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Abstract. The Rumin algebra of a contact manifold is a contact invariant C∞-algebra of differential forms
which computes the de Rham cohomology algebra. We recover this fact by giving a simple and explicit
construction of the Rumin algebra via Markl’s formulation of the Homotopy Transfer Theorem.
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1. Introduction

A contact manifold is a pair (M 2n+1,ξ) of a real (2n+1)-dimensional manifold and a subbundle ξ⊂
T M of rank 2n with the property that if θ is a local one-form such that kerθ = ξ, then θ∧dθn ̸= 0.
The Rumin complex is a cochain complex which is adapted to the contact structure and computes
the de Rham cohomology groups. There are many constructions of the Rumin complex, including
Rumin’s original construction via subquotients of differential forms [14], constructions via a
spectral sequence [1, 8, 16], and constructions including a homotopy equivalence with the de
Rham complex [3, 5, 17]. Importantly, the latter constructions yield, as a consequence of the
Homotopy Transfer Theorem [9, 12, 13], a C∞-structure on the Rumin complex which recovers
the de Rham cohomology algebra.

The Rumin algebra is a specific contact invariant C∞-algebra of differential forms which
computes the de Rham cohomology algebra; indeed, its higher products mk , k ≥ 4, all vanish.
Its existence follows from the latter constructions above. Calderbank and Diemer showed [3]
that a curved Bernstein–Gelfand–Gelfand sequence [4] for a parabolic geometry carries a curved
A∞-structure. Bryant, Eastwood, Gover and Neusser pointed out [1] how to recover the Rumin
complex from the BGG sequence for the trivial representation, and their observation extends to
the Rumin algebra. Rumin’s work [17] on the Rumin complex of a Carnot–Carathéodory space
includes a realization of the Rumin complex as a deformation retract of the de Rham complex.
While none of these authors explicitly computed the C∞-structure, Case gave [5] ad hoc formulas
for mk in a manner which resembles a construction of Tsai, Tseng and Yau [20] on symplectic
manifolds.
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In this short note we present a simple and explicit construction of the Rumin algebra. The
key ingredients are a natural contact invariant deformation retract of the de Rham algebra and
an explicit formula [13] for the transfer of the Homotopy Transfer Theorem. Our deformation
retract coincides with those of Calderbank–Diemer [3] and Rumin [17], and our application of
the Homotopy Transfer Principle explains the ad hoc formulas of Case [5].

By construction, the Rumin algebra is homotopy equivalent, as a C∞-algebra, to the de Rham
algebra. It is known that two simply connected manifolds of finite type are rationally homotopy
equivalent if and only if their spaces of polynomial differential forms are homotopy equivalent as
C∞-algebras [6, 7, 10, 18]; and that the homotopy type, as a C∞-algebra, of the de Rham algebra
has many implications for the diffeomorphism type of a closed, simply connected, smooth
manifold [19]. For these reasons, we expect the Rumin algebra to be a fundamental invariant
of contact manifolds.

We define the Rumin algebra as a C∞-algebra on a subspace of differential forms because
of the many applications of the latter (e.g. [18]). This choice means that elements of the Ru-
min algebra are not sections of a vector bundle and the C∞-structure is not defined in terms
of differential operators. However, the construction is local, and can be formulated in the lan-
guage of sheaves (cf. [5]). Indeed, the Rumin algebra can be equivalently described in terms of
sections of vector bundles [1, 3, 5, 14, 15]. This perspective is used, for example, to prove Hodge
theorems [5, 15].

This note is organized as follows.
In Section 2 we recall some basic facts about C∞-algebras, including Markl’s version [13] of the

Homotopy Transfer Theorem.
In Section 3 we recall some basic facts about contact manifolds and the symplectic structure

on their contact distribution.
In Section 4 we construct the Rumin algebra.

2. C∞-algebras

In this section we discuss some basic facts about C∞-algebras, which are the commutative
versions of A∞-algebras. We follow the conventions of Keller’s survey article on the latter [11].
We denote byN the set of positive integers and byN0 :=N∪ {0} the set of nonnegative integers.

