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Abstract. The chain covering number Cov(P ) of a poset P is the least number of chains needed to cover P .
For an uncountable cardinal ν, we give a list of posets of cardinality and covering number ν such that for
every poset P with no infinite antichain, Cov(P ) ≥ ν if and only if P embeds a member of the list. This list has
two elements if ν is a successor cardinal, namely [ν]2 and its dual, and four elements if ν is a limit cardinal
with cf(ν) weakly compact. For ν=ℵ1, a list was given by the first author; his construction was extended by F.
Dorais to every infinite successor cardinal ν.

Résumé. Le nombre de recouvrement par chaînes d’un ensemble ordonné P (poset), noté Cov(P ), est le plus
petit nombre de chaînes nécessaires pour recouvrir P . Pour un cardinal donné ν, on donne une liste de posets
Q de nombre de recouvrement par chaînes ν telle que pour tout poset P sans antichaîne infinie, Cov(P ) ≥ ν si
et seulement si P contient une copie d’un membre de la liste. Cette liste est constituée de posets de cardinal
ν, elle a deux éléments si ν est un cardinal successeur, à savoir [ν]2 et son dual, et quatre éléments si ν est un
cardinal limite avec cf(ν) faiblement compact. Pour ν = ℵ1, une liste a été donnée par le premier auteur; sa
construction a été étendue par F. Dorais à tout cardinal successeur infini ν.
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1. Introduction

Let P := (V ,≤) be an ordered set (poset). The chain covering number Cov(P ) of P is the least
number of chains needed to cover V .

A famous result due to R.P. Dilworth [5] asserts that for every poset P and integer n, Cov(P ) ≥ n
if and only if P contains an antichain of cardinality n.

If n is replaced by ℵ0, then Cov(P ) ≥ℵ0 if and only if P contains either an infinite antichain or
the lexicographical sum of antichains of finite unbounded cardinality indexed by the chain of the
integers or its reverse (see [11, Lemma 4.1, p. 491]).

M. Perles [13] and independently E. S. Wolk [20] proved that the assumption that every
antichain of the poset is finite does not suffice to get a cover of the poset with a countable
number of chains (or with any prescribed number ν of chains). Their counter-example is the
direct product ν×ν of an uncountable cardinal ν by itself. It turns out that the subset [ν]2 :=
{(α,β) :α<β< ν} has the same properties. This is the main protagonist in this article.

According to F. Dorais [7], F. Galvin conjectured in 1968 that Cov(P ) ≥ ℵ1 if and only if V
contains a subset X of cardinality ℵ1 such that Cov(P↾ X ) =ℵ1. It is not known if the truth of this
conjecture is consistent with ZFC. The first author proved in [1] that this conjecture holds with
the additional hypothesis that P has no infinite antichain. He introduced Perles posets having
cardinality and chain covering number ℵ1 and proved that if a poset P has no infinite antichain,
Cov(P ) ≥ℵ1 if and only if some poset induced by P is isomorphic to a Perles poset. This result was
extended by F. Dorais [6] to infinite successor cardinals.

It was conjectured by R. Rado [16] that Galvin’s conjecture holds for interval orders (a poset P is
an interval order if its vertices can be represented by intervals of a chain, a vertex x being strictly
before y in the ordering if the interval associated to x is to the left of the interval associated to
y , these intervals being disjoint). Todorčević [17] proved that Rado’s conjecture is consistent with
the existence of a supercompact cardinal. In [18, 19], Todorčević proved that large cardinals are
indeed necessary to establish the consistency of Rado’s conjecture. He also proved that the truth
of Rado’s conjecture implies that Galvin’s conjecture holds for 2-dimensional posets (see [7]).

In this paper, we prove Galvin’s conjecture for posets with no infinite antichain and for each
cardinal ν we give an explicit list of posets of cardinality and chain covering number ν.

In order to present our result, we need few notations. Let P := (V ,≤) be a poset. If X is a subset
of V , the poset induced by P on X is P↾ X := (X ,≤∩X ×X ). The term subposet always refers here
to induced subposet. If P := (V ,≤) is a poset, two elements x, y of V are comparable if x ≤ y or
y ≤ x; otherwise they are incomparable. We write x⊥y to say that they are incomparable. For
each subset A of P , we write (⊥A) or A⊥ for the set of vertices of P that are incomparable to
every element of A. Also, for p ∈ P , p⊥ denotes the set of vertices of P that are incomparable to p.
We define ↓A := {x ∈ P : x ≤ a for some a ∈ A}; similarly we have ↑A. If A = {a}, we denote these
sets by ↓a and ↑a. If a ≤ b in P , we write [a,b]P := {z ∈ P : a ≤ z ≤ b} and [a,b) is similarly defined.
The dual of P is the poset on the same domain equipped with the opposite order, we denote it by
P∗. We recall that a subset I of P is an initial segment of P if x ≤ y and y ∈ I imply x ∈ I ; a subset
of P is a final segment if this is an initial segment of P∗, the dual of P . Initial and final segments
being ordered by set inclusion, if A is a subset of P , ↓A is the least initial segment of P containing
A and ↑A is the least final segment of P containing A. A subset A of P is up-directed if every pair
x, y of elements of A has some upper bound z in A. An ideal of P is any up-directed nonempty
initial segment J of P .

