3λ4ξ3e2sϕ|p∞|2 dt dx +

Ï
(0,T )×Ω∞

sλ2ξe2sϕ|∇p∞|2 dt dx

+
Ï

(0,T )×∂Ω∞
s3λ3ξ3

0e2sϕ0
∣∣p∞∣∣2 dt dx1 +

Ï
(0,T )×∂Ω∞

sλξ0e2sϕ0
∣∣∂x1 p∞∣∣2 dt dx1. (44)
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Remark 11. The above quantities depend also on µ but since we will fix the value of µ=µ0 after
Section 3.1, we suppress reference to it in the notation.

For µ0 > 1, we set
K+ := eµ0 maxψI , K− := eµ0 minψI . (45)

In particular, with the definition (29) of ξ0 and the definition (39) of τ, we have

K−τ⩽ sλξ0 ⩽K+τ. (46)

Using Lemma 6, we can define the following symbol of order 0:

χ(τ,k) :=χ0

τ2 − 4K+
K 3−

k2

τ2 +k2

 ∈ S0
τ, with χ0 ∈C∞(R; [0,1]) such that χ0 =

{
1 in [3/4,∞)

0 in (−∞,1/2]
. (47)

The main result of this section is stated below:

Proposition 12. Assume J0 ⋐ J1 ⋐ J and ω0 ⋐ ω1 ⋐ ω. There exist µ0 > 0, λ0 > 0 and s0 such
that for µ=µ0, λ⩾λ0 and s ⩾ s0(T 2 +T 4), any smooth solution [u, p0,η] of (6) satisfies

I1(s,λ,η)+ I2(s,λ,u)+ I3(s,λ, p∞)

≲λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1

+
Ï

(0,T )×ω1

e2sϕ (
s4λ6ξ4|u|2 dt dx + s3λ4ξ3|p∞|2) dt dx

+
Ï

(0,T )×∂Ω∞
τ
∣∣∂x1 Op(1−χ)

[
e sϕ0 p∞]∣∣2 dt dx1, (48)

where p∞ is given by (31) and (33).

In order to prove Proposition 12, we first combine a Carleman estimate for the fluid velocity
and a Carleman estimate for the elastic deformation (see Section 3.1 and Section 3.2). Both
estimates contain pressure terms in the right-hand side and to estimates them, we perform a
Carleman estimate for the pressure in Section 3.3. In this last estimate, we need to put in the
right-hand side the trace of the pressure at the boundary, microlocalized in the high frequency
regime.

3.1. A Carleman estimate for the elastic deformation

In this section, we obtain a Carleman estimate for the elastic deformation, mainly based on the
results in [41]. This is the only part of the work where µ⩾ µ0, after this, we will fix µ = µ0 in the
weights ϕ,ξ,ϕ0,ξ0. To avoid introducing many notations, we keep the same notation µ0, s0, λ0

during the proofs, but their values may change from one appearance to another.
First, we deduce from the definitions (29), the existence ofµ0 such that forλ⩾µ⩾µ0, t ∈ [0,T ]

and x1 ∈I , and α⩾ 0,∣∣∂αx1
ϕ0

∣∣+ ∣∣∂αx1
ξ0

∣∣≲µαξ0 (k ⩾ 1),∣∣∂t∂
α
x1
ϕ0

∣∣+ ∣∣∂t∂
α
x1
ξ0

∣∣≲ Tµαξ3/2
0 ,

∣∣∂2
t ∂

α
x1
ϕ0

∣∣+ ∣∣∂2
t ∂

α
x1
ξ0

∣∣≲ T 2µαξ2
0. (49)

Moreover, there exists µ0 such that for λ⩾µ⩾µ0, for t ∈ [0,T ] and for x1 ∈I \J0,

µξ0 ≲
∣∣∂x1ϕ0

∣∣ , µ2ξ0 ≲ ∂2
x1
ϕ0. (50)

With these properties, we can obtain the following result which is proven in [41]. More precisely,
the Carleman estimate below is obtained in [41] with slightly different weights but the author
only uses the above properties in his proof. For sake of completeness, we give in Appendix A.1 a
sketch of the corresponding proof.
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Theorem 13. Assume r ∈ R and J0 ⋐ J1 ⋐ J . There exist constants s0 > 0 and µ0 > 0 such that
for any smooth function η, for any s ⩾ s0(T 2 +T 4), and for any λ⩾µ⩾µ0, we haveÏ

(0,T )×I
e2sϕ0

(
s2r+7µ2r+8ξ2r+7

0 |η|2 + s2r+5µ2r+6ξ2r+5
0 |∂x1η|2

)
dt dx1

+
Ï

(0,T )×I
e2sϕ0 s2r+3µ2r+4ξ2r+3

0

(|∂2
x1
η|2 +|∂tη|2

)
dt dx1

+
Ï

(0,T )×I
e2sϕ0 s2r+1µ2r+2ξ2r+1

0

(|∂3
x1
η|2 +|∂t∂x1η|2

)
dt dx1

+
Ï

(0,T )×I
e2sϕ0 s2r−1µ2r ξ2r−1

0

(∣∣∂4
x1
η
∣∣2 +|∂2

t η|2 +|∂t∂
2
x1
η|2

)
dt dx1

≲
Ï

(0,T )×I
e2sϕ0 s2rµ2r ξ2r

0

∣∣(∂2
t +∂4

x1
−∂2

x1
−∂t∂

2
x1

)η
∣∣2

dt dx1

+
Ï

(0,T )×J1

s2r+7µ2r+8ξ2r+7
0 e2sϕ0 |η|2 dt dx1. (51)

As a corollary, we have the following result

Corollary 14. Assume J0 ⋐ J1 ⋐ J . There exist constants s0 > 0 and µ0 > 0 such that for any
smooth function η, for any s ⩾ s0(T 2 +T 4), and for any λ⩾µ⩾µ0, we haveÏ

(0,T )×I
e2sϕ0

(
s10µ11ξ10

0 |η|2 + s8µ9ξ8
0|∂x1η|2 + s6µ7ξ6

0

(|∂2
x1
η|2 +|∂tη|2

))
dt dx1

+
Ï

(0,T )×I
e2sϕ0 s4µ5ξ4

0

(|∂3
x1
η|2 +|∂x1∂tη|2

)
dt dx1

+
Ï

(0,T )×I
e2sϕ0

(
s2µ3ξ2

0

(|∂4
x1
η|2 +|∂t∂

2
x1
η|2 +|∂2

t η|2
)+µ(∣∣∂5

x1
η
∣∣2 +|∂2

t ∂x1η|2 +|∂t∂
3
x1
η|2

))
dt dx1

≲
Ï

(0,T )×I
e2sϕ0 sµξ0|∂x1 (∂2

t −∂2
x1
+∂4

x1
−∂t∂

2
x1

)η|2 dt dx1

+
Ï

(0,T )×J1

e2sϕ0
(
s10µ11ξ10

0 |η|2 + s2µ3ξ2
0|∂2

t η|2
)

dt dx1. (52)

Proof. We first apply Theorem 13 to ∂x1η with r = 1/2 and with an open set J2 such that
J0 ⋐J2 ⋐J1 :Ï

(0,T )×I
e2sϕ0

(
s8µ9ξ8

0|∂x1η|2 + s6µ7ξ6
0|∂2

x1
η|2 + s4µ5ξ4

0

(|∂3
x1
η|2 +|∂t∂x1η|2

))
dt dx1

+
Ï

(0,T )×I
e2sϕ0

(
s2µ3ξ2

0

(|∂4
x1
η|2 +|∂t∂

2
x1
η|2)+µ(∣∣∂5

x1
η
∣∣2 +|∂2

t ∂x1η|2 +|∂t∂
3
x1
η|2

))
dt dx1

≲
Ï

(0,T )×I
e2sϕ0 sµξ0

∣∣∂x1 (∂2
t +∂4

x1
−∂2

x1
−∂t∂

2
x1

)η
∣∣2

dt dx1

+
Ï

(0,T )×J2

s8µ9ξ8
0e2sϕ0 |∂x1η|2 dt dx1. (53)

Then, we use a Carleman estimate for the gradient operator (see, for instance, [15, Lemma 3]):
there exists s0 > 0 such that for any smooth function ζ, and for any s ⩾ s0T 4,Ï

(0,T )×I
sr+2µr+3ξr+2

0 e2sϕ0ζ2 dt dx1

≲
Ï

(0,T )×J2

sr+2µr+3ξr+2
0 e2sϕ0ζ2 dt dx1 +

Ï
(0,T )×I

srµr+1ξr
0e2sϕ0 (∂x1ζ)2 dt dx1.
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This Carleman estimate, combined with (53), yields that for s ⩾ s0(T 2 +T 4),

Ï
(0,T )×I

e2sϕ0
(
s10µ11ξ10

0 |η|2 + s8µ9ξ8
0|∂x1η|2 + s6µ7ξ6

0

(|∂2
x1
η|2 +|∂tη|2

))
dt dx1

+
Ï

(0,T )×I
e2sϕ0

(
s4µ5ξ4

0

(|∂3
x1
η|2 +|∂x1∂tη|2

))
dt dx1

+
Ï

(0,T )×I
e2sϕ0

(
s2µ3ξ2

0

(|∂4
x1
η|2 +|∂t∂

2
x1
η|2 +|∂2

t η|2
)+µ(∣∣∂5

x1
η
∣∣2 +|∂2

t ∂x1η|2 +|∂t∂
3
x1
η|2

))
dt dx1

≲
Ï

(0,T )×I
e2sϕ0 sµξ0|∂x1 (∂2

t −∂2
x1
+∂4

x1
−∂t∂

2
x1

)η|2 dt dx1

+
Ï

(0,T )×J2

e2sϕ0
(
s10µ11ξ10

0 |η|2 + s8µ9ξ8
0|∂x1η|2 + s6µ7ξ6

0|∂tη|2 + s2µ3ξ2
0|∂2

t η|2
)

dt dx1. (54)

Then proceeding as in [41], one can absorb the local terms in ∂x1η and in ∂tη by using a cut-off
function and integrations by parts and we deduce the result. □

3.2. A Carleman estimate for the velocity

From now on, we take µ = µ0 as in Theorem 13 and take λ ⩾ µ0. The constants that follow in
the article may depend on µ0. We have the following standard Carleman estimate for the heat
equation (see, for instance, [17] or [19]). For sake of completeness, we also give a sketch of the
proof of the following result in Appendix A.2.

Theorem 15. Assume µ = µ0 and ω0 ⋐ ω1 ⋐ ω. There exist s0 > 0 and λ0 > 0 such that for any
λ⩾λ0 s ⩾ s0(T 2 +T 4), and for any smooth function u such that

u = 0 on (0,T )×Γ0, u1 = 0 on (0,T )×Γ1,
∂u2

∂n
= 0 on (0,T )×Γ1,

we haveÏ
(0,T )×Ω

(|∇2u|2 + (∂t u)2)e2sϕ dt dx

+
Ï

(0,T )×Ω
s2λ2ξ2e2sϕ|∇u|2 dt dx +

Ï
(0,T )×Ω

s4λ4ξ4e2sϕ|u|2 dt dx

≲
Ï

(0,T )×Ω
sξe2sϕ |(∂t −∆)u|2 dt dx +

Ï
(0,T )×ω1

s4λ4ξ4e2sϕ|u|2 dt dx. (55)

3.3. A Carleman estimate for the pressure

In order to obtain a Carleman estimate for the pressure, we use that from (12), the pressure p0

is harmonic in Ω. We recall that p∞ is defined from p0 by (31) and (33). In particular, it satisfies
the Laplace equation(34) but without any explicit boundary condition. Thus in our Carleman
estimate, we keep in the right-hand side a boundary term microlocalized in a high frequency
regime (represented by supp(1−χ), with χ defined by (47)). We recall that τ is defined in (39).
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Proposition 16. Assume µ=µ0 andω0 ⋐ω1 ⋐ω. There exist s0 > 0 λ0 > 0 and C > 0 such that for
any s ⩾ s0(T 2 +T 4), λ⩾λ0 and for any smooth function p, the function p∞ := pχ∞ satisfiesÏ

(0,T )×Ω∞
s3λ4ξ3e2sϕ|p∞|2 dt dx +

Ï
(0,T )×Ω∞

sλ2ξe2sϕ|∇p∞|2 dt dx

+
Ï

(0,T )×∂Ω∞
s3λ3ξ3

0e2sϕ0
∣∣p∞∣∣2 dt dx1 +

Ï
(0,T )×∂Ω∞

sλξ0e2sϕ0
∣∣∂x1 p∞∣∣2 dt dx1

⩽C

(Ï
(0,T )×Ω∞

e2sϕ|∆p∞|2 dt dx +
Ï

(0,T )×ω1

s3λ4ξ3e2sϕ|p∞|2 dt dx

+
Ï

(0,T )×∂Ω∞
τ
∣∣∂x1 Op(1−χ)

[
e sϕ0 p∞]∣∣2 dt dx1

)
. (56)

Proof. We start by a standard Carleman estimate for p∞ in Ω∞, using that χ∞ has a compact
support. First, we set

q = e sϕp∞

and we perform standard computations (see, for instance, [17, 32], [26, pp. 106–117]), to obtain
the existence of positive constants c,C , s0 such that for s ⩾ s0(T 2 +T 4),

c
Ï

(0,T )×Ω∞

(
s3λ4ξ3q2 + sλ2ξ

∣∣∇q
∣∣2 + 1

sξ

∣∣∆q
∣∣2

)
dt dx

+
Ï

(0,T )×∂Ω∞

(
−s3λ3ξ3 ∣∣∇ψ∣∣2 ∂ψ

∂n
q2 −2sλ2ξ

∣∣∇ψ∣∣2 ∂q

∂n
q −2sλξ∇ψ ·∇q

∂q

∂n
+ sλξ

∂ψ

∂n

∣∣∇q
∣∣2

)
dt dx1

⩽C

(Ï
(0,T )×Ω∞

(−∆p
)2 e2sϕ dt dx +

Ï
(0,T )×ω1

s3λ4ξ3q2 dx

)
. (57)

From (30) and (25), we have

∂ψ

∂x1
= µ0

λ
ψ′

I ,
∂ψ

∂n
=−1 on ∂Ω∞.