Let A =⊕
k∈Z Ak be aZ-graded vector space. A homogeneous element of A is an elementω ∈ Ak

for some k ∈ Z. In this case we call k the degree of ω and we set |ω| := k. A map f : A⊗k → A is
homogeneous of degree ℓ if

f (Ai1 ⊗·· ·⊗ Aik ) ⊂ Ai1+···+ik+ℓ

for all i1, . . . , ik ∈Z. In this case we set | f | := ℓ.
An A∞-algebra is a pair (A,m) of a Z-graded vector space A and a collection m = {mk }k∈N of

homogeneous operators mk : A⊗k → A of degree 2−k such that∑
r+s+t=n

(−1)r+st mr+t+1(1⊗r ⊗ms ⊗1⊗t ) = 0 (1)

for all n ∈N, where 1: A → A is the identity map and we use the Koszul sign convention

( f ⊗ g )(α⊗β) := (−1)|g ||α| f (α)⊗ g (β)

for homogeneous operators f , g : A → A and homogeneous elements α,β ∈ A. The first three
cases of (1) are

m1m1 = 0,

m1m2 = m2(m1 ⊗1+1⊗m1),

m1m3 = m2(1⊗m2 −m2 ⊗1)−m3(m1 ⊗1⊗2 +1⊗m1 ⊗1+1⊗2 ⊗m1).
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In particular, if (A,m) is an A∞-algebra, then (A,m1) is a cochain complex. Graded (associative)
algebras are A∞-algebras with mk = 0 for all k ̸= 2. Differential graded algebras are A∞-algebras
with mk = 0 for all k ≥ 3. The cohomology ring (H A, [m2]) of (A,m) is the graded algebra

H Ak := kerm1 ∩ Ak

imm1 ∩ Ak
,

[m2]([ω1]⊗ [ω2]) := [m2(ω1 ⊗ω2)].

Given A∞-algebras (A,m) and (B ,m), an A∞-morphism f : (A,m) → (B ,m) is a collection of
homogeneous operators fk : A⊗k → B of degree 1−k such that∑

r+s+t=n
(−1)r+st fr+t+1(1⊗r ⊗ms ⊗1⊗t ) = ∑

1≤r≤n
i1+···+ir =n

(−1)ℓmr ( fi1 ⊗·· ·⊗ fir ),

ℓ :=
r∑

j=1
(r − j )(i j −1),

for all n ∈N. Specializing to the cases n ∈ {1,2} yields

f1m1 = m1 f1,

f1m2 = m2( f1 ⊗ f1)+m1 f2 + f2(m1 ⊗1+1⊗m1).

In particular, f1 : (A,m1) → (B ,m1) is a cochain map. We call f an A∞-quasi-isomorphism if
[ f1] : H A → HB , [ f1]([α]) := [ f1(α)], is an isomorphism of graded algebras.

Denote by Sn the group of permutations of {1,2, . . . ,n}. We require the left action of Sn on A⊗n

defined as follows: Givenσ ∈ Sn , let ρσ : A⊗n → A⊗n be the linear map defined on tensor products
of homogeneous elements x1, . . . , xn ∈ A by

ρσ(x1 ⊗·· ·⊗xn) = sgn(σ)ϵ(σ; x1, . . . , xn)xσ−1(1) ⊗·· ·⊗xσ−1(n),

where ϵ(σ; x1, . . . , xn) is the Koszul sign determined by

x1 ∧·· ·∧xp+q = ∑
σ∈Sp+q

ϵ(σ; x1, . . . , xp+q )xσ−1(1) ⊗·· ·⊗xσ−1(p+q).

Given p, q ∈N0, a (p, q)-shuffle is an element σ ∈ Sp+q such that

σ(1) < ·· · <σ(p), σ(p +1) < ·· · <σ(p +q).

Note that a (p, q)-shuffle σ is uniquely determined by the set {σ(1), . . . ,σ(p)}. Denote by Shp,q ⊂
Sp+q the subset of (p, q)-shuffles. Given s, t ∈N, the sets

Shp,q (s, t ) :=
{
σ ∈ Shp,q : #

(
{σ−1(p +q − j )

}s+t−1
j=0 ∩ {1, . . . , p}

)= s
}

of (p, q)-shuffles such that {σ−1(p +q − j )}s+t−1
j=0 contains exactly s elements of {1, . . . , p} give rise

to a partition
Shp,q = ∐

s+t=r
Shp,q (s, t ) (2)

of Shp,q . Note that if σ ∈ Shp,q (s, t ), then there are unique α ∈ Shp−s,q−t and β ∈ Shs,t such that