The dominance relation is defined on subsets of P : B dominates A, written A ↗ B , when
∀ a ∈ A ∀ b ∈ B(a ≤P b).

A poset P is embeddable in a poset P ′, and we set P ≤ P ′, if P is isomorphic to some subposet
of P ′. Two posets P and P ′ are equimorphic if each is isomorphic to a subposet of the other.
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Clearly, if P ≤ P ′ then Cov(P ) ≤ Cov(P ′), while Cov(P ) = Cov(P∗). A subset A of P is cofinal in
P if every element of P is majorized by some element a ∈ A, i.e, ↓A = P . The cofinality of P is
the least cardinality of a cofinal subset of P , we denote it by cf(P ). Accordingly, if ν is an ordinal,
we denote by cf(ν) the cofinality of ν. For a set X of ordinals, sup X (often notated

∨
X ) is the

supremum of X .

Definition 1. Let ν be an infinite ordinal, we set [ν]2 := {(α,β) : α < β < ν}, and order that set by
setting (α,β) ≤ (α′,β′) if α ≤ α′ and β ≤ β′. As a subset of the direct product ν×ν, this poset is the
upper half of ν×ν ordered componentwise.

Our main result asserts:

Theorem 2. Let ν be an uncountable cardinal and P be a poset with no infinite antichain.

(1) If ν is a successor cardinal, i.e., ν= κ+, then Cov(P ) ≥ ν= κ+ if and only if P or P∗ contains
a copy of [κ+]2.

(2) If ν is an uncountable limit cardinal, then Cov(P ) ≥ ν if and only if P or P∗ contains a poset
Q of the form

∑
a∈C Qa , where C is a chain of cardinality cf(ν), Qa ≃ [κ+a ]2 and (κ+a )a∈C is a

family of distinct cardinals that satisfies sup{κ+a : a ∈C } = ν.

Comments about item (1). In [1], the first author introduced a collection P(ω1,ω1) of posets of
size ℵ1 and proved that these posets cannot be covered by less that ℵ1 chains (Proposition 1.15)
and furthermore that a poset with no infinite antichain can be covered by less than ℵ1 chains if
and only if it does not embed a member of P(ω1,ω1) (Theorem 2.1). In [6] F. Dorais extended this
result to successor cardinals. For such a cardinal, say κ+, he introduced posets of Perles type and
showed that a poset with no infinite antichain can be covered by at most κ chains if and only if it
does not embed a Perles type poset of cardinality κ+. Item (1) is equivalent to the fact that each
of these posets embeds a copy of [κ+]2 or its dual. This fact was not stated in [1] nor in [6]. Since
this is a fact of independent interest, we give a proof in Subsection 2.1.

Comments about item (2). Let λ := cf(ν). Suppose that λ is weakly compact, that is every chain
of cardinality λ contains either a chain of order type λ or of its dual. Then, in item (2), we may
replace the chain C byλ or its dual. If we compare the posets Q by embeddability, we get only four
nonequimorphic posets, namely

∑
α∈λ[κ+α]2,

∑
α∈λ∗ [κ+α]2, and their duals, where the sequence

(κα)α<λ is increasing and with limit ν. Two such families (κ+α)α∈λ give equimorphic posets.
If λ is not weakly compact, then among the posets we obtain in item (2), some cannot be

expressed as a well-ordered or reversely well ordered chain of type λ. For an example, suppose
that C is the chain R of real numbers. Let c be a bijective map from R onto κ := 2ℵ0 and f be a
strictly increasing map from κ in the collection of successor cardinals. If A is any subchain of C
set Q A := ∑

a∈ A[ f (c(a))]2. Then Cov(Q A) = sup{ f (c(a)) : a ∈ A}. Since a well-ordered or reverse
well-ordered subchain A of R is at most countable, and the cofinality of 2ℵ0 is uncountable,
Cov(Q A) < Cov(QC ).

Problem 3. Let ν be an uncountable limit cardinal such that λ := cf(ν) is not weakly compact,
find the least number G(ν) of posets Q needed in item (2)?

An easy consequence of Item (1) of Theorem 2 is about the notion of indivisibility. A poset P
is indivisible if for every partition of its domain in two parts, P embeds into a restriction of P to
one of these parts; more generally, P is < ν-indivisible for some cardinal ν if for every partition of
P into less than ν parts P embeds in a restriction of P to some part. [9] contains several results
about the indivisibility of posets and relations.