Thus there exist λ0 > 0 and s0 > 0 such that for λ⩾λ0, s ⩾ s0(T 2 +T 4), we have on (0,T )×∂Ω,

− s3λ3ξ3 ∣∣∇ψ∣∣2 ∂ψ

∂n
q2 −2sλ2ξ

∣∣∇ψ∣∣2 ∂q

∂n
q −2sλξ∇ψ ·∇q

∂q

∂n
+ sλξ

∂ψ

∂n

∣∣∇q
∣∣2

= s3λ3ξ3 ∣∣∇ψ∣∣2 q2 + sλξ

(
∂q

∂n

)2

− sλξ

(
∂q

∂x1

)2

−2sλ2ξ
∣∣∇ψ∣∣2 ∂q

∂n
q −2sµ0ξψ

′
I

∂q

∂x1

∂q

∂n

⩾
1

2
s3λ3ξ3

0q2 + 1

2
sλξ0

(
∂q

∂n

)2

−2sλξ0

(
∂q

∂x1

)2

. (58)

Let us denote by q̂ the Fourier transform of q in the x1 direction. Then by using the Plancherel
theorem, there exists c > 0 such thatÏ

(0,T )×∂Ω∞

(
1

2
s3λ3ξ3

0q2 −2sλξ0

(
∂q

∂x1

)2)
dx1 dt ⩾ c

Ï
(0,T )×∂Ω∞

τ
(
K 3
−τ

2 −4K+k2)∣∣q̂∣∣2 dk dt

and thus, there exist two constant c,C > 0 such thatÏ
(0,T )×∂Ω∞

(
1

2
s3λ3ξ3

0q2 −2sλξ0

(
∂q

∂x1

)2)
dx1 dt +C

Ï
(0,T )×∂Ω∞

(1−χ)2τk2 ∣∣q̂∣∣2 dk dt

⩾ c
Ï

(0,T )×∂Ω∞
τ
(
τ2 +k2)∣∣q̂∣∣2 dk dt . (59)

Using again the Plancherel theorem, and combining the above relation with (58) and with (57),
we deduce the result. □
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3.4. Gathering the Carleman estimates

We are now in a position to prove Proposition 12

Proof. Assume that (u, p0,η) is the solution of (12). We consider p defined from p0 by (31) and
p∞ defined from p by (33). We apply Corollary 14, Theorem 15 and Proposition 16 and using that
∇p0 =∇p, we obtain the following relations for I1, I2 and I3 (defined by (42)–(44)):

I1(s,λ,η)≲
Ï

(0,T )×I
e2sϕ0 sλξ0|∂x1 p|2 dt dx1 +λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1,

(60)

I2(s,λ,u)≲
Ï

(0,T )×Ω
sλ2ξe2sϕ ∣∣∇p

∣∣2 dt dx +
Ï

(0,T )×ω1

s4λ6ξ4e2sϕ|u|2 dt dx, (61)

and

I3(s,λ, p∞)≲
Ï

(0,T )×Ω∞
e2sϕ| f (3)|2 dt dx +

Ï
(0,T )×ω1

s3λ4ξ3e2sϕ|p∞|2 dt dx

+
Ï

(0,T )×∂Ω∞
τ
∣∣∂x1 Op(1−χ)

[
e sϕ0 p∞]∣∣2 dt dx1. (62)

Then, we can estimate f (3) by using (36) and we deduce thatÏ
(0,T )×Ω∞

e2sϕ| f (3)|2 dt dx ⩽Cλ−2I3(s,λ, p∞).

Using that χ∞ ≡ 1 in (0,2π) × (0,1), and taking λ ⩾ λ0 with λ0 > 0 sufficiently large, we can
combine the three Carleman estimates (60)–(62) and the above relation to obtain (48). □

4. High frequency estimates

In this section, we eliminate the last term in (48) by showing high frequency estimates for u and
p. The method used here is the same as the one used in [11]. We conjugate the system (34) with
e sϕ0 , using that the spatial derivatives of ϕ0 involve only powers of µ0 that is fixed, instead of
powers of λ for the spatial derivatives of ϕ. This allows us to perform energy estimates of the
Stokes system, by considering all the terms coming from the conjugaison as lower order terms in
the high frequency regime.

4.1. Estimates from the Stokes system

We recall that u∞, p∞ and η∞ are defined in (33) by using the function χ∞. We introduce

χ̃∞ ∈C∞
0 (R, [0,1]), χ̃∞ ≡ 1 in suppχ∞. (63)

Then, we set

ǔ := e sϕ0 u∞, p̌ := e sϕ0 p∞, η̌ := e sϕ0η∞, (64)

ũ := Op(1−χ)ǔ, p̃ := Op(1−χ)p̌, η̃ := Op(1−χ)η̌, (65)

ũ∞ := χ̃∞ Op(1−χ)ǔ, p̃∞ := χ̃∞ Op(1−χ)p̌, η̃∞ := χ̃∞ Op(1−χ)η̌. (66)

Our aim is to estimate p̃ (see (48)) but we need to use χ̃∞ to work on a bounded domain and
to apply the elliptic regularity of the Stokes system. In order to estimate p̃, we use that, with our
choice of truncation functions, we have the relations

p̃ = p̃∞+ [1− χ̃∞,Op(1−χ)]p̌.

Then, using the commutator property in Theorem 7, we can estimate p̃ from p̃∞ and p̌.
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Using (46), (28) and (29), we have

τ≲ sλξ0, τ≲ sλξ.

This leads us to define (see (42)–(44))

I4(s,λ, η̌) :=
Ï

(0,T )×I

(
λ−9τ10|η̌|2 +λ−7τ8|∂x1 η̌|2 +λ−5τ6 (|∂2

x1
η̌|2 +|∂t η̌|2

))
dt dx1

+
Ï

(0,T )×I

(
λ−3τ4 (|∂3

x1
η̌|2 +|∂x1∂t η̌|2

))
dt dx1

+
Ï

(0,T )×I

(
λ−1τ2

(
|∂4

x1
η̌|2 +|∂t∂

2
x1
η̌|2 +|∂2

t η̌|2
)

+λ
(∣∣∂5

x1
η̌
∣∣2 +|∂2

t ∂x1 η̌|2 +|∂t∂
3
x1
η̌|2

))
dt dx1, (67)

I5(s,λ, ǔ) :=λ2
Ï

(0,T )×Ω
(|∇2ǔ|2 + (∂t ǔ)2 +τ2|∇ǔ|2 +τ4|ǔ|2) dt dx, (68)

and

I6(s,λ, p̌) :=λ
Ï

(0,T )×Ω∞

(
τ3|p̌|2 +τ|∇p̌|2) dt dx +

Ï
(0,T )×∂Ω∞

(
τ3 ∣∣p̌∣∣2 +τ ∣∣∂x1 p̌

∣∣2
)

dt dx1. (69)

Noting that

I4(s,λ, η̌)≲ I1(s,λ,η), I5(s,λ, ǔ)≲ I2(s,λ,u), I6(s,λ, p̌)≲ I3(s,λ, p∞),

we deduce from (48) that

I4(s,λ, η̌)+ I5(s,λ, ǔ)+ I6(s,λ, p̌)≲λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1

+
Ï

(0,T )×ω1

e2sϕ (
s4λ6ξ4|u|2 dt dx + s3λ4ξ3|p∞|2) dt dx

+
Ï

(0,T )×∂Ω∞
τ
∣∣∂x1 p̃

∣∣2 dt dx1. (70)

The aim of this section is to show the following result:

Proposition 17. There existλ0 > 0 and s0 > 0 such that forλ⩾λ0 and s ⩾ s0(T 2+T 4), any smooth
solutions [u, p0,η] of (6) satisfies

I4(s,λ, η̌)+ I5(s,λ, ǔ)≲λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1

+
Ï

(0,T )×ω1

e2sϕ (
s4λ6ξ4|u|2 dt dx + s3λ4ξ3|p|2) dt dx, (71)

where η̌ and ǔ are defined by (64) and p is defined by (31).

Before proving Proposition 17, let us first introduce some preliminary results and notation.
Recalling that χ is defined in (47), we deduce that if χ ̸= 1 then

τ≲ |k|. (72)

This yields the following semi-classical trace inequality:

Lemma 18. There exists s0 > 0 such that for any s ⩾ s0T 4 and for any f ∈ H 1(Ω∞),

τ1/2 ∥∥Op(1−χ) f|∂Ω∞
∥∥

L2(∂Ω∞) ≲
∥∥∇Op(1−χ) f

∥∥
L2(Ω∞) .
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Proof. We write g := Op(1−χ) f and

g 2(x1,1) = g 2(x1, x2)+2
∫ 1

x2

g (x1, y2)∂x2 g (x1, y2) d y2

so that

τ

∫
Γ∞1

g (x1,1)2 dx1 ⩽ τ
∥∥g

∥∥2
L2(Ω∞) +2τ

∥∥g
∥∥

L2(Ω∞)

∥∥∂x2 g
∥∥

L2(Ω∞) ⩽ (τ+4τ2)
∥∥g

∥∥2
L2(Ω∞) +

∥∥∂x2 g
∥∥2

L2(Ω∞)

and we conclude by using (72). □

In particular, using Lemma 18, we can estimate the last term of (70) as follows:Ï
(0,T )×∂Ω∞

τ
∣∣∂x1 p̃|∂Ω∞

∣∣2 dt dx1 ≲
∥∥∇∂x1 p̃

∥∥2
L2(0,T ;L2(Ω∞)) . (73)

We have also the following result that will allows us to estimate boundary terms:

Lemma 19. There exists s0 > 0 such that for any s ⩾ s0T 4 and for any f ∈ H 2(R),∥∥Op(1−χ) f
∥∥

H 3/2(R) ≲ τ−1/2 ∥∥Op(1−χ)∂2
x1

f
∥∥

L2(R)
.