σ= (α×β)ϕs,t , (3)

whereα andβ act on {1, . . . , p+q−s−t } and {p+q−s−t+1, . . . , p+q}, respectively, andϕs,t ∈ Shp,q

is the (p, q)-shuffle

ϕs,t ( j ) =


j , if 1 ≤ j ≤ p − s,

j +q − t , if p − s +1 ≤ j ≤ p,

j − s, if p +1 ≤ j ≤ p +q − t ,

j , if p +q − t +1 ≤ j ≤ p +q ,

which fixes {1, . . . , p} and maps {p − s +1, . . . , p} to {p +q − s − t +1, . . . , p +q − t }.
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The (p, q)-shuffle product νp,q : A⊗(p+q) → A⊗(p+q) is

νp,q := ∑
σ∈Shp,q

ρσ.

For example, if ω,τ,η ∈ A are homogeneous, then

ν1,1(ω⊗τ) =ω⊗τ− (−1)|ω||τ|τ⊗ω,

ν1,2(ω⊗τ⊗η) =ω⊗τ⊗η− (−1)|ω||τ|τ⊗ω⊗η+ (−1)|ω|(|τ|+|η|)τ⊗η⊗ω,

ν2,1(ω⊗τ⊗η) =ω⊗τ⊗η− (−1)|τ||η|ω⊗η⊗τ+ (−1)|η|(|ω|+|τ|)η⊗ω⊗τ.

Equations (2) and (3) imply that if p, q,r ∈N are such that r ≤ p +q , then

νp,q = ∑
s,t∈N0
s+t=r

(νp−s,q−t ⊗νs,t )ρϕs,t . (4)

A C∞-algebra is an A∞-algebra (A,m) such that

mp+q ◦νp,q = 0

for all p, q ∈ N. Graded commutative (associative) algebras are C∞-algebras with mk = 0 for all
k ̸= 2. Commutative differential graded algebras are C∞-algebras with mk = 0 for all k ≥ 3.

Given C∞-algebras (A,m) and (B ,m), a C∞-morphism f : (A,m) → (B ,m) is an A∞-morphism
such that

fp+q ◦νp,q = 0

for all p, q ∈N. We call f a C∞-quasi-isomorphism if [ f1] : H A → HB is an isomorphism of graded
commutative algebras.

The Homotopy Transfer Theorem [12, Theorem 10.3.1] constructs a C∞-structure on a defor-
mation retract of a commutative differential graded algebra and an extension of the inclusion to
a C∞-quasi-isomorphism. We require explicit formulas for the transferred structure and induced
quasi-isomorphism (cf. [12, Theorem 13.1.7]).

Theorem 1. Let (A,d ,µ) be a commutative differential graded algebra and let (B ,d) be a subcom-
plex of (A,d). Suppose that

(A,d) (B ,d)h
π

i
(5)

is a deformation retract; i.e. π : (A,d) → (B ,d) and i : (B ,d) → (A,d) are cochain maps, h : A → A
is homogeneous of degree −1, and iπ= 1A −dh−hd and πi = 1B . Recursively defineψn : A⊗n → A,
n ≥ 2, by

ψn := ∑
s+t=n

(−1)s+1µ(hψs ⊗hψt ), (6)

with the convention hψ1 =−1A . Set m1 := d and mk := πψk i⊗k , k ≥ 2, and fk :=−hψk i⊗k , k ∈N.
Then (B ,m) is a C∞-algebra and f : (B ,m) → (A,d ,µ) is a C∞-quasi-isomorphism with f1 = i .