Corollary 4. If ν is an infinite successor cardinal, then [ν]2 is < ν-indivisible.



1386 Uri Abraham and Maurice Pouzet

Indeed, let (Aα)α<κ where κ+ = ν be a partition (or a covering) of [ν]2. If the covering number
of each part is at most κ then the covering number of [ν]2 is at most κ. But this is impossible,
hence the covering number of some part is at least ν. From Item 1 of Theorem 2, this part
embeds [ν]2.

Using Lemma 19 the conclusion extends to regular ν. We do not know if [ν]2 is < cf(ν)-
indivisible. Extension of these results to [ν]n need to be considered. This paper was motivated by
a question of Abraham, Bonnet, Kubis [2] about two well studied notions in the theory of ordered
sets, namely well quasi orders (w.q.o) and better quasi orders (b.q.o), ([9] for reference). They ask
whether any w.q.o is a countable union of b.q.o subposets. A positive answer would imply that
any ω-indivisible w.q.o is b.q.o.

We present two proofs of Theorem 2. They have a common part, which is a reduction to a
special case (Theorem 27). With that reduction, Item (2) reduces to Item (1). Our first proof of
Item (1) is based on the definition of the class P (κ) of posets. We prove that any poset in that
class embeds [ν]2 or its dual (Theorem 14). Then we obtain the conclusion of Item 1 by proving
that a poset not coverable by ν chains embeds a poset in P (ν+) (Theorem 14). This latter fact was
known for ℵ1-Perles posets [1]. Our second proof relies on a characterization of posets containing
[ν]2 in terms of chains of ideals (Lemma 19) and on a proof that a poset not coverable by ν chains
contains such a chain of ideals. This latter proof relies on the notion of purity introduced in [3].
The reason for including two proofs of the same theorem is that each proof touches on some
ideas that we found interesting and which could be useful for other investigations in this field.
The reader may choose to read just one proof: read the common part of the two proofs, and then
continue with either section.

2. Basic tools

Some fundamental tools that are used in the paper are the Erdös–Dushnik–Miller partition
theorem [8], a description of cofinal subsets of posets with no infinite antichains due to the
second author [15] (see [9, 10, 12]) and the notion of purity with [3, Theorem 24].

Theorem 5 (Erdös–Dushnik–Miller). For every infinite cardinal λ, every graph with λ vertices
contains either an infinite independent set or a complete subgraph onλ vertices. (In arrow notation
this is written λ→ (ℵ0,λ)2.)

A poset with no infinite antichains is a union of finitely many up-directed subsets (R. Bon-
net [4], see also [9, 4.7.2 p. 124]).

The cofinality theorem of Pouzet (see [9]) states:

Theorem 6. Every poset P with no infinite antichain has a cofinal subset A which decomposes in
a finite union A1 ∪·· ·∪ Ak with no comparabilities between elements of Ai and A j for every i ̸= j ,
and such that the <P order on each Ai is isomorphic to a finite product α1,i ×·· ·×αni ,i of regular
distinct cardinals.

A consequence (in fact an equivalent statement) is this:

Theorem 7 (Pouzet). Every up-directed poset P with no infinite antichain has a cofinal subset A
which is order isomorphic to a finite product α1 ×·· ·×αn of regular distinct ordinals.

Definition 8 (Purity). A poset P is pure if every proper initial segment I of P is strictly bounded
above (that is, some x ∈ P \ I dominates I ).

This condition amounts to the fact that every non cofinal subset of P is strictly bounded above
(indeed, if a subset A of P is not cofinal, then ↓A ̸= P hence from purity, ↓A, and thus A, is strictly
bounded above. The converse is immediate).
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A pure poset is necessarily up-directed: Given x, y ∈ P there is z such that x, y ≤ z. If x and
y are comparable, this is evident. So we assume that x⊥y and then x ∈ I = P \ ↑y . As I ̸= P is
a proper initial segment there is z ∈ ↑y a bound of I . Hence x, y ≤ z. Hence a pure poset with
infinite cofinality has no maximal element. Indeed, if x ∈ P , then for some y ∈ P , y ̸≤ x (or else the
cofinality of P is 1) and there is z with x, y ≤ z. Necessarily x < z.

We extract the following result from [3, Theorem 24].

Theorem 9. Let P be a poset with uncountable cofinality ν. Then P is pure if and only if P is a
lexicographical sum

∑
a∈νPa with arbitrary components Pa .

Proof. To prove that the lexicographical sum of posets is pure does not require that the sum
is over a regular ν. It suffices for the index ordering to be any chain with no maximum. If
P = ∑

a∈K Pa where K is a chain with no maximum, then P is clearly pure, because any proper
initial segment occupies only a bounded in K set of indexes.