Proof. Denoting by f̂ the Fourier transform of f , we have∥∥Op(1−χ) f
∥∥2

H 3/2(R) =
∫
R

(1+k2)3/2(1−χ(τ,k))2 ∣∣ f̂ (k)
∣∣2

dk

and by using (72), we deduce the result. □

In order to estimate p̃ (and prove Proposition 17), we consider the system verified by ũ∞ and
p̃∞: from (34), we have 

∂t ũ∞−∆ũ∞+∇p̃∞ = f̃ (1) in (0,T )×Ω∞,

div ũ∞ = f̃ (2) in (0,T )×Ω∞,

ũ∞ = 0 on (0,T )×Γ∞0 ,

ũ∞ = h̃e2 on (0,T )×Γ∞1 ,

ũ∞(0, · ) = ũ∞(T, · ) = 0 inΩ∞,

(74)

where

f̃ (1) = χ̃∞ Op(1−χ)e sϕ0 f (1)+(s∂tϕ0)ũ∞−s
(
∂2

x1
ϕ0

)
ũ∞+s2 (

∂x1ϕ0
)2 ũ∞−2s∂x1ϕ0∂x1 ũ∞+s∇ϕ0p̃∞

+
[
−(s∂tϕ0)+ s

(
∂2

x1
ϕ0

)− s2 (
∂x1ϕ0

)2 +2s∂x1ϕ0∂x1 , χ̃∞ Op(1−χ)
]

ǔ

+ [−s∇ϕ0, χ̃∞ Op(1−χ)]p̌ − χ̃∞ Op(∂tχ)ǔ − (
χ̃∞

)′′ ũ −2
(
χ̃∞

)′
∂x1 ũ + (

χ̃∞
)′ p̃e1, (75)

f̃ (2) = χ̃∞ Op(1−χ)(e sϕ0 f (2))+ s∂x1ϕ0ũ∞
1 − [s∂x1ϕ0, χ̃∞ Op(1−χ)]ǔ1 +

(
χ̃∞

)′ ũ1, (76)

h̃ := χ̃∞ Op(1−χ)(∂t η̌− s
(
∂tϕ0

)
η̌). (77)

We also define

Ĩ (ũ, p̃) := ∥∥∂t∂x1 ũ
∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥∂x1 ũ

∥∥2
L2(0,T ;H 2(Ω∞)) +

∥∥∇∂x1 p̃
∥∥2

L2(0,T ;L2(Ω∞))

+∥τ∂t ũ∥2
L2(0,T ;L2(Ω∞)) +

∥∥τ3ũ
∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥τ2∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞))

+∥∥τ∂2
x1

ũ
∥∥2

L2(0,T ;L2(Ω∞))
+∥∥τ∂x1∂x2 ũ

∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥τ∂2
x2

ũ
∥∥2

L2(0,T ;L2(Ω∞))

+∥∥τ2∂x2 ũ
∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥τ2p̃

∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥τ∇p̃
∥∥2

L2(0,T ;L2(Ω∞)) . (78)

From relation (72), we have

Ĩ (ũ, p̃)≲
∥∥∂t∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥∂x1 ũ
∥∥2

L2(0,T ;H 2(Ω∞)) +
∥∥∇∂x1 p̃

∥∥2
L2(0,T ;L2(Ω∞)) . (79)

We have the following a priori estimate on (74).
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Proposition 20. There existλ0 > 0 and s0 > 0 such that forλ⩾λ0 and s ⩾ s0(T 2+T 4), any smooth
solutions [u, p0,η] of (6) satisfies

Ĩ (ũ, p̃)≲
∥∥∂x1 f̃ (1)∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥∂x1 f̃ (2)∥∥2

L2(0,T ;H 1(Ω∞)) +
∥∥∂t f̃ (2)∥∥2

L2(0,T ;L2(Ω∞))

+∥∥∂x1 h̃
∥∥2

L2(0,T ;H 3/2(Γ∞1 )) +
∥∥τ−1/2∂t∂x1 h̃

∥∥2
L2(0,T ;L2(Γ∞1 )) +λ−1 (

I5(s,λ, ǔ)+ I6(s,λ, p̌)
)

. (80)

Proof. First, we differentiate (74) with respect to x1:

∂t∂x1 ũ∞−∆∂x1 ũ∞+∇∂x1 p̃∞ = ∂x1 f̃ (1) in (0,T )×Ω∞,

div∂x1 ũ∞ = ∂x1 f̃ (2) in (0,T )×Ω∞,

∂x1 ũ∞ = 0 on (0,T )×Γ∞0 ,

∂x1 ũ∞ = ∂x1 h̃e2 on (0,T )×Γ∞1 ,

∂x1 ũ∞(0, · ) = ∂x1 ũ∞(T, · ) = 0 inΩ∞.

(81)

Let us consider a bounded smooth domainΩ♮ ⊂Ω∞ containing supp χ̃∞×(0,1). Let us also write

h♮ =
{
∂x1 ũ∞ = 0 on (0,T )× (

∂Ω♮ \Γ∞1
)

,

∂x1 ũ∞ = ∂x1 h̃e2 on (0,T )× (
∂Ω♮∩Γ∞1

)
.

Using [36, p. 33, Theorem 7.5], there exists H ∈ H 2(
{
(x1, x2) ∈R2 ; x2 < 1

}
) such that H = ∂x1 h̃ on

Γ∞1 . Multiplying H by an adequate cut-off function we deduce the existence of H ♮ ∈ H 2(Ω♮) such
that H ♮ = h♮ on ∂Ω♮. Therefore h♮ ∈ H 3/2(∂Ω♮) and we have the estimate∥∥∥h♮

∥∥∥
H 3/2(∂Ω♮)

≲
∥∥∂x1 h̃

∥∥
H 3/2(Γ∞1 ) .

With the above notation, we deduce from (81) that
(
∂x1 ũ∞,∂x1 p̃∞)

satisfies a Stokes system inΩ♮:
−∆∂x1 ũ∞+∇∂x1 p̃∞ = ∂x1 f̃ (1) −∂t∂x1 ũ∞ in (0,T )×Ω♮,
div∂x1 ũ∞ = ∂x1 f̃ (2) in (0,T )×Ω♮,
∂x1 ũ∞ = h♮ on (0,T )×∂Ω♮.

(82)

Using the elliptic regularity of the Stokes system (see, for instance, [50, Proposition 2.2 p. 33]) we
obtain∥∥∂x1 ũ∞∥∥2

L2(0,T ;H 2(Ω∞)) +
∥∥∇∂x1 p̃∞∥∥2

L2(0,T ;L2(Ω∞))

≲
∥∥∂x1 f̃ (1)∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥∂t∂x1 ũ∞∥∥2

L2(0,T ;L2(Ω∞))

+∥∥∂x1 f̃ (2)∥∥2
L2(0,T ;H 1(Ω∞)) +

∥∥∂x1 h̃
∥∥2

L2(0,T ;H 3/2(Γ∞1 )) . (83)

On the other hand, by multiplying the first equation of (81) by ∂t∂x1 ũ and integrating by parts,
we deduce∫ T

0

∥∥∂t∂x1 ũ∞∥∥2
L2(Ω∞) dt +

Ï
(0,T )×Γ∞1

∂x1 p̃∞
|Γ∞1

∂t∂x1 h̃ dx1dt +
Ï

(0,T )×Ω∞
∂2

x1
p̃∞∂t f̃ (2) dtdx

=
Ï

(0,T )×Ω∞
∂x1 f̃ (1) ·∂t∂x1 ũ∞ dxdt .

The above relation yields that for any ε> 0,∥∥∂t∂x1 ũ∞∥∥2
L2(0,T ;L2(Ω∞))

≲ ε
∥∥∇∂x1 p̃∞∥∥2

L2(0,T ;L2(Ω∞)) +ε
∥∥τ1/2∂x1 p̃∞∥∥2

L2(0,T ;L2(Γ∞1 )) +
1

ε

∥∥∂t f̃ (2)∥∥2
L2(0,T ;L2(Ω∞))

+ 1

ε

∥∥τ−1/2∂t∂x1 h̃
∥∥2

L2(0,T ;L2(Γ∞1 )) +
∥∥∂x1 f̃ (1)∥∥2

L2(0,T ;L2(Ω∞)) .
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We deduce from the above relation, from (66) and from Lemma 18 that∥∥∂t∂x1 ũ∞∥∥2
L2(0,T ;L2(Ω∞))

≲ ε
∥∥∇∂x1 p̃

∥∥2
L2(0,T ;L2(Ω∞)) +ε

∥∥p̃
∥∥2

L2(0,T ;H 1(Ω∞)) +
1

ε

∥∥∂t f̃ (2)∥∥2
L2(0,T ;L2(Ω∞))

+ 1

ε

∥∥τ−1/2∂t∂x1 h̃
∥∥2

L2(0,T ;L2(Γ∞1 )) +
∥∥∂x1 f̃ (1)∥∥2

L2(0,T ;L2(Ω∞)) . (84)

Now using (63) and (33), we have

∇2∂x1 ũ =∇2∂x1 ũ∞+∇2∂x1

[
(1− χ̃∞),Op(1−χ)

]
ǔ.

Since, (1− χ̃∞),1−χ ∈ S0
τ, we deduce from Theorem 7 and Theorem 8 that∥∥∇2∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞)) ≲

∥∥∇2∂x1 ũ∞∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥τ2ǔ
∥∥2

L2(0,T ;L2(Ω∞))

+∥τ∇ǔ∥2
L2(0,T ;L2(Ω∞)) +

∥∥∇2ǔ
∥∥2

L2(0,T ;L2(Ω∞)) .

Using the compact support of χ∞ and the periodicity of ue sϕ0 , we deduce from the above relation
and from (68) that∥∥∇2∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞)) ≲

∥∥∇2∂x1 ũ∞∥∥2
L2(0,T ;L2(Ω∞)) +λ−2I5(s,λ, ǔ). (85)

Similarly, with (69), we have∥∥∇∂x1 p̃
∥∥2

L2(0,T ;L2(Ω∞)) ≲
∥∥∇∂x1 p̃∞∥∥2

L2(0,T ;L2(Ω∞)) +λ−1I6(s,λ, p̌). (86)

Finally,

∂t∂x1 ũ = ∂t∂x1 ũ∞−∂x1 [1− χ̃∞,Op(∂tχ)]ǔ +∂x1 [1− χ̃∞,Op(1−χ)]∂t ǔ,

and from Lemma 10,

∂tχ ∈ ℓ′

(λs)1/2
τ

1
2 S0

τ.

In particular, if s ⩾ T 2, we can combine the two previous relations with Theorem 7 and Theorem 8
to obtain ∥∥∂t∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞)) ≲

∥∥∂t∂x1 ũ∞∥∥2
L2(0,T ;L2(Ω∞)) +λ−2I5(s,λ, ǔ). (87)

Combining (79), (83), (84), (85), (86) and (87), we deduce the result by taking ε > 0 small
enough. □

Combining (80), (73) and (70), we deduce the existence ofλ0 > 0 and s0 > 0 such that forλ⩾λ0

and s ⩾ s0(T 2 +T 4),

I4(s,λ, η̌)+ I5(s,λ, ǔ)+ I6(s,λ, p̌)+ Ĩ (ũ, p̃)

≲λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1

+
Ï

(0,T )×ω1

e2sϕ (
s4λ6ξ4|u|2 dt dx + s3λ4ξ3|p∞|2) dt dx

+∥∥∂x1 f̃ (1)∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥∂x1 f̃ (2)∥∥2
L2(0,T ;H 1(Ω∞)) +

∥∥∂t f̃ (2)∥∥2
L2(0,T ;L2(Ω∞))

+∥∥τ−1/2∂t∂x1 h̃
∥∥2

L2(0,T ;L2(Γ∞1 )) +
∥∥∂x1 h̃

∥∥2
L2(0,T ;H 3/2(Γ∞1 )) . (88)
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4.2. Estimates of f̃ (1), f̃ (2) and h̃

To obtain Proposition 17, it remains to estimate the right-hand side of (88). We recall that f̃ (1),
f̃ (2) and h̃ are given by (75), (76) and (77).

Combining (49), (46), (29) and (38), we deduce that for α⩾ 0,∣∣∂αx1
ϕ0

∣∣≲ τ

λs
(k ⩾ 1),

∣∣∂t∂
α
x1
ϕ0

∣∣≲ T
( τ
λs

)3/2
,

∣∣∂2
t ∂

α
x1
ϕ0

∣∣≲ T 2
( τ
λs

)2
(89)

∂αx1
ϕ0 ∈ τ

λs
S0
τ (k ⩾ 1), ∂t∂

α
x1
ϕ0 ∈ ℓ′

( τ
λs

)3/2
(e−4λΨ+e−2λΨ)S0

τ,

∂2
t ∂

α
x1
ϕ0 ∈

(
2ℓ+3(ℓ′)2)( τ

λs

)2
(e−8λΨ+e−6λΨ)S0

τ. (90)

Proposition 21. There exist s0 > 0 and λ0 > 0 such that the function f̃ (1) defined by (75) satisfies
for s ⩾ s0(T 2 +T 4) and for λ⩾λ0,∥∥∂x1 f̃ (1)∥∥2

L2(0,T ;L2(Ω∞)) ⩽λ−1 (
I4(s,λ, η̌)+ I5(s,λ, ǔ)+ I6(s,λ, p̌)+ Ĩ (ũ, p̃)

)
.

Proof. Differentiating (75) yields,

∂x1 f̃ (1) =
6∑

i=1
F (i ) (91)

where

F (1) := ∂x1

(
χ̃∞ Op(1−χ)e sϕ0 f (1)) , (92)

F (2) := ∂x1

(
(s∂tϕ0)ũ∞− s

(
∂2

x1
ϕ0

)
ũ∞+ s2 (

∂x1ϕ0
)2 ũ∞−2s∂x1ϕ0∂x1 ũ∞+ s∇ϕ0p̃∞

)
, (93)

F (3) := ∂x1

[
−(s∂tϕ0)+ s

(
∂2

x1
ϕ0

)− s2 (
∂x1ϕ0

)2 +2s∂x1ϕ0∂x1 , χ̃∞ Op(1−χ)
]

ǔ, (94)

F (4) := ∂x1 [−s∇ϕ0, χ̃∞ Op(1−χ)]p̌, F (5) :=−∂x1

(
χ̃∞ Op(∂tχ)ǔ

)
, (95)

F (6) := ∂x1

(
−(
χ̃∞

)′′ ũ −2
(
χ̃∞

)′
∂x1 ũ + (

χ̃∞
)′ p̃e1

)
. (96)

From (92), we have

F (1) = χ̃∞ Op(1−χ)
(
s∂x1ϕ0e sϕ0 f (1) +e sϕ0∂x1 f (1))+ (χ̃∞)′ Op(1−χ)e sϕ0 f (1).