Proof. Markl computed [13, Theorem 5] that (B ,m) is an A∞-algebra and that f : (B ,m) →
(A,d ,µ) is an A∞-quasi-morphism. We prove the final conclusion by proving thatψn ◦νp,q = 0 for
all p, q ∈N such that p +q = n. The proof is by strong induction in n. Since ψ2 = µ, we have that
ψ2 ◦ν1,1 = 0. Suppose now that ψk ◦νp,q = 0 for all 2 ≤ k ≤ n and all p, q ∈N such that p +q = k.
Let p, q ∈N be such that p +q = n +1. On the one hand, Equation (4) implies that

ψn+1 ◦νp,q = ∑
s+t=p+q

∑
a,b∈N0
a+b=t

(−1)s+1µ(hψs ⊗hψt )(νp−a,q−b ⊗νa,b)ρϕa,b .
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On the other hand, the inductive hypothesis implies that the only nonzero summands are those
for which (a,b) = (0, q) or (a,b) = (p,0). Combining these facts with the observations νp,0 = 1 and
ν0,q = 1 and ρϕ0,q = 1 yields

ψn+1 ◦νp,q = (−1)p+1µ(hψp ⊗hψq )+ (−1)q+1µ(hψq ⊗hψp )ρϕp,0 .

Combining this with the fact µ◦ν1,1 = 0 yields ψn+1 ◦νp,q = 0, as desired. □

3. The Lefschetz operator on a contact manifold

In this section we discuss the Lefschetz operator on a contact manifold (M 2n+1,ξ). While this
material is standard (cf. [15, Section 2], [17, Section 5.3]), we take the unorthodox approach of
working with subpaces of the space of differential forms, rather than sections ofΛξ∗. This choice
reflects our definition of the Rumin algebra.

Let (M 2n+1,ξ) be a contact manifold. Locally there exists a contact form; i.e. a real one-form θ

with kernel ξ. We say that (M 2n+1,ξ) is coorientable if a global contact form exists.
Denote by A k the (real) vector space of differential k-forms on M 2n+1 and denote by A k

0 the
space of vertical forms; i.e. A k

0 ⊂ A k is the subspace annihilated by taking the exterior product
with any local contact form. We require the following simple observation about the exterior
derivative on A k

0 .

Lemma 2. Let θ be a local contact form on a contact manifold (M 2n+1,ξ). If ω ∈ A k
0 , then

θ∧dω=ω∧dθ wherever θ is defined.

Proof. Since ω ∈A k
0 , it holds that ω= θ∧τ for some τ ∈A k−1. Therefore

θ∧dω= θ∧d(θ∧τ) = θ∧τ∧dθ =ω∧dθ. □

Suppose that (M 2n+1,ξ) is coorientable. Given a choice of contact form θ, the Lefschetz
operator Lθ : A k

0 →A k+2
0 is

Lθω :=ω∧dθ.

The restriction to vertical forms ensures that if u ∈C∞(M) and ω ∈A k
0 , then

Leuθω= euLθω. (7)

The Lefschetz operator inherits many properties from the symplectic form dθ|ξ. For example,
its powers are isomorphisms when suitably restricted.

Lemma 3. Let (M 2n+1,ξ) be a coorientable contact manifold with global contact form θ. If k ≤ n,
then L k

θ
: A n−k+1

0 →A n+k+1
0 is an isomorphism.

Proof. Denote by W k the vector space of smooth sections of Λkξ∗. Given ω ∈W k , denote by ω̃θ
the unique element of A k such that ω̃θ|ξ =ω and ω̃θ(Tθ , ·) = 0, where Tθ is the Reeb vector field
determined by θ(T ) = 0 and dθ(T, · ) = 0. Then the map

W k ∋ω 7→ θ∧ ω̃θ ∈A k+1
0

is an isomorphism. Since dθ|ξ is a symplectic form, (dθ|ξ)k : W n−k →W n+k is an isomorphism [2,
Proposition 1.1]. The conclusion readily follows. □

We say that ω ∈ A k , k ≤ n, is primitive if L n+1−k
θ

(θ∧ω) = 0 for any choice of local contact
form. The following proposition identifies, in a contact invariant way, the non-primitive part of
an arbitrary differential form.
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Proposition 4. Let (M 2n+1,ξ) be a contact manifold. There is a unique contact invariant linear
map Γ : A k →A k−1

0 such that given a local contact form θ and an ω ∈A k , it holds that

θ∧ω∧dθn+1−k = Γω∧dθn+2−k , if k ≤ n,

θ∧ω= Γω∧dθ, Γω ∈ imL k−n−1
θ , if k ≥ n +1.

(8)

Moreover,

(1) Γ(A k
0 ) = {0};

(2) ΓdΓ= Γ; and
(3) Γd = 1 on A k

0 , k ≤ n.