For the other direction, assume that P is pure with uncountable cofinality ν. Let {bα : α < ν}
be cofinal in P . We are going to construct by induction on α < ν a strictly increasing sequence
(xα)α<ν such that bα ≤ xα (thereby assuring that the constructed sequence is also cofinal). The
final segment Sα = {p ∈ P :∀ ζ<α (xζ ≤ p)} is defined to satisfy for every α< ν that

P \ Sα↗ Sα+1. (1)

The definition of Sα implies that: (1)α<α′ → Sα′ ⊆ Sα. (2) If δ< ν is a limit then Sδ =⋂
{Sζ : ζ< δ}.

(3) Sα+1 = {p ∈ P : xα ≤ p} = (↑xα). (4) S0 = P and Sν =;.
Start by defining x0 ∈ P as any member of P such that b0 ≤ x0.

(1) Suppose that xα is defined, then find xα+1 that strictly dominate the proper initial
segment P \ ↑xα. In fact, we add the requirement that bα+1 ≤ xα+1 (which is possible
because a pure poset is up-directed). Since P \↑xα↗ xα+1, we get that P \ Sα+1 ↗ Sα+2.

(2) Suppose now that α < ν is a limit ordinal and (xζ : ζ < α) is defined. Since α < ν = cf(P ),
I = ↓{xζ : ζ < α} ̸= P , and hence I is strictly bounded in P . That is, J = P \ Sα is a proper
initial segment of P . Define xα that strictly dominates P \ Sα, and suppose additionally
that xα dominates bα. So P \Sα↗ xα↗ Sα+1. Thus (1) holds also whenα is a limit ordinal.

This ends the definition of the strictly increasing and cofinal sequence (xα)α<ν.
Define the rings Rα = Sα \ Sα+1 for α < ν. We get a partition of P , P = ⋃

α<νRα. It follows
from the definitions that α+ 2 ≤ β < ν→ Rα ↗ Rβ. (Indeed, Rα = Sα \ Sα+1 ⊆ P \ Sα+1 ↗ Sα+2,
and Rβ ⊆ Sβ ⊆ Sα+2. Thus Rα ↗ Rβ.) Redefine the rings by setting for every limit ordinal δ < ν,
Rδ = ⋃

n∈ωRδ+n , then we get a coarser partition P = ⋃
limδ<νRδ such that if δ1 < δ2 then

Rδ1 ↗Rδ2 . Hence P =∑
δRδ as required. □

2.1. P (κ), a class of κ-Perles posets

As we saw, for any cardinal ν, [ν]2 is not a union of less than ν chains. This leads to the following
definition.

Definition 10. For an uncountable cardinal ν, a poset P with only finite antichains is said to be
of ν-Perles type if it is not a union of less than ν chains.

Thus, [ν]2 and its dual are examples of ν-Perles type posets. For regular κ, we define a class of
poset containing only κ-Perles types which will be found out to be the class of all κ-Perles types.

Definition 11. For a regular uncountable cardinal κ, a poset is in the class P (κ) if it contains a
subposet P whose universe, |P |, is κ (or a subset of κ) so that P carries both the partial ordering <P
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and the ordinal ordering <, and there is a function F : |P | = κ→ κ whose range is κ, and is such
that the following holds with respect to the the incomparability relation ⊥ on P:

(1) For every α ∈ κ, |F−1{α}| = κ,
(2) If α1 <α2 < κ, ξ1 ∈ F−1{α1} and ξ2 ∈ F−1{α2} are such that ξ1 > ξ2, then ξ1 ⊥ ξ2.

Remark 12. If P = (κ,<,<P ) ∈P (κ) and Q is a subposet of P such that for every α ∈ F “Q, F−1{α}
has cardinality κ, then Q ∈ P (κ) as well. (Collapse the universe of Q so that it becomes κ, and
likewise collapse F ′′Q.)

Claim 13. Let κ be a regular uncountable cardinal.

(1) If P ∈P (κ) then P∗ ∈P (κ) as well, where P∗ denotes the dual ordering of P.
(2) P in P (κ) is not covered by < κ chains.
(3) [κ]2 (and its dual) are in the P (κ) family of posets.

The following notes indicate the proofs.

(1) Item (1) is obvious since the definition of P (κ) does not mention the ordering of P , only
the comparability relation is involved.

(2) For item (2), let F : P = κ→ κ be a witness for P ∈ P (κ). Suppose that P is covered by
κ0 < κ chains {Pi : i < κ0}. Then for any α < κ, F−1{α} has an intersection of size κ with
(at least) one of the chains Ci (α) (by regularity of κ). For a set S of size κ there is a fixed
chain Ci such that for any α ∈ S, i = i (α). This is impossible: take α1 < α2 in S, take any
ξ2 ∈ Ci ∩F−1{α2}, and then take ξ1 ∈ Ci ∩F−1{α1} such that ξ1 > ξ2. Then ξ1 ⊥ ξ2 shows
that they cannot be in the same chain.