From (36), (89), the properties of χ∞ and the periodicity of u and p in the x1 variable,∥∥s∂x1ϕ0e sϕ0 f (1) +e sϕ0∂x1 f (1)∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥e sϕ0 f (1)∥∥2
L2(0,T ;L2(Ω∞))

≲
Ï

(0,T )×(0,2π)×(0,1)
e2sϕ0

(
τ2

λ2

(
|u|2 + ∣∣∂x1 u

∣∣2 + ∣∣p∣∣2
)
+ ∣∣∂2

x1
u

∣∣2 + ∣∣∂x1 p
∣∣2

)
dx dt

≲
Ï

(0,T )×Ω∞

(∣∣∂2
x1

ǔ
∣∣2 +

( τ
λ

)2 ∣∣∂x1 ǔ
∣∣2 +

( τ
λ

)4 |ǔ|2 + ∣∣∂x1 p̌
∣∣2 +

( τ
λ

)2 ∣∣p̌∣∣2
)

dx dt .

Since 1 − χ ∈ S0
τ (see Lemma 6), we deduce from the above estimate, from Theorem 8, and

from (68)-(69), that ∥∥F (1)∥∥2
L2(0,T ;L2(Ω∞)) ⩽λ−1 (

I5(s,λ, ǔ)+ I6(s,λ, p̌)
)

. (97)

From (40), (93) and (89), we have for s ⩾ s0
(
T 2 +T 4

)
and λ⩾λ0,∣∣F (2)∣∣≲ τ2

λ2

(|ũ|+ ∣∣∂x1 ũ
∣∣)+ τ

λ

(∣∣∂2
x1

ũ
∣∣+ ∣∣p̃∣∣+ ∣∣∂x1 p̃

∣∣) , (98)

and thus with (78), ∥∥F (2)∥∥2
L2(0,T ;L2(Ω∞)) ⩽λ−2 Ĩ (ũ, p̃). (99)
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On the other hand, from (94), (95),

F (3) =
[
−(s∂tϕ0)+ s

(
∂2

x1
ϕ0

)− s2 (
∂x1ϕ0

)2 +2s∂x1ϕ0∂x1 , χ̃∞ Op(1−χ)
]
∂x1 ǔ

+ [−(s∂t∂x1ϕ0)+ s
(
∂3

x1
ϕ0

)−2s2∂x1ϕ0∂
2
x1
ϕ0 +2s∂2

x1
ϕ0∂x1 +2s∂x1ϕ0∂

2
x1

, χ̃∞ Op(1−χ)
]

ǔ, (100)

F (4) = [−s∇ϕ0, χ̃∞ Op(1−χ)]∂x1 p̌ + [−s∇∂x1ϕ0, χ̃∞ Op(1−χ)]p̌. (101)

From (90),

s
(
∂2

x1
ϕ0

)− s2 (
∂x1ϕ0

)2 −2s∂x1ϕ0i k ∈ 1

λ
S2
τ, s∂tϕ0 ∈ ℓ′

s1/2λ
S3/2
τ

s
(
∂3

x1
ϕ0

)−2s2∂x1ϕ0∂
2
x1
ϕ0 −2s∂2

x1
ϕ0i k −2s∂x1ϕ0k2 ∈ 1

λ
S3
τ, s∂t∂x1ϕ0 ∈ ℓ′

s1/2λ
S3/2
τ ,

−s∇ϕ0,−s∇∂x1ϕ0 ∈ 1

λ
S1
τ,

so that, from Theorem 7, Theorem 8 and (78),∥∥F (3)∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥F (4)∥∥2
L2(0,T ;L2(Ω∞))

≲
1

λ2

(∥∥τ2ǔ
∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥τ∂x1 ǔ

∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥∂2
x1

ǔ
∥∥2

L2(0,T ;L2(Ω∞))

)
+ 1

λ2

(∥∥p̌
∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥∂x1 p̌

∥∥2
L2(0,T ;L2(Ω∞))

)
≲

1

λ2

(
I5(s,λ, ǔ)+ I6(s,λ, p̌)

)
. (102)

From (95),
F (5) =−χ̃∞ Op(∂tχ)∂x1 ǔ − (

χ̃∞
)′ Op(∂tχ)ǔ. (103)

From Lemma 10,

∂tχ ∈ ℓ′

(λs)1/2
S1/2
τ

so that from Theorem 8 and (68),∥∥F (5)∥∥2
L2(0,T ;L2(Ω∞)) ≲λ−1

(∥∥τ∂x1 ǔ
∥∥2

L2(0,T ;L2(Ω∞)) +∥τǔ∥2
L2(0,T ;L2(Ω∞)) +

∥∥∂2
x1

ǔ
∥∥2

L2(0,T ;L2(Ω∞))

)
≲λ−2I5(s,λ, ǔ). (104)

Finally, from (96), (78) and (40), ∥∥F (6)∥∥2
L2(0,T ;L2(Ω∞)) ≲λ−2 Ĩ (ũ, p̃).

Gathering (91), (97), (99), (102), (104) and the above estimate, we deduce the result. □

Proposition 22. There exist s0 > 0 and λ0 > 0 such that the function f̃ (2) defined by (76) satisfies
for s ⩾ s0(T 2 +T 4) and for λ⩾λ0,∥∥∂x1 f̃ (2)∥∥2

L2(0,T ;H 1(Ω∞)) +
∥∥∂t f̃ (2)∥∥2

L2(0,T ;L2(Ω∞)) ⩽λ−1 (
I4(s,λ, η̌)+ I5(s,λ, ǔ)+ I6(s,λ, p̌)+ Ĩ (ũ, p̃)

)
.

Proof. From (76)
∂x1 f̃ (2) =G (1) +G (2) +G (3) +G (4), (105)

with

G (1) := ∂x1

(
χ̃∞ Op(1−χ)

(
e sϕ0 f (2))) , G (2) := ∂x1

(
s∂x1ϕ0ũ∞

1

)
, (106)

G (3) :=−∂x1 [s∂x1ϕ0, χ̃∞ Op(1−χ)]ǔ1, G (4) := ∂x1

((
χ̃∞

)′ ũ1

)
. (107)

From (106), we have

G (1) = (
χ̃∞

)′ Op(1−χ)
(
e sϕ0 f (2))+ χ̃∞ Op(1−χ)∂x1

(
e sϕ0 f (2)) ,

∂x1G (1) = (
χ̃∞

)′′ Op(1−χ)
(
e sϕ0 f (2))+2

(
χ̃∞

)′ Op(1−χ)∂x1

(
e sϕ0 f (2))+ χ̃∞ Op(1−χ)∂2

x1

(
e sϕ0 f (2)) ,

∂x2G (1) = (
χ̃∞

)′ Op(1−χ)
(
e sϕ0∂x2 f (2))+ χ̃∞ Op(1−χ)∂x1

(
e sϕ0∂x2 f (2)) ,
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with

∂x1

(
e sϕ0 f (2))= s∂x1ϕ0e sϕ0 f (2) +e sϕ0∂x1 f (2),

∂2
x1

(
e sϕ0 f (2))= s∂2

x1
ϕ0e sϕ0 f (2) + s2 (

∂x1ϕ0
)2 e sϕ0 f (2) +2s∂x1ϕ0e sϕ0∂x1 f (2) +e sϕ0∂2

x1
f (2),

∂x1

(
e sϕ0∂x2 f (2))= s∂x1ϕ0e sϕ0∂x2 f (2) +e sϕ0∂x1∂x2 f (2).

The above relations, combined with (36), (89), with the properties of χ∞ and with the periodicity
of u and p in the x1 variable, imply∥∥e sϕ0 f (2)∥∥2

L2(0,T ;L2(Ω∞)) +
∥∥∇(

e sϕ0 f (2))∥∥2
L2(0,T ;L2(Ω∞)) +

∥∥∇∂x1

(
e sϕ0 f (2))∥∥2

L2(0,T ;L2(Ω∞))

≲
Ï

(0,T )×(0,2π)×(0,1)
e2sϕ0

(( τ
λ

)4 |u|2 +
( τ
λ

)2 |∇u|2 + ∣∣∂2
x1

u
∣∣2 + ∣∣∂x1∂x2 u

∣∣2
)

dx dt

≲
Ï

(0,T )×Ω∞

(∣∣∇2ǔ
∣∣2 +

( τ
λ

)2 |∇ǔ|2 +
( τ
λ

)4 |ǔ|2
)

dx dt .

Thus, using 1−χ ∈ S0
τ (Lemma 6) along with Theorem 8, the property of χ∞ and (68), we deduce

that ∥∥G (1)∥∥2
L2(0,T ;H 1(Ω∞)) ⩽λ−1I5(s,λ, ǔ). (108)

Moreover, using (89), we deduce∣∣G (2)∣∣+ ∣∣∇G (2)∣∣≲ τ

λ

(|ũ|+ ∣∣∂x1 ũ
∣∣+ ∣∣∂2

x1
ũ

∣∣+ ∣∣∂x2 ũ
∣∣+ ∣∣∂x1∂x2 ũ

∣∣) . (109)

We deduce from the above relation and (78) that∥∥G (2)∥∥2
L2(0,T ;H 1(Ω∞)) ⩽λ−2 Ĩ (ũ, p̃). (110)

From (107),

∂x1G (3) =−∂2
x1

[s∂x1ϕ0, χ̃∞ Op(1−χ)]ǔ1, ∂x2G (3) =−∂x1 [s∂x1ϕ0, χ̃∞ Op(1−χ)]∂x2 ǔ1.

Thus from (90), (68), Theorem 7 and Theorem 8,∥∥G (3)∥∥2
L2(0,T ;H 1(Ω∞)) ≲λ−4I5(s,λ, ǔ). (111)

From (107),
∂x1G (4) = ∂2

x1

((
χ̃∞

)′ ũ1

)
, ∂x2G (4) = ∂x1

((
χ̃∞

)′
∂x2 ũ1

)
,

and thus, from (78) and (40), ∥∥G (4)∥∥2
L2(0,T ;H 1(Ω∞)) ≲λ−2 Ĩ (ũ, p̃).

Gathering (105), (108), (110), (111) and the above relation, we deduce the estimate for ∂x1 f̃ (2). To
estimate ∂t f̃ (2), we derive (76) with respect to time:

∂t f̃ (2) = H (1) +H (2) +H (3), (112)

with

H (1) :=−χ̃∞ Op(−∂tχ)
(
e sϕ0 f (2))+ χ̃∞ Op(1−χ)

((
s∂tϕ0 f (2) +∂t f (2))e sϕ0

)
, (113)

H (2) := ∂t

(
s∂x1ϕ0ũ∞

1 + (
χ̃∞

)′ ũ1

)
, (114)

H (3) :=−∂t [s∂x1ϕ0, χ̃∞ Op(1−χ)]ǔ1. (115)

Combining (36), Lemma 10, (89), Theorem 8, the property of χ∞ and (68), we deduce that∥∥H (1)∥∥2
L2(0,T ;L2(Ω∞)) ≲λ−1I5(s,λ, ǔ). (116)

Using (36), (89) and (78), we also find∥∥H (2)∥∥2
L2(0,T ;L2(Ω∞)) ⩽λ−2 Ĩ (ũ, p̃). (117)
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For the last term, we write

H (3) =−[s∂x1∂tϕ0, χ̃∞ Op(1−χ)]ǔ1 + [s∂x1ϕ0, χ̃∞ Op(∂tχ)]ǔ1 − [s∂x1ϕ0, χ̃∞ Op(1−χ)]∂t ǔ1.

Combining (90), Lemma 10, Theorem 7 and Theorem 8, we deduce∥∥H (3)∥∥2
L2(0,T ;L2(Ω∞)) ≲λ−1I5(s,λ, ǔ).

Gathering the above estimate, (116) and (117) yields the result. □

Proposition 23. There exist s0 > 0 and λ0 > 0 such that the function h̃ defined by (77) satisfies for
s ⩾ s0(T 2 +T 4) and for λ⩾λ0,∥∥τ−1/2∂t∂x1 h̃

∥∥2
L2(0,T ;L2(Γ∞1 )) +

∥∥∂x1 h̃
∥∥2

L2(0,T ;H 3/2(Γ∞1 )) ≲λ−1I4(s,λ, η̌).