Proof. Let θ be a local contact form. Let ω ∈ A k . If k ≤ n, then Lemma 3 yields a unique
ζθ ∈A k−1

0 such that
θ∧ω∧dθn+1−k = ζθ∧dθn+2−k . (9)

Equation (7) implies that Γθω := ζθ is independent of the choice of θ. If k ≥ n +1, then Lemma 3
yields a unique ζθ ∈A 2n−k+1

0 such that

θ∧ω= ζθ∧dθk−n . (10)

Equation (7) implies that Γθω := ζθ ∧dθk−n−1 is independent of the choice of θ. The existence,
uniqueness, and contact invariance of Γ readily follow. It follows immediately from (8) that
Γ(A k

0 ) = {0}. Let ω ∈A k and let θ be a local contact form. Suppose first that k ≤ n. Let ζ ∈A k−1
0

be as in (9). Lemma 2 implies that

θ∧dζ∧dθn+1−k = ζ∧dθn+2−k .

Hence ΓdΓω = Γω if k ≤ n. Suppose now that k ≥ n +1. Let ζ ∈ A 2n−k+1
0 be as in (10). Lemma 2

implies that
θ∧d(ζ∧dθk−n−1) = ζ∧dθk−n .

Hence ΓdΓω= Γω if k ≥ n +1. Finally, let ω ∈A k
0 , k ≤ n. Lemma 2 implies that

θ∧dω∧dθn−k =ω∧dθn+1−k .

Therefore Γdω=ω. □

4. The Rumin algebra

Let (M 2n+1,ξ) be a contact manifold. Set

Rk :=
{
ω ∈A k : Γω= 0,Γdω= 0

}
,

where Γ is as in Proposition 4. Note that d(Rk ) ⊆ Rk+1 for all k ∈ N0. Denote R := ⊕
k Rk and

A :=⊕
k A k .

Our main result is that (R,d) is a deformation retract of the de Rham complex.

Theorem 5. Let (M 2n+1,ξ) be a contact manifold. Then

πω :=ω−dΓω−Γdω (11)

is a homogeneous projection π : A →R of degree zero. In particular,

(A ,d) (R,d)Γ
π

i
(12)

is a deformation retract, where i : R →A is the inclusion.

Proof. Equation (11) implies that dπ = πd. On the one hand, the definition of R implies that
π|R = 1R . On the other hand, Proposition 4 implies that Γ◦Γ= 0 and ΓdΓ= Γ. Therefore Γπ= 0
and Γdπ= 0, and hence π(A ) ⊆R. □
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Applying Theorem 1 to (12) yields an explicit C∞-structure on the Rumin complex which is
C∞-quasi-isomorphic to the de Rham algebra.

Corollary 6. Let (M 2n+1,ξ) be a contact manifold. Define mk : R⊗k →R and fk : R⊗k →A by

m1 = di , f1 = i ,

m2 =πµi⊗2, f2 =−Γµi⊗2,

m3 =πµ(Γµ⊗1−1⊗Γµ)i⊗3, f3 = 0,

mk = 0, fk = 0, if k ≥ 4.

Then (R,m) is a C∞-algebra and f : R →A is a C∞-quasi-isomorphism.

Proof. It suffices to compute mk and fk in Theorem 1. Since Γ(A ) ⊆A0, it holds that µ(Γ⊗Γ) = 0
and Γµ(Γ⊗1) = 0 = Γµ(1⊗Γ). We deduce from Equation (6) that

ψ2 =µ,

ψ3 =µ(Γµ⊗1−1⊗Γ).

Therefore Γψ3 = 0. Using Equation (6) again yields

ψ4 =−µ(Γψ2 ⊗Γψ2) = 0.

Finally let k ≥ 5. If s, t ∈ N satisfy s + t = k, then max{s, t } ≥ 3. A straightforward induction
argument then yields ψk = 0. The conclusion readily follows. □

The C∞-algebra (R,m) of Corollary 6 is the Rumin algebra. Note that if ω,τ,η ∈ R are
homogeneous, then

m2(ω⊗τ) =π(ω∧τ),

m3(ω⊗τ⊗η) =π(
Γ(ω∧τ)∧η− (−1)|ω|ω∧Γ(τ∧η)

)
,

recovering the formulas of Case [5, Definitions 8.4 and 8.6, and Theorem 8.8].
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