(3) For Item (3), prove that the poset [κ]2 is in P (κ): namely there exist an isomorphic copy P
of [κ]2 whose universe is κ and a function F that satisfy Definition 11. Let <R be the right-
order lexicographical ordering on [κ]2 defined by 〈α,β〉 < 〈α′,β′〉 iff β<β′ or β=β′ ∧ α<
α′. The order-type of [κ]2 in <R is κ in its ordinal ordering <. Let p : (κ,<) → ([κ]2,<R )
be the order-isomorphism. We notate p(ξ) = (αξ,βξ). Thus the poset [κ]2 induces an
isomorphic copy P = (κ,<P ) onκ by setting ξ≤P ξ

′ iffαξ ≤αξ′∧βξ ≤βξ′ . Define F (ξ) =αξ.
The function F is used to shows that [κ]2 ∈P (κ). Define a closed unbounded subset C ⊂ κ
such that every δ ∈C has the following property.

If δ ∈ C , then ξ < δ→ αξ,βξ < δ and, for every α < β in δ, there is ξ < δ such that
(α,β) = (αξ,βξ).

Now define a subset X ⊂ κ such that for every δ ∈ C , X ∩ [δ,δ′) is a singleton, and for
every α < κ, {ξ ∈ X : α = αξ} is unbounded in κ. Then P ↾ X and F : P ↾ X → κ show that
[κ]2 ∈P (κ).

Theorem 14. Let κ be a regular uncountable cardinal. If P has only finite antichains (P is a FAC
poset) then P embeds [κ]2 iff P is P (κ).

Proof. We noted above that [κ]2 is in P (κ). Suppose that P ∈ P (κ) where P = (κ,<P ) and
F : P = κ→ κ is a surjection such that conditions (1) and (2) of Definition 11 hold. We have to
prove that P or its dual contain a copy of [κ]2. Given α ∈ κ apply the Dushnik–Miller partition
theorem, κ → (κ,ω)2, to the set [F−1{α}]2 and to the coloring that gives to {ξ1,ξ2} ∈ [F−1{α}]2

one color if ξ1 and ξ2 are comparable in <P and another color if they are not. Since there is no
infinite antichain, we get a homogeneous set Cα ⊆ F−1{α} for the comparability colour which is a
<P -chain of cardinality κ.

An element ξ ∈ Cα is exceptional (in Cα) if the sets {η ∈ Cα : η ≤P ξ} and {η ∈ Cα : ξ ≤P η} are
both of cardinality κ.

Claim 15. If ξ1∈Cα1 and ξ2∈Cα2 are both exceptional in their chains (whereα1 ̸=α2) then ξ1 ⊥ ξ2.
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Proof. Suppose on the contrary that ξ1 and ξ2 are comparable. For example, suppose that
α1 < α2 and ξ1 ≤P ξ2 (any other pattern works as well). Since ξ1 is exceptional in Cα1 , there are
κ members η of Cα1 such that η ≤P ξ1. Take such η ∈ Cα1 that is above ξ2. Then η ⊥ ξ2. But this
contradicts η≤P ξ1 ≤P ξ2. □

This claim and the finite antichain condition of P imply that there is only a finite number
of chains with an exceptional member. Throwing out this finite number of chains Cα, we may
assume that no chain contains an exceptional member.

We say that ξ ∈Cα is of type I if |{η ∈Cα : η≤P ξ}| < κ. And we say that Cα itself is of type I if it
contains κ members that are all of type I. In this case, and since κ is regular, the set of members
of Cα of type I contains a subset Dα ⊂Cα of order-type κ such that for ξ1 < ξ2 in Dα, ξ1 <P ξ2.

If Cα is not of type I then it has < κ members of type I, and for each of the remaining
members ξ that are not of type I, |{η ∈ Cα : η ≤P ξ}| = κ. But ξ is not exceptional and hence
|{η ∈Cα : ξ≤P η}| < κ. In this case, we can find Dα ⊆Cα of cardinality κ such that for all ξ1,ξ2 ∈ Dα,
ξ1 < ξ2 → ξ2 <P ξ1.

Fixing such sets Dα, there is a set R ⊆ κ of cardinality κ such that for every α ∈ R, either <P is
strictly increasing on Dα, or else for every α ∈ R <P is strictly decreasing. In the first case we will
get an embedding of [κ]2 into P , and in the second case an embedding into P∗. By symmetry of
the argument we may suppose that for every α ∈ R, <P is increasing over Dα.

Claim 16. If α1 <α2 are in R, and ζi ∈ Dαi for i = 1,2 are ≤P -comparable, then ζ1 <P ζ2.