Proof. From (77)

∂x1 h̃ = (χ̃∞)′ Op(1−χ)h̃(1) + χ̃∞ Op(1−χ)h̃(2), (118)

with

h̃(1) := ∂t η̌− s∂tϕ0η̌, h̃(2) := ∂x1 h̃(1) = ∂t∂x1 η̌− s
(
∂t∂x1ϕ0

)
η̌− s

(
∂tϕ0

)
∂x1 η̌.

Applying Lemma 19 and using (118), we deduce that∥∥∂x1 h̃
∥∥2

L2(0,T ;H 3/2(Γ∞1 )) ≲
∥∥Op(1−χ)h̃(1)∥∥2

L2(0,T ;H 3/2(Γ∞1 )) +
∥∥Op(1−χ)h̃(2)∥∥2

L2(0,T ;H 3/2(Γ∞1 ))

≲
∥∥τ−1/2 Op(1−χ)∂2

x1
h̃(1)∥∥2

L2(0,T ;L2(Γ∞1 ))
+∥∥τ−1/2 Op(1−χ)∂2

x1
h̃(2)∥∥2

L2(0,T ;L2(Γ∞1 ))
.

Then, using that 1−χ ∈ S0
τ, (89) and Theorem 8, we find∥∥∂x1 h̃

∥∥2
L2(0,T ;H 3/2(Γ∞1 )) ≲

∥∥τ−1/2∂t∂
3
x1
η̌
∥∥2

L2(0,T ;L2(Γ∞1 ))

+∥∥τ−1/2∂t∂
2
x1
η̌
∥∥2

L2(0,T ;L2(Γ∞1 ))
+

3∑
j=0

∥∥∥∥ τ3/2

λ3/2
∂

j
x1
η̌

∥∥∥∥2

L2(0,T ;L2(Γ∞1 ))
.

From (67), we deduce from the above relation that∥∥∂x1 h̃
∥∥2

L2(0,T ;H 3/2(Γ∞1 )) ≲λ−1I4(s,λ, η̌). (119)

By differentiating (118) with respect to t , we obtain

∂t∂x1 h̃ =−(χ̃∞)′ Op(∂tχ)h̃(1)+(χ̃∞)′ Op(1−χ)∂t h̃(1)−χ̃∞ Op(∂tχ)h̃(2)+χ̃∞ Op(1−χ)∂t h̃(2). (120)

Applying Lemma 10, Theorem 8 and (89), we have for s ⩾ s0(T 2 +T 4) and λ⩾λ0,

∥∥τ−1/2∂t∂x1 h̃
∥∥2

L2(0,T ;L2(Γ∞1 )) ≲
∥∥∥∥ τ3/2

λ3/2
∂x1 η̌

∥∥∥∥2

L2(0,T ;L2(Γ∞1 ))
+

∥∥∥∥ τ3/2

λ3/2
η̌

∥∥∥∥2

L2(0,T ;L2(Γ∞1 ))

+∥∥τ−1/2∂2
t η̌

∥∥2
L2(0,T ;L2(Γ∞1 )) +

∥∥τ−1/2∂2
t ∂x1 η̌

∥∥2
L2(0,T ;L2(Γ∞1 ))

+
∥∥∥∥ τ

λ3/2
∂x1∂t η̌

∥∥∥∥2

L2(0,T ;L2(Γ∞1 ))
+

∥∥∥∥ τ

λ3/2
∂t η̌

∥∥∥∥2

L2(0,T ;L2(Γ∞1 ))
. (121)

From (67), we deduce from the above relation that∥∥τ−1/2∂t∂x1 h̃
∥∥2

L2(0,T ;L2(Γ∞1 )) ≲λ−1I4(s,λ, η̌). (122)

□

The proof of Proposition 17 consists now in combining (88) with Proposition 21, Proposition 22
and Proposition 23. In the next section, we show the observability result from the above relation.
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5. Proof of the observability

This section is devoted to the proof of Theorem 2. We first remove in (71) the local terms in p and
in ∂2

t η. Setting

ϕ1(t ) := 1

ℓ(t )2 (e8λΨ−e10λΨ), ξ1(t ) := 1

ℓ(t )2 e8λΨ, (123)

ϕ2(t ) := 1

ℓ(t )2 (e(9λ+µ0)Ψ−e10λΨ), ξ2(t ) := 1

ℓ(t )2 e(9λ+µ0)Ψ, (124)

we have (see (28))

ϕ1(t )⩽ϕ(t , · )⩽ϕ2(t ), ξ1(t )⩽ ξ(t , · )⩽ ξ2(t ) (t ∈ (0,T )).

Let us set

ρ0 :=λτ2e sϕ1 =λ3e16λΨ s2

ℓ4 e sϕ1 , (125)

ρ1 := s11/2λ−7ξ11/2
2 e4sϕ2−3sϕ1 , ρ2 := s9λ−1ξ9

2e4sϕ2−3sϕ1 . (126)

Then we have the following result.

Proposition 24. There exist s0 > 0 and λ0 > 0 such that for any s ⩾ s0(T 2+T 4) and for any λ⩾λ0,
any smooth solution of (6) satisfies∫ T

0
ρ2

0

∥∥[u,η,∂tη]
∥∥2

H dt ≲
Ï

(0,T )×J
ρ2

1|∂tη|2 dt dx1 +
Ï

(0,T )×ω
ρ2

2|u|2 dt dx. (127)

Proof. Using (32) and applying the Poincaré–Wirtinger inequality, we deduce thatÏ
(0,T )×ω1

s3λ4ξ3e2sϕ|p|2 dt dx ≲
Ï

(0,T )×ω1

s3λ4ξ3
2e2sϕ2 |∇p|2 dt dx

and with (12),Ï
(0,T )×ω1

s3λ4ξ3e2sϕ|p|2 dt dx ≲
Ï

(0,T )×ω1

s3λ4ξ3
2e2sϕ2

(|∂t u|2 +|∆u|2) dt dx. (128)

From (125), (67) and (68), we have∫ T

0
ρ0(t )2

(
∥u(t )∥2

L2(Ω) +
∥∥η(t )

∥∥2
H 2(I ) +

∥∥∂tη(t )
∥∥2

L2(I )

)
dt ≲ I4(s,λ, η̌)+ I5(s,λ, ǔ). (129)

Combining (71), (129) and (128), we deduce∥∥ρ0u
∥∥2

L2(0,T ;L2(Ω)) +
∥∥ρ0∂tη

∥∥2
L2(0,T ;L2(Γ1)) +

∥∥ρ0η
∥∥2

L2(0,T ;H 2(Γ1))

≲λ

Ï
(0,T )×J1

e2sϕ0
(
s10ξ10

0 |η|2 + s2ξ2
0|∂2

t η|2
)

dt dx1

+
Ï

(0,T )×ω1

s4λ6ξ4e2sϕ|u|2 dt dx +
Ï

(0,T )×ω1

s3λ4ξ3
2e2sϕ2

(|∂t u|2 +|∆u|2) dt dx. (130)

Now we set

ρ3(t ) :=λ3e6λΨ s1/2

ℓ(t )
e sϕ1(t ), ρ4(t ) :=λ3e−4λΨs−1ℓ(t )2e sϕ1(t ). (131)

We have ρ3,ρ4 ∈C 1([0,T ]), ρ3(0) = ρ4(0) = 0 and∣∣ρ′
3

∣∣≲ ρ0 and
∣∣ρ′

4

∣∣≲ ρ3. (132)

We recall that (12) can be written as (23). Then, we deduce

d

dt
ρ3

 u
η

∂tη

=A ρ3

 u
η

∂tη

+ρ′
3

 u
η

∂tη

 in (0,T ),

 ρ3u
ρ3η

ρ3∂tη

 (0) = 0. (133)
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From (132), (129) and (19),∥∥ρ3∂t u
∥∥

L2(0,T ;L2(Ω)) +
∥∥ρ3u

∥∥
L2(0,T ;H 2(Ω))

+∥∥ρ3∂
2
t η

∥∥
L2(0,T ;L2(Γ1)) +

∥∥ρ3∂tη
∥∥

L2(0,T ;H 2(Γ1)) +
∥∥ρ3η

∥∥
L2(0,T ;H 4(Γ1))

≲
∥∥ρ0u

∥∥2
L2(0,T ;L2(Ω)) +

∥∥ρ0∂tη
∥∥2

L2(0,T ;L2(Γ1)) +
∥∥ρ0η

∥∥2
L2(0,T ;H 2(Γ1)) . (134)

Then, we deduce from (23) that

d

dt

ρ4
d

dt

 u
η

∂tη

=A

ρ4
d

dt

 u
η

∂tη

+ρ′
4

d

dt

 u
η

∂tη

 in (0,T ),

ρ4
d

dt

 u
η

∂tη

 (0) = 0. (135)

From (132), (129), (134) and (19),∥∥ρ4∂
2
t u

∥∥
L2(0,T ;L2(Ω)) +

∥∥ρ4∂t u
∥∥

L2(0,T ;H 2(Ω))

+∥∥ρ4∂
3
t η

∥∥
L2(0,T ;L2(Γ1)) +

∥∥ρ4∂
2
t η

∥∥
L2(0,T ;H 2(Γ1)) +

∥∥ρ4∂tη
∥∥

L2(0,T ;H 4(Γ1))

≲
∥∥ρ0u

∥∥2
L2(0,T ;L2(Ω)) +

∥∥ρ0∂tη
∥∥2

L2(0,T ;L2(Γ1)) +
∥∥ρ0η

∥∥2
L2(0,T ;H 2(Γ1)) . (136)

Then, from the standard elliptic regularities for the stationary Stokes system ([50, Proposition 2.2
p. 33]) and for A1, we have moreover∥∥ρ4u

∥∥
L2(0,T ;H 4(Ω)) +

∥∥ρ4η
∥∥

L2(0,T ;H 6(Γ1))

≲
∥∥ρ0u

∥∥2
L2(0,T ;L2(Ω)) +

∥∥ρ0∂tη
∥∥2

L2(0,T ;L2(Γ1)) +
∥∥ρ0η

∥∥2
L2(0,T ;H 2(Γ1)) . (137)

By integration by parts, we obtainÏ
(0,T )×J1

s2λξ2
0e2sϕ0 |∂2

t η|2 dt dx1 = 1

2

Ï
(0,T )×J1

∂2
t

(
s2λξ2

0e2sϕ0
) |∂tη|2 dt dx1

−
Ï

(0,T )×J1

s2λξ2
0e2sϕ0∂3

t η∂tη dt dx1.

Using (49), we deduce that for s ⩾ s0(T 2 +T 4), for any ε> 0, there exists C > 0 such thatÏ
(0,T )×J1

s2λξ2
0e2sϕ0 |∂2

t η|2 dt dx1 ⩽C
Ï

(0,T )×J1

s5λξ5
0e2sϕ0 |∂tη|2 dt dx1

+ε∥∥ρ4∂
3
t η

∥∥2
L2(0,T ;L2(Γ1)) +C

Ï
(0,T )×J1

s6λ−4ξ6
0e4sϕ0−2sϕ1 |∂tη|2 dt dx1

⩽ ε
∥∥ρ4∂

3
t η

∥∥2
L2(0,T ;L2(Γ1)) +C

Ï
(0,T )×J1

s6λ−4ξ6
0e4sϕ0−2sϕ1 |∂tη|2 dt dx1. (138)

Then, we integrate by parts the last term and we obtain that for any ε> 0, there exists C > 0 such
thatÏ

(0,T )×J1

s6λ−4ξ6
0e4sϕ0−2sϕ1 |∂tη|2 dt dx1

⩽ ε
∥∥ρ3∂

2
t η

∥∥2
L2(0,T ;L2(Γ1)) +C

Ï
(0,T )×J1

s11λ−14ξ11
0 e8sϕ0−6sϕ1 |η|2 dt dx1. (139)

Similarly, for any ε> 0, there exists C > 0 such thatÏ
(0,T )×ω1

s3λ4ξ3
2e2sϕ2 |∂t u|2 dt dx ⩽C

Ï
(0,T )×ω1

s6λ4ξ6
2e2sϕ2 |u|2 dt dx

+ε∥∥ρ4∂
2
t u

∥∥2
L2(0,T ;L2(Ω)) +C

Ï
(0,T )×ω1

s8λ2ξ8
2e4sϕ2−2sϕ1 |u|2 dt dx

⩽ ε
∥∥ρ4∂

2
t u

∥∥2
L2(0,T ;L2(Ω)) +C

Ï
(0,T )×ω1

s8λ2ξ8
2e4sϕ2−2sϕ1 |u|2 dt dx. (140)
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Finally, we consider a nonnegative smooth function χ1 with compact support in ω and such that
χ1 ≡ 1 in ω1. Then by integrating by parts,Ï

(0,T )×ω1

s3λ4ξ3
2e2sϕ2 |∆u|2 dt dx

⩽
Ï

(0,T )×ω
χ1s3λ4ξ3

2e2sϕ2 |∆u|2 dt dx =
Ï

(0,T )×ω
s3λ4ξ3

2e2sϕ2∆
(
χ1∆u

)
u dt dx

⩽ ε
∥∥ρ4u

∥∥2
L2(0,T ;H 4(Ω)) +C

Ï
(0,T )×ω

s8λ2ξ8
2e4sϕ2−2sϕ1 |u|2 dt dx. (141)

Gathering (130), (138), (139), (140), and (141), and using (134), (136) and (137) we deduce∫ T

0
ρ0(t )2

(
∥u(t )∥2

L2(Ω) +
∥∥η(t )

∥∥2
H 2(I ) +

∥∥∂tη(t )
∥∥2

L2(I )

)
dt

≲
Ï

(0,T )×J1

ρ2
1|η|2 dt dx1 +

Ï
(0,T )×ω

ρ2
5|u|2 dt dx, (142)

with ρ1 defined by (126) and with

ρ5 := s4λξ4
2e2sϕ2−sϕ1 . (143)

To end the proof of Proposition 24, we need to replace in the above estimate the observation
by η with an observation by ∂tη. This is done by using the smoothing effet of the parabolic
system (23). More precisely, we apply (142) to (∂t u,∂tη,∂2

t η) and we deduce∫ T

0
ρ0(t )2

(
∥∂t u(t )∥2

L2(Ω) +
∥∥∂tη(t )

∥∥2
H 2(I ) +

∥∥∂2
t η(t )

∥∥2
L2(I )

)
dt

≲
Ï

(0,T )×J
ρ2

1|∂tη|2 dt dx1 +
Ï

(0,T )×ω
ρ2

5|∂t u|2 dt dx. (144)

On the other hand, using (23) and the fact that 0 ∈ ρ(A ) (see, for instance, [1, Proposition 3.5]),∥∥∂t [u,η,∂tη]
∥∥

H = ∥∥A [u,η,∂tη]
∥∥

H ⩾ c
∥∥[u,η,∂tη]

∥∥
H .

Combining the above estimate and (144) implies∫ T

0
ρ2

0

∥∥[u,η,∂tη]
∥∥2

H dt ≲
Ï

(0,T )×J
ρ2

1|∂tη|2 dt dx1 +
Ï

(0,T )×ω
ρ2

5|∂t u|2 dt dx. (145)

We integrate by parts the last term: recalling (143), we obtain that for any ε> 0, there exists C > 0
such thatÏ

(0,T )×ω1

ρ2
5|∂t u|2 dt dx ⩽C

Ï
(0,T )×ω1

s11λ2ξ11
2 e4sϕ2−2sϕ1 |u|2 dt dx +ε∥∥ρ4∂

2
t u

∥∥2
L2(0,T ;L2(Ω))

+C
Ï

(0,T )×ω1

s18λ−2ξ18
2 e8sϕ2−6sϕ1 |u|2 dt dx. (146)

We deduce (127) by combining (145), (146) and (137). □

Using Proposition 24, one can deduce Theorem 2:

Proof of Theorem 2. We fix λ = λ0 and s = s0(T 2 + T 4) in (125) and (126). In particular the
constants that follows may depend on λ0 and s0. Then we deduce from (127) that∫ 3T /4

T /4
ρ2

0

∥∥[u,η,∂tη]
∥∥2

H dt ≲
Ï

(0,T )×J
ρ1(t )2|∂tη|2 dt dx1 +

Ï
(0,T )×ω

ρ2(t )2|u|2 dt dx. (147)

From (125) and (126), there exists C > 0 such that

C

T
e−C /T 2

⩽ ρ0 in

(
T

4
,

3T

4

)
,
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and
ρ1 ≲ 1, ρ2 ≲ 1.

Since A is the generator of a semigroup of contractions (see, for instance, [1, Proposition 3.4]),
we deduce the result from the above relations. □

6. Proof of Theorem 4

We give here a sketch of the proof of Theorem 4. First we construct a change of variables to
write (2) in a cylindrical domain, then we use the “source term method” and Theorem 2 to show
Theorem 4 by a fixed-point argument.

6.1. Change of variables

We can assume that for some δ> 0
ω⊂I × (0,1−δ).

Let us consider a smooth function θ ∈C∞([0,1]; [0,1]) with compact support in (1−δ,1] and such
that θ ≡ 1 in [1−δ/2,1]. We consider the change of variables

X (t , · ) :Ω→Ωζ(t ), (y1, y2) 7→ (y1, y2 +θ(y2)ζ(t , y1)) (148)

that is a diffeomorphism if

∥θ′∥L∞(0,1) ∥ζ∥L∞(0,T ;L∞(I )) ⩽
1

2
. (149)

We denote by Y (t , · ) the inverse of X (t , · ).
We write

W (t , y) := Cof(∇X )∗(t , y)w(t , X (t , y)), Π(t , y) :=π(t , X (t , y))

X 0 := X (0, · ), W 0 := Cof(∇X 0)∗w0 ◦X 0.

We also write
a := Cof(∇Y )∗. (150)

After some standard calculations (see, for instance, [2]) (2) is transformed into

∂t W −divT(W,Π) = 1ω f +Fζ(W,Π) t > 0, x ∈Ω,

divW = 0 t > 0, x ∈Ω,

W = ∂tζe2 t > 0, x ∈ Γ1,

W = 0 t > 0, x ∈ Γ0,

∂t tζ+ A1ζ+ A2∂tζ= PL2
0(I )

(
Π+1J g +Gζ(W )

)
t > 0, x1 ∈I ,

(151)

W (0, · ) =W 0 inΩ, ζ(0, · ) = ζ0
1, ∂tζ(0, · ) = ζ0

2 in I , (152)

with[
Fζ(W,Π)

]
i :=−∑

k
∂t ai ,k (X )Wk +

(
ai ,k (X )−δi ,k

)
∂t Wk −

∑
k,l

ai ,k (X )
∂Wk

∂yl

∂Yl

∂t
(X )

+∑
k, j

∂2ai ,k

∂x2
j

(X )Wk +2
∑

k, j ,l

∂ai ,k

∂x j
(X )

∂Wk

∂yl

∂Yl

∂x j
(X )+ ∑

k, j ,l
ai ,k (X )

∂Wk

∂yl

∂2Yl

∂x2
j

(X )

+ ∑
k, j ,l ,m

(
ai ,k (X )

∂Yl

∂x j
(X )

∂Ym

∂x j
(X )−δi ,kδl , jδm, j

)
∂Wk

∂yl∂ym
−∑

l

(
∂Yl

∂xi
(X )−δl ,i

)
∂Π

∂yl

− ∑
j ,m,k

a j ,m(X )
∂ai ,k

∂x j
(X )WmWk −

1

det(∇X )

∑
m,k

ai ,k (X )Wm
∂Wk

∂ym
, (153)
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Gζ(W ) :=−
(
∂x1ζ+

(
∂x1ζ

)2
) ∂W1

∂x2

∣∣∣∣
x2=1

. (154)

Then, we can write Theorem 4 as follows:

Theorem 25. Assume T > 0, ω⋐Ω and J ⋐I are nonempty open sets. There exists R0 > 0 such
that for any [W 0,ζ0

1,ζ0
2] ∈ V with ∥∥[W 0,ζ0

1,ζ0
2]

∥∥
V ⩽R0, (155)

there exists a control

( f , g ) ∈ L2(0,T ;L2(ω))×L2(0,T ;L2(J ))

such that the solution of (151), (152), (153) and (154) satisfies

ζ(T, · ) = 0, ∂tζ(T, · ) = 0 in I , W (T, · ) = 0 inΩ.

6.2. The fixed point argument

Using the notation of Section 2.1, the result of Theorem 2 states the existence of kT satisfying (14)
such that for any

[
u0,η0

1,η0
2

]
,∥∥∥∥∥∥eT A ∗

u0

η0
1
η0

2

∥∥∥∥∥∥
2

H

⩽ k2
T

∫ T

0

∥∥∥∥∥∥B∗e tA ∗
u0

η0
1
η0

2

∥∥∥∥∥∥
2

L2(ω)×L2(J )

dt . (156)

From standard results (see, for instance, [53, Theorem 11.2.1, p. 357]), this yields the null-
controllability of (5). Using the “source term method” (see, [37]), one can improve this result.
Let us consider the following weight functions

σ1(t ) := e
− C1

(T−t )2 , σ2(t ) := e
− C2

(T−t )2 , σ3(t ) := e
− C3

(T−t )2 (157)

and the corresponding spaces (for σ=σ1,σ2 or σ3)

Lp
σ(0,T ;X ) := {

f /σ ∈ Lp (0,T ;X )
}

,

Cα
σ ([0,T ];X ) := {

f /σ ∈Cα([0,T ];X )
}

,

H s
σ(0,T ;X ) := {

f /σ ∈ H s (0,T ;X )
}

,

for p ⩾ 1, k ∈ N, s ∈ R+ and X a Banach space. The abstract result proved in [37] yields the
following result:

Proposition 26. Assume (156) with (14). Then there existσ1,σ2,σ3 as in (157) and a bounded map

ET : V ×L2
σ1

(0,T ;L2(Ω)×L2(I )) → L2
σ2

(0,T ;L2(ω)×L2(J ))

such that for any [W 0,ζ0
1,ζ0

2] ∈ V and for any (F,G) ∈ L2
σ1

(0,T ;L2(Ω)×L2(I )), the solution of

∂t W −divT(W,Π) = 1ω f +F t > 0, x ∈Ω,

divW = 0 t > 0, x ∈Ω,

W = ∂tζe2 t > 0, x ∈ Γ1,

W = 0 t > 0, x ∈ Γ0,

∂t tζ+ A1ζ+ A2∂tζ= PL2
0(I )

(
Π+1J g +G

)
t > 0, x1 ∈I ,

(158)

W (0, · ) =W 0 inΩ, ζ(0, · ) = ζ0
1, ∂tζ(0, · ) = ζ0

2 in I , (159)

with the control

( f , g ) = ET ([W 0,ζ0
1,ζ0

2], (F,G))
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satisfies

∥W ∥L2
σ3

(0,T ;H 2(Ω))∩C 0
σ3

([0,T ];H 1(Ω))∩H 1
σ3

(0,T ;L2(Ω)) +∥Π∥L2
σ3

(0,T ;H 1
0 (Ω))

+∥ζ∥L2
σ3

(0,T ;H 4(I )) +∥ζ∥C 0
σ3

([0,T ];H 3(I )) +∥ζ∥H 1
σ3

(0,T ;H 2(I ))

+∥ζ∥C 1
σ3

([0,T ];H 1(I )) +∥ζ∥H 2
σ3

([0,T ];L2(I ))

≲
∥∥[W 0,ζ0

1,ζ0
2]

∥∥
V +∥(F,G)∥L2

σ1
(0,T ;L2(Ω)×L2(I )) . (160)

Moreover, we can assume
σ2

3 ≲σ1. (161)

We are now in a position to prove Theorem 25 and thus Theorem 4.

Proof of Theorem 25. Assume that [W 0,ζ0
1,ζ0

2] satisfies (155) for some R0 and let us assume that

∥(F,G)∥L2
σ1

(0,T ;L2(Ω)×L2(I )) ⩽R0.

Applying Proposition 26, we deduce the existence of a control ( f , g ) ∈ L2
σ2

(0,T ;L2(ω)× L2(J ))
such that the corresponding solution of (158), (159) satisfies

∥W ∥L2
σ3

(0,T ;H 2(Ω))∩C 0
σ3

([0,T ];H 1(Ω))∩H 1
σ3

(0,T ;L2(Ω)) +∥Π∥L2
σ3

(0,T ;H 1
0 (Ω))

+∥ζ∥L2
σ3

(0,T ;H 4(I )) +∥ζ∥C 0
σ3

([0,T ];H 3(I )) +∥ζ∥H 1
σ3

(0,T ;H 2(I ))

+∥ζ∥C 1
σ3

([0,T ];H 1(I )) +∥ζ∥H 2
σ3

([0,T ];L2(I )) ⩽C R0 (162)

for some constant C > 0. Using the Sobolev embeddings, we have in particular that

∥ζ∥C 0([0,T ];W 2,∞(I )) ⩽C R0 (163)

for some constant C > 0. This yields that for R0 small enough, (149) holds and we can consider
the change of variables of Section 6.1. We thus define X , a, F and G by respectively, (148), (150),
(153) and (154). Moreover, following the arguments in [1, 48] and using (161), one can show that∥∥Fζ(W,Π)

∥∥
L2
σ1

(0,T ;L2(Ω)) +
∥∥Gζ(W )

∥∥
L2
σ1

(0,T ;L2(I )) ⩽C R2
0 , (164)

and in particular for R0 small enough, the closed set

BR0 :=
{

(F,G) ∈ L2
σ1

(0,T ;L2(Ω)×L2(I )) ; ∥(F,G)∥L2
σ1

(0,T ;L2(Ω)×L2(I )) ⩽R0

}
is invariant under the map

Z : (F,G) → (Fζ(W,Π),Gζ(W )).