Proof. If it is not the case that ζ1 <P ζ2, then ζ2 <P ζ1 since ζ1,ζ2 are comparable. Pick ζ′1 ∈
Dα1 such that ζ1,ζ2 < ζ′1 (namely as ordinals). Then ζ2⊥ζ′1, but ζ2 <P ζ1 <P ζ′1 contradicts
incomparability. □

By Remark 12, we may assume that P = κ = ⋃
α∈R Dα and F : κ → κ is a surjection which

satisfies definition 11.
Thus we have the following situation. The universe of P is κ and a surjection F : κ→ κ exists

such that:

(P1) For every α ∈ κ, Dα = F−1{α} is unbounded in κ, and, for every ξ1 < ξ2 in Dα, ξ1 <P ξ2.
(P2) If α1 <α2 < κ, ξ1 ∈ Dα1 , ξ2 ∈ Dα2 and ξ1,ξ2 are comparable, then ξ1 <P ξ2 (see Claim 16).

On the set D = {Dα : α < κ} define a partial ordering relation ≺ by Dα ≺ Dβ iff ∀ x ∈ Dα ∃ y ∈
Dβ x <P y . We have just seen that

if α<β< κ then ¬(
Dβ ≺ Dα

)
. (2)

(In fact, by Claim 16, if b ∈ Dβ and a ∈ Dα then it is not the case that b <P a.)

Claim 17. Relation ≺ is a well-quasi-ordering on D.

Proof. Let 〈Dα0 ,Dα1 , . . .〉 be an infinite sequence from D. We may assume that the ordinalsαk are
increasing with k ∈ ω. We have to show that Dαi ≺ Dα j for some i < j . Suppose on the contrary
that ¬(Dαi ≺ Dα j ) whenever i < j . Thus there is x(i , j ) ∈ Dαi such that for every y ∈ Dα j it is not
the case that x(i , j ) <P y . Since κ is regular uncountable, there is xi ∈ Dαi such that xi > x(i , j ) for
every j > i . But then {xi : i ∈ω} is an infinite antichain in P (by Claim 16 and since xi ̸< x j when
i < j ). □

Again we use the Erdös–Dushnik–Miller partition theorem κ→ (κ,ω), but now on the set of
chains D which forms a w.q.o. If Dα,Dβ are two chains in D, color the pair in the comparability-
incomparability colours of the ≺ ordering. Since there is no infinite set of incomparable members
of a wqo, we have a chain of cardinality κ. In fact, it follows from (2) that the order-type of this
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chain is κ. So for some set S ⊆ κ of order-type κ, if α1 < α2 are in S, then Dα1 ≺ Dα2 . We may
assume that S = κ, and to the two properties (P1) and (P2) we add (P3):

(P3) If α1 <α2 < κ then Dα1 ≺ Dα2

The following claim concludes the proof of Theorem 14.

Claim 18. Properties (P1), (P2), (P3) entail that [κ]2 ,→ P.

Proof. Define an order embedding G : [κ]2 → P , so that G(α,β) ∈ Dα for every α < β < κ. By
induction on β < κ we define G ↾ [β]2. Suppose that G is defined on [β0]2 for some β0 < κ. We
then define G(α,β0) for α< β0 by induction on α. Suppose α0 < β0 is such that for every α<α0,
G(α,β0) is defined. Let E denote the domain of the function G at this stage of the construction,
that is E = [β0]2 ∪α0 × {β0}. E contains no pair that is above (α0,β0) in the [κ]2 ordering, and so E
is partitioned into a set E< consisting of those members of E that are below (α0,β0), and a set E⊥
consisting of those members of E that are incomparable with (α0,β0). For G(α0,β0) we have to
pick p ∈ Dα0 that is above all members of G ′′E< and is incomparable with all members of G ′′E Inc .
Observe that the cardinality of E is < κ and that for α<β< κ:

(1) (α,β) ∈ E< iff α<α0 ∧β≤β0 or α=α0 <β<β0, and
(2) (α,β) ∈ E⊥ iff α0 <α<β<β0.

Recall that if α<α0 then for every ξ ∈ Dα, ξ<P ζ for some ζ ∈ Dα0 . And if α0 <α and ζ ∈ Dα0 then
ζ is incomparable with ζ′ ∈ Dα whenever ζ> ζ′. Thus ζ ∈ Dα0 that is high enough can be found to
satisfy the requirements for ζ=G(α0,β0). This ends the proof of Theorem 14. □

Another interesting characterization of posets P such that P of the dual P∗ embeds [κ]2 is in
the following theorem. Recall that an ideal I in a poset P is an up-directed initial segment of P .

Theorem 19. Let κ be a regular cardinal and P be a poset. Then P or its dual contains [κ]2 if
and only if P or its dual contains a poset that is the union of a strictly increasing chain (Jα)α<κ of
unbounded ideals, each containing a cofinal chain of order-type κ.