One can also show that for R0 > 0 small enough, the above map is a strict contraction on BR0 .
Using the Banach fixed point we deduce the existence of fixed point (F,G) for Z . One can notice
that the corresponding solution (W,Π,ζ) of (158)–(159) verifies the conclusion of Theorem 25. □

Appendix A. Technical results

A.1. A Carleman estimates for the damped beam equation

The proof of Theorem 13 follows directly from the proof done in [41]. The differences with respect
to this article is the weight in time and the powers of s, µ, and ξ0. For sake of completeness, we
give here a brief sketch of the proof of Theorem 13 by using what is already done in [41].

We recall that ϕ0 and ξ0 are given by (29). We set

fη := ∂2
t η+∂4

x1
η−∂2

x1
η−∂t∂

2
x1
η, (165)

ζ := e sϕ0ξr
0η. (166)
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We say that a function g is l.o. t (lower order term) if it satisfies for some ε1,ε2 ⩾ 0, ε1ε2 ̸= 0,

|g |≲ s−ε1λ−ε2ξ
−ε1
0

(
s7/2µ4ξ7/2

0 |ζ|+ s5/2µ3ξ5/2
0

∣∣∂x1ζ
∣∣+ s3/2µ2ξ3/2

0

(∣∣∂2
x1
ζ
∣∣+|∂tζ|

)
+s1/2µξ1/2

0

(∣∣∂3
x1
ζ
∣∣+ ∣∣∂t∂x1ζ

∣∣)+ s−1/2ξ−1/2
0

(∣∣∂4
x1
ζ
∣∣+ ∣∣∂t∂

2
x1
ζ
∣∣+ ∣∣∂2

t ζ
∣∣)) .

From the Leibniz formula

e sϕ0ξr
0
∂4

∂x4
1

(
e−sϕ0ξ−r

0 ζ
)= 4∑

α=0

(
4

α

)
e sϕ0

∂α

∂xα1

(
e−sϕ0ζ

)
ξr

0
∂4−α

∂x4−α
1

(
ξ−r

0

)
.

From (49), we obtain ∣∣∣∣∣ξr
0
∂4−α

∂x4−α
1

(
ξ−r

0

)∣∣∣∣∣≲µ4−α

and thus a direct computation and (49) yield that for s ⩾ s0(T 2 +T 4),

3∑
α=0

(
4

α

)
e sϕ0

∂α

∂xα1

(
e−sϕ0ζ

)
ξr

0
∂4−α

∂x4−α
1

(
ξ−r

0

)= l.o. t .

We also deduce from (49) that

e sϕ0
∂4

∂x4
1

(
e−sϕ0ζ

)=−4s3 (
∂x1ϕ0

)3
∂x1ζ+6s2 (

∂x1ϕ0
)2
∂2

x1
ζ−4s∂x1ϕ0∂

3
x1
ζ+∂4

x1
ζ+ s4 (

∂x1ϕ0
)4
ζ

−12s3 (
∂x1ϕ0

)2
∂2

x1
ϕ0ζ+ l.o. t

and thus

e sϕ0ξr
0
∂4

∂x4
1

(
e−sϕ0ξ−r

0 ζ
)=−4s3 (

∂x1ϕ0
)3
∂x1ζ+6s2 (

∂x1ϕ0
)2
∂2

x1
ζ−4s∂x1ϕ0∂

3
x1
ζ+∂4

x1
ζ

+ s4 (
∂x1ϕ0

)4
ζ−12s3 (

∂x1ϕ0
)2
∂2

x1
ϕ0ζ+ l.o. t . (167)

Note that

−12s3 (
∂x1ϕ0

)2
∂2

x1
ϕ0ζ= l.o. t,

but we follow the trick of [41] to keep this term in order to show the Carleman estimate.
We can show similarly that

e sϕ0ξr
0
∂2

∂x2
1

(
e−sϕ0ξ−r

0 ζ
)= l.o. t . (168)

We also have

e sϕ0ξr
0
∂2

∂t 2

(
e−sϕ0ξ−r

0 ζ
)= e sϕ0

∂2

∂t 2

(
e−sϕ0ζ

)+2e sϕ0
∂

∂t

(
e−sϕ0ζ

)
ξr

0
∂

∂t

(
ξ−r

0

)+ζξr
0
∂2

∂t 2

(
ξ−r

0

)
.

Thus, using (49), for s ⩾ s0(T 2 +T 4),

e sϕ0ξr
0
∂2

∂t 2

(
e−sϕ0ξ−r

0 ζ
)= ∂2

t ζ+ l.o. t . (169)

Finally,

e sϕ0ξr
0
∂

∂t

∂2

∂x2
1

(
e−sϕ0ξ−r

0 ζ
)= e sϕ0

∂2

∂x2
1

(
e−sϕ0ζ

)
ξr

0
∂

∂t

(
ξ−r

0

)+e sϕ0
∂

∂t

∂2

∂x2
1

(
e−sϕ0ζ

)
+2e sϕ0

∂

∂x1

(
e−sϕ0ζ

)
ξr

0
∂

∂t

∂

∂x1

(
ξ−r

0

)+2e sϕ0
∂

∂t

∂

∂x1

(
e−sϕ0ζ

)
ξr

0
∂

∂x1

(
ξ−r

0

)
+ζξr

0
∂

∂t

∂2

∂x2
1

(
ξ−r

0

)+e sϕ0
∂

∂t

(
e−sϕ0ζ

)
ξr

0
∂2

∂x2
1

(
ξ−r

0

)
.
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From (49), for s ⩾ s0(T 2 +T 4), and for p = 0,1,2,∣∣∣∣ξr
0
∂p

∂t p

∂α

∂xα1

(
ξ−r

0

)∣∣∣∣≲µαξ
p/2
0

and

e sϕ0ξr
0
∂

∂t

∂2

∂x2
1

(
e−sϕ0ξ−r

0 ζ
)= e sϕ0

∂

∂t

∂2

∂x2
1

(
e−sϕ0ζ

)+ l.o. t .

Consequently, using (49), we deduce that for s ⩾ s0(T 2 +T 4),

e sϕ0ξr
0
∂

∂t

∂2

∂x2
1

(
e−sϕ0ξ−r

0 ζ
)= s2 (

∂x1ϕ0
)2
∂tζ−2s∂x1ϕ0∂t∂x1ζ+∂t∂

2
x1
ζ+ l.o. t .

Gathering (167), (168), (169), and the above relation and combining them with (165) and (166),
we deduce

M1ζ+M2ζ= e sϕ0ξr
0 fη+ l.o. t, (170)

with

M1ζ := s4 (
∂x1ϕ0

)4
ζ+6s2 (

∂x1ϕ0
)2
∂2

x1
ζ+∂4

x1
ζ+2s

(
∂x1ϕ0

)
∂t∂x1ζ+∂2

t ζ,

and

M2ζ :=−4s3 (
∂x1ϕ0

)3
∂x1ζ−4s∂x1ϕ0∂

3
x1
ζ−∂t∂

2
x1
ζ− s2 (

∂x1ϕ0
)2
∂tζ−12s3 (

∂x1ϕ0
)2
∂2

x1
ϕ0ζ.

In what follows, we say that a term G is a L.O.T (Lower Order Term) if there exist ε1 ⩾ 0, ε2 ⩾ 0,
ε1ε2 ̸= 0, such that

|G|≲
Ï

(0,T )×I
s−ε1λ−ε2ξ

−ε1
0

(
s7µ8ξ7

0|ζ|2 + s5µ6ξ5
0|∂x1ζ|2 + s3µ4ξ3

0

(|∂2
x1
ζ|2 +|∂tζ|2

)
+ sµ2ξ0

(|∂3
x1
ζ|2 +|∂t∂x1ζ|2

)+ s−1ξ−1
0

(∣∣∂4
x1
ζ
∣∣2 +|∂2

t ζ|2 +|∂t∂
2
x1
ζ|2

))
dt dx1 (171)

Then, we deduce

∥M1ζ∥2
L2(0,T ;L2(Ω)) +∥M2ζ∥2

L2(0,T ;L2(Ω)) +2
Ï

(0,T )×I
M1ζ ·M2ζ dx1 dt

= ∥∥e sϕ0ξr
0 fηζ

∥∥2
L2(0,T ;L2(Ω)) +L.O.T. (172)

Writing Ii , j for the product term of the i -th term of M1ζ with the j -th term if M2ζ, we haveÏ
(0,T )×I

M1ζ ·M2ζ dx1 dt = ∑
i , j∈{1,...,5}

Ii , j

and we have to estimate all the terms Ii , j . This is done in a precise way in [41] using (49). For
instance, by integration by parts,

I1,2 =−4s5
Ï

(0,T )×I

(
∂x1ϕ0

)5
ζ∂3

x1
ζ dx1 dt =−30s5

Ï
(0,T )×I

(
∂x1ϕ0

)4
∂2

x1
ϕ0

(
∂x1ζ

)2 dx1 dt

+20s5
Ï

(0,T )×I

[
4
(
∂x1ϕ0

)3 (
∂2

x1
ϕ0

)2 + (
∂x1ϕ0

)4
∂3

x1
ϕ0

]
ζ∂x1ζ dx1 dt

and using (49), we deduce, as in [41] that

I1,2 =−4s5
Ï

(0,T )×I

(
∂x1ϕ0

)5
ζ∂3

x1
ζ dx1 dt =−30s5

Ï
(0,T )×I

(
∂x1ϕ0

)4
∂2

x1
ϕ0

(
∂x1ζ

)2 dx1 dt +L.O.T.
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Then, following the computations in [41], we findÏ
(0,T )×I

M1ζ ·M2ζ dx1 dt ⩾ c
Ï

(0,T )×I

(
s7µ8ξ7

0|ζ|2 + s5µ6ξ5
0|∂x1ζ|2 + s3µ4ξ3

0

(|∂2
x1
ζ|2 +|∂tζ|2

)
+ sµ2ξ0

(|∂3
x1
ζ|2 +|∂t∂x1ζ|2

)+ s−1ξ−1
0

(∣∣∂4
x1
ζ
∣∣2 +|∂2

t ζ|2 +|∂t∂
2
x1
ζ|2

))
dt dx1

−C
Ï

(0,T )×J0

(
s7µ8ξ7

0|ζ|2 + s5µ6ξ5
0|∂x1ζ|2 + s3µ4ξ3

0

(|∂2
x1
ζ|2 +|∂tζ|2

)
+ sµ2ξ0

(|∂3
x1
ζ|2 +|∂t∂x1ζ|2

)+ s−1ξ−1
0

(∣∣∂4
x1
ζ
∣∣2 +|∂2

t ζ|2 +|∂t∂
2
x1
ζ|2

))
dt dx1.

Then by using standard techniques as in [41], we deduce the result.

A.2. A Carleman estimate for the heat equation

We give here a sketch of the proof of Theorem 15. We recall that ϕ and ξ are defined by (28) and
we define

ϕ̃(t , x1, x2) := 1

ℓ(t )2 (e−λψΩ(x1,x2)+µψI (x1)+8λΨ−e10λΨ),

ξ̃(t , x1, x2) := 1

ℓ(t )2 e−λψΩ(x1,x2)+µψI (x1)+8λΨ.
(173)

We also recall that ψ is defined by (30) and we define

ψ̃(x1, x2) := µ

λ
ψI (x1)−ψΩ(x1, x2). (174)

We have in particular

ϕ= 1

ℓ2 (eλ(ψ+8Ψ) −e10λΨ), ξ := 1

ℓ2 eλ(ψ+8Ψ), ϕ̃= 1

ℓ2 (eλ(ψ̃+8Ψ) −e10λΨ), ξ̃ := 1

ℓ2 eλ(ψ̃+8Ψ).

We set

v := e sϕξr u, ṽ := e sϕ̃ξ̃r u.

Using (25), we have

ψ= ψ̃, ϕ= ϕ̃, ξ= ξ̃, v = ṽ ,
∂ψ

∂x1
= ∂ψ̃

∂x1
,

∂ψ

∂n
=−∂ψ̃

∂n
on (0,T )×∂Ω, (175)

and using that ∂u2
∂n = 0 on (0,T )×Γ1, we deduce that

∂v2

∂n
=−∂ṽ2

∂n
on (0,T )×Γ1. (176)

Since µ=µ0, taking λ0 ⩾µ0 and λ⩾λ0, we deduce that∣∣ψ∣∣+ ∣∣∇ψ∣∣+ ∣∣∇2ψ
∣∣+ ∣∣ψ̃∣∣+ ∣∣∇̃ψ∣∣+ ∣∣∇̃2ψ

∣∣≲ 1.