Proof. Consider [κ]2 and for every α < κ define Iα = {(τ,β) : τ ≤ α and τ < β < κ}. Then Iα is a
proper ideal of [κ]2, and [κ]2 is the union of these ideals. In each Iα the chain (α,β), α< β< κ is
cofinal.

Now suppose that P contains a poset that satisfies the condition. For every ideal Jα let Cα ⊂ Jα
be a cofinal subset of order-type κ. Note that if α1 < α2 < κ then for every x ∈ Jα1 ⊂ Jα2 there is
y ∈Cα2 such that x <P y (because Jα1 ⊂ Jα2 ). Also, for every α< κ there is a bounded set of points
in Cα that are in Jα′ for some α′ <α, and hence by trimming Cα we may assume for every α′ <α
that if x ∈ Jα′ and y ∈Cα are comparable then the only possible relation is x <P y . Also, since Cα

is not bounded in P , if α < β < κ then for every y ∈ Cβ there is a cofinal segment of members of
Cα that are incompatible with y .

We define an embedding from [λ]2 in P such that f (α,β) ∈ Jα for every α < β < λ. Order [λ]2

lexicographically according to the second difference, that is (α′β′) ≺ (α,β) if eitherβ′ <β orβ=β′

andα′ <α. The order-type of [κ]2 under ≺ is κ. By induction on β ∈ κ define f (α,β) ∈Cα for every
α < β. Suppose that β < κ and that f is defined on all of [β]2 = {(ζ,ξ) : ζ < ξ < β}. We define
f (α,β) ∈Cα by induction on α<β.

For that, suffices to show that Jα contains some xα,β larger than f (α,β′) for all α< β′ < β and
larger than f (α′,β) for all α′ < β, and yet xα,β has to be incompatible to every f (α∗,β∗) when
α<α∗ <β∗ <β. Since the number of these restrictions is less than κ, such xα,β can be found and
defining f (α,β) = xα,β works. One checks that the map f is an embedding. □
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So the following statements about a FAC poset P and regular cardinal κ are equivalent: (1) P
contains a poset in the class P (κ), (2) P contains [κ]2 or the dual of [κ]2, (3) P or P∗ contains a
subposet Q that is the union of an increasing chain of length κ of ideals, unbounded in Q and
each containing a cofinal chain of order-type κ.

3. Proofs of Theorem 2

The “if” directions of both items (1) and (2) of the theorem are easily obtained, since Cov([κ+]2 =
κ+ for any infinite cardinal κ.

(1) In case ν= κ+ is a successor cardinal and Q := [κ+]2 or its inverse is a subposet of P , then
Cov(P ) ≥ κ+.

(2) Suppose that ν is a limit uncountable cardinal and P or its inverse P∗ contains a subposet
Q = ∑

a∈C Qa , where C is a chain of cardinality cf(ν), Qa := [κ+a ]2 and (κ+a )α∈C is a
family of cardinals such that sup{κ+a : a ∈ C } = ν. Then Cov(Q) = ν, because otherwise
Cov(Q) = κ< ν despite the fact that P contains a copy of [κ+α]2 for some κ+α > κ.

Thus the main burden of the proof of Theorem 2 is in the “only if” direction.
It suffices to prove the seemingly weaker version of Theorem 2 in which an additional assump-

tion is made (equation (3)).

Theorem 20 (Theorem 2*). Let P be a poset with no infinite antichain and let ν be an uncount-
able cardinal such that Cov(P ) ≥ ν and

∀ p ∈ P Cov
(
p⊥)< ν. (3)

(1) If ν is a successor cardinal, i.e., ν= κ+, then P or its dual P∗ contains a copy of [κ+]2.
(2) If ν is a limit cardinal then P or its dual P∗ contains a poset Q of the form

∑
a∈C Qa , where

C is a chain of cardinality cf(ν), Qa
∼= [κ+a ]2 and (κ+a )a∈C is a family of distinct successor

cardinals, such that sup{κ+a : a ∈C } = ν.

Lemma 21. For every uncountable cardinal ν, if Theorem 2* holds for ν then Theorem 2 also holds
for ν, so that these two forms are equivalent.

Assume the statement of Theorem 2*, and let P be a FAC poset such that Cov(P ) ≥ ν. The
antichains of P form a well-founded relation under the inverse inclusion relation, and we let P0

be a subposet of P with the least height of its antichains such that still Cov(P0) ≥ ν. Then for
every p ∈ P0, the antichain height of P0∩p⊥ is smaller than the antichain height of P0, and hence
Cov(P0∩p⊥) < ν. Thus Theorem 2* can be applied to P0. So P0 contains subposets as required by
item (1) or (2), and these are subsets of P which prove that Theorem 2 follows.

Our plan is to first define an equivalence relation ∼ on P , and get some information on the
covering number of the equivalence classes of ∼ (in Lemma 23). Then, we formulate a reduction
theorem, Theorem 27, which seems to be weaker than Theorem 2* in two aspect: it deals only
with the case that ν= κ+ is a successor cardinal, and it strengthen assumption (3) of Theorem 2*
to ∀ p ∈ P Cov(P \↑p) < ν. With the aid of the analysis of the equivalent classes of ∼ it turns out
that the reduction theorem suffices to yield the full Theorem 2 for every uncountable cardinal ν.

Definition 22. For any poset P, an equivalence relation ∼ is defined over P by a ∼ b iff a = b or
there is a finite sequence x1, . . . , xn such that a = x1, b = xn , and xi⊥xi+1 for every 1 ≤ i < n. We say
that this sequence joins a to b in ∼. Borrowing the language of graph theory, equivalence classes of
∼ are also called connected components or just components.

Let A and B be equivalence classes of ∼. Recall that A ↗ B is a shorthand for ∀ a ∈ A ∀ b ∈
B (a ≤P b). We claim that the equivalence classes of P are linearly ordered under the ↗ reflexive
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and transitive relation. Indeed, if A ̸= B are distinct equivalence classes, if a ∈ A and b ∈ B , then a
and b are comparable in <P , and if a <P b for example, then for every a′ ∈ A and b′ ∈ B , a′ <P b′.
This can be proved by induction on the length of the ⊥ paths that lead from a to a′ and from
b to b′. It follows immediately that any poset P is the sum of its components along their linear
ordering. This result which belongs to the folklore of the theory of ordered sets (see [14, I.1.2]
and [1, 2.7]) is used here in connection with the covering numbers of its components in the
following.

Lemma 23. Any poset P is the lexicographical sum, P := ∑
i ∈D Pi , of its equivalence classes Pi ,

indexed by the chain D that reflects the ↗ ordering on the equivalence classes.
Suppose that Cov(Pi ) = ρi for every i ∈ D, and let κ := sup{ρi : i ∈ D} be the supremum of these

cardinals. Then

Cov(P ) = κ. (4)

Moreover, there are two exclusive possibilities:

(1) Either Cov(Pi ) < κ for every i ∈ D, and then κ is a limit cardinal, and for some D ′ ⊂ D of
cardinality cf(κ) and (distinct) successor cardinals κ+i , Cov(Pi ) ≥ κ+i for every i ∈ D ′, and

κ= sup
{
κ+i : i ∈ D ′} .

Or else,
(2) There exists an equivalence class Pi0 in P with a maximal cardinality Cov(Pi0 ) = Cov(P )

(i.e. κ= Cov(Pi0 )).

Proof. For every i ∈ D , let (Li
ξ

: ξ< ρi ) be an enumeration of chains that cover Pi . For every given

ξ < κ, the union of the chains, Lξ = ⋃
{Li
ξ

: i ∈ D ∧ ξ < ρi }, is a chain of P , and P is covered by
L = {Lξ : ξ < κ}. Hence Cov(P ) ≤ |L | ≤ κ. But as ρi ≤ Cov(P ) for every i ∈ D , Cov(P ) = |L | = κ,
and thus (4) holds.

In case this supremum is a maximum, i.e. for some i0 ∈ D , Cov(Pi ) ≤ ρi0 = Cov(Pi0 ) for all i ,
then Cov(P ) = ρi0 . Otherwise κ is a limit cardinal, and for any µ < κ there is an equivalence
class Pi with Cov(Pi ) > µ. In this case the set D ′ can easily be chosen so that the first possibility
holds. □

The following simple lemma turns out to be very useful in our proof (as was [1, Lemma 2.9]).

Lemma 24. Let P be a poset and x, y be such that x ∼ y. Suppose that

x = x0, . . . , xn = y is a path that joins x to y. (5)

Then [
x, y

]
P ⊆ x⊥

1 ∪·· ·∪x⊥
n−1. (6)

Proof. Suppose that z ∈ [x, y], that is x ≤P z ≤P y . If z = x0, then z⊥x1 evidently. Assume that
x0 <P z ≤P xn . Noting that z ̸≤P x0, let 0 < m ≤ n be the first such that z ≤P xm (thus m ≥ 1).
So z ̸≤P xm−1, and since xm−1 ≤P z is impossible (for xm−1⊥xm), xm−1⊥z follows. (This proof
includes the case that x⊥y . In that case [x, y] = {x, y} and x⊥

1 ∪ ·· · ∪ x⊥
n−1 = x⊥

1 ∪ x⊥
0 , so that

{x, y} ⊆ x⊥
1 ∪x⊥

0 is evident.) □

Corollary 