There exists s0 > 0 such that for s ⩾ s0(T 2 +T 4),

1⩽ sξ,
∣∣∇αξ∣∣+∣∣∇αϕ∣∣≲λαξ (k ⩾ 1),

∣∣∂t∇αξ
∣∣+∣∣∂t∇αϕ

∣∣≲λαT ξ3/2,
∣∣∂2

t ∇αξ
∣∣+∣∣∂2

t ∇αϕ
∣∣≲λαT 2ξ2,

1⩽ sξ̃,
∣∣∇αξ̃∣∣+∣∣∇αϕ̃∣∣≲λαξ̃ (k ⩾ 1),

∣∣∂t∇αξ̃
∣∣+∣∣∂t∇αϕ̃

∣∣≲λαT ξ̃3/2,
∣∣∂2

t ∇αξ̃
∣∣+∣∣∂2

t ∇αϕ̃
∣∣≲λαT 2ξ̃2,
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Using the above relations and following standard calculations (see, for instance, [17]), we obtain
the existence of s0,c,C , c̃,C̃ > 0 such that for s ⩾ s0(T 2 +T 4),

c
Ï

(0,T )×Ω

(
s3λ4ξ3 |v |2 + sλ2ξ |∇v |2 + 1

sξ
|∆v |2 + 1

sξ
|∂t v |2

)
dxdt

−
Ï

(0,T )×∂Ω
2s3λ3ξ3 ∣∣∇ψ∣∣2 ∂ψ

∂n
|v |2 dx1dt −

Ï
(0,T )×∂Ω

4sλ2ξ
∣∣∇ψ∣∣2 ∂v

∂n
· v dx1dt

−
Ï

(0,T )×∂Ω
4sλξ

(∇v∇ψ) · ∂v

∂n
dx1dt +

Ï
(0,T )×∂Ω

2sλξ
∂ψ

∂n
|∇v |2 dx1dt

−
Ï

(0,T )×∂Ω
2∂t v · ∂v

∂n
dx1dt −

Ï
(0,T )×∂Ω

2s2λξ
∂ψ

∂n
∂tϕ |v |2 dx1dt

⩽C

(Ï
(0,T )×Ω

|∂t u −∆u|2 ξ2r e2sϕ dxdt +
Ï

(0,T )×ω1

s3λ4ξ3 |v |2 dxdt

)
(177)

and

c̃
Ï

(0,T )×Ω

(
s3λ4ξ̃3 |ṽ |2 + sλ2ξ̃ |∇ṽ |2 + 1

sξ̃
|∆ṽ |2 + 1

sξ̃
|∂t ṽ |2

)
dxdt

−
Ï

(0,T )×∂Ω
2s3λ3ξ̃3 ∣∣∇ψ̃∣∣2 ∂ψ̃

∂n
|ṽ |2 dx1dt −

Ï
(0,T )×∂Ω

4sλ2ξ̃
∣∣∇ψ̃∣∣2 ∂ṽ

∂n
· ṽ dx1dt

−
Ï

(0,T )×∂Ω
4sλξ̃

(∇ṽ∇ψ̃) · ∂ṽ

∂n
dx1dt +

Ï
(0,T )×∂Ω

2sλξ̃
∂ψ̃

∂n
|∇ṽ |2 dx1dt

−
Ï

(0,T )×∂Ω
2∂t ṽ · ∂ṽ

∂n
dx1dt −

Ï
(0,T )×∂Ω

2s2λξ̃
∂ψ̃

∂n
∂t ϕ̃ |ṽ |2 dx1dt

⩽ C̃

(Ï
(0,T )×Ω

|∂t u −∆u|2 ξ̃2r e2sϕ̃ dxdt +
Ï

(0,T )×ω1

s3λ4ξ̃3 |ṽ |2 dxdt

)
. (178)

Summing (177) and (178) and using (176), (176), we deduce that

c
Ï

(0,T )×Ω

(
s3λ4ξ3 |v |2 + sλ2ξ |∇v |2 + 1

sξ
|∆v |2 + 1

sξ
|∂t v |2

)
dxdt

+ c̃
Ï

(0,T )×Ω

(
s3λ4ξ̃3 |ṽ |2 + sλ2ξ̃ |∇ṽ |2 + 1

sξ̃
|∆ṽ |2 + 1

sξ̃
|∂t ṽ |2

)
dxdt

⩽C

(Ï
(0,T )×Ω

|∂t u −∆u|2 ξ2r e2sϕ dxdt +
Ï

(0,T )×ω0

s3λ4ξ3 |v |2 dxdt

)
+ C̃

(Ï
(0,T )×Ω

|∂t u −∆u|2 ξ̃2r e2sϕ̃ dxdt +
Ï

(0,T )×ω1

s3λ4ξ̃3 |ṽ |2 dxdt

)
. (179)

Then, using that ϕ̃⩽ϕ and ξ̃⩽ ξ, we deduce thatÏ
(0,T )×Ω

(
s3λ4ξ3 |v |2 + sλ2ξ |∇v |2 + 1

sξ
|∆v |2 + 1

sξ
|∂t v |2

)
dxdt

≲
Ï

(0,T )×Ω
|∂t u −∆u|2 ξ2r e2sϕ dxdt +

Ï
(0,T )×ω1

s3λ4ξ3 |v |2 dxdt . (180)

From the elliptical regularity of the Laplace operator, we deduceÏ
(0,T )×Ω

(
s3λ4ξ3 |v |2 + sλ2ξ |∇v |2 + 1

sξ

∣∣∇2v
∣∣2 + 1

sξ
|∂t v |2

)
dxdt

≲
Ï

(0,T )×Ω
|∂t u −∆u|2 ξ2r e2sϕ dxdt +

Ï
(0,T )×ω1

s3λ4ξ3 |v |2 dxdt (181)
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and with standard computations, we can come back to u:Ï
(0,T )×Ω

e2sϕ (
s2r+3λ2r+4ξ2r+3 |u|2 + s2r+1λ2r+2ξ2r+1 |∇u|2

+s2r−1λ2r ξ2r−1 ∣∣∇2u
∣∣2 + s2r−1λ2r ξ2r−1 |∂t u|2

)
dxdt

≲
Ï

(0,T )×Ω
|∂t u −∆u|2 (sλξ)2r e2sϕ dxdt +

Ï
(0,T )×ω1

s2r+3λ2r+4ξ2r+3e2sϕ |u|2 dxdt . (182)

We deduce Theorem 15 by taking r = 1/2.

References

[1] M. Badra, T. Takahashi, “Feedback boundary stabilization of 2D fluid-structure interaction systems”, Discrete Contin.
Dyn. Syst. 37 (2017), no. 5, p. 2315-2373.

[2] ——— , “Gevrey regularity for a system coupling the Navier–Stokes system with a beam equation”, SIAM J. Math.
Anal. 51 (2019), no. 6, p. 4776-4814.

[3] ——— , “Gevrey regularity for a system coupling the Navier–Stokes system with a beam: the non-flat case”, Funkc.
Ekvacioj 65 (2022), no. 1, p. 63-109.

[4] ——— , “Maximal regularity for the Stokes system coupled with a wave equation: application to the system of
interaction between a viscous incompressible fluid and an elastic wall”, J. Evol. Equ. 22 (2022), no. 3, article no. 71
(55 pages).

[5] H. Beirão da Veiga, “On the existence of strong solutions to a coupled fluid-structure evolution problem”, J. Math.
Fluid Mech. 6 (2004), no. 1, p. 21-52.

[6] M. Bellassoued, J. Le Rousseau, “Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary
value problems”, J. Math. Pures Appl. 104 (2015), no. 4, p. 657-728.

[7] ——— , “Carleman estimates for elliptic operators with complex coefficients. Part II: Transmission problems”, J.
Math. Pures Appl. 115 (2018), p. 127-186.

[8] M. Boulakia, S. Guerrero, “Local null controllability of a fluid-solid interaction problem in dimension 3”, J. Eur. Math.
Soc. 15 (2013), no. 3, p. 825-856.

[9] M. Boulakia, A. Osses, “Local null controllability of a two-dimensional fluid-structure interaction problem”, ESAIM,
Control Optim. Calc. Var. 14 (2008), no. 1, p. 1-42.

[10] R. Buffe, “Stabilization of the wave equation with Ventcel boundary condition”, J. Math. Pures Appl. 108 (2017), no. 2,
p. 207-259.

[11] R. Buffe, T. Takahashi, “Controllability of a Stokes system with a diffusive boundary condition”, ESAIM, Control
Optim. Calc. Var. 28 (2022), article no. 63 (29 pages).

[12] S. Čanić, B. Muha, M. Bukač, “Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical
simulation”, in Fluid-structure interaction and biomedical applications, Advances in Mathematical Fluid Mechanics,
Springer, 2014, p. 79-195.

[13] A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont, “Existence of weak solutions for the unsteady interaction
of a viscous fluid with an elastic plate”, J. Math. Fluid Mech. 7 (2005), no. 3, p. 368-404.

[14] S. P. Chen, R. Triggiani, “Proof of extensions of two conjectures on structural damping for elastic systems”, Pac. J.
Math. 136 (1989), no. 1, p. 15-55.

[15] J.-M. Coron, S. Guerrero, “Null controllability of the N -dimensional Stokes system with N−1 scalar controls”, J. Differ.
Equations 246 (2009), no. 7, p. 2908-2921.

[16] A. Doubova, E. Fernández-Cara, “Some control results for simplified one-dimensional models of fluid-solid interac-
tion”, Math. Models Methods Appl. Sci. 15 (2005), no. 5, p. 783-824.

[17] E. Fernández-Cara, M. González-Burgos, S. Guerrero, J.-P. Puel, “Null controllability of the heat equation with
boundary Fourier conditions: the linear case”, ESAIM, Control Optim. Calc. Var. 12 (2006), p. 442-465.

[18] E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov, J.-P. Puel, “Local exact controllability of the Navier–Stokes system”,
J. Math. Pures Appl. 83 (2004), no. 12, p. 1501-1542.

[19] A. Fursikov, O. Imanuvilov, Controllability of evolution equations, Lecture Notes Series, Seoul, vol. 34, Seoul National
University, 1996, iv+163 pages.

[20] C. Grandmont, “Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate”,
SIAM J. Math. Anal. 40 (2008), no. 2, p. 716-737.

[21] C. Grandmont, M. Hillairet, “Existence of global strong solutions to a beam-fluid interaction system”, Arch. Ration.
Mech. Anal. 220 (2016), no. 3, p. 1283-1333.

[22] C. Grandmont, M. Hillairet, J. Lequeurre, “Existence of local strong solutions to fluid-beam and fluid-rod interaction
systems”, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36 (2019), no. 4, p. 1105-1149.



Rémi Buffe and Takéo Takahashi 1575

[23] L. Hörmander, The analysis of linear partial differential operators. III: Pseudo-differential operators, reprint of the
1994 ed. ed., Classics in Mathematics, Springer, 2007.

[24] O. Imanuvilov, T. Takahashi, “Exact controllability of a fluid-rigid body system”, J. Math. Pures Appl. 87 (2007), no. 4,
p. 408-437.

[25] J. Le Rousseau, M. Léautaud, L. Robbiano, “Controllability of a parabolic system with a diffuse interface”, J. Eur. Math.
Soc. 15 (2013), no. 4, p. 1485-1574.

[26] J. Le Rousseau, G. Lebeau, L. Robbiano, Elliptic Carleman estimates and applications to stabilization and controlla-
bility. Volume I. Dirichlet boundary conditions on Euclidean space, Progress in Nonlinear Differential Equations and
their Applications, vol. 97, Birkhäuser, 2021.

[27] ——— , Elliptic Carleman estimates and applications to stabilization and controllability. Volume II. General Boundary
Conditions on Riemannian Manifolds, Progress in Nonlinear Differential Equations and their Applications, vol. 97,
Birkhäuser, 2022.

[28] J. Le Rousseau, N. Lerner, “Carleman estimates for anisotropic elliptic operators with jumps at an interface”, Anal.
PDE 6 (2013), no. 7, p. 1601-1648.

[29] J. Le Rousseau, L. Robbiano, “Carleman estimate for elliptic operators with coefficients with jumps at an interface
in arbitrary dimension and application to the null controllability of linear parabolic equations”, Arch. Ration. Mech.
Anal. 195 (2010), no. 3, p. 953-990.

[30] ——— , “Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces”,
Invent. Math. 183 (2011), no. 2, p. 245-336.

[31] M. Léautaud, “Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability
of parabolic systems”, J. Funct. Anal. 258 (2010), no. 8, p. 2739-2778.

[32] G. Lebeau, L. Robbiano, “Contrôle exact de l’équation de la chaleur”, Commun. Partial Differ. Equations 20 (1995),
no. 1-2, p. 335-356.

[33] D. Lengeler, “Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic
Koiter type shell”, SIAM J. Math. Anal. 46 (2014), no. 4, p. 2614-2649.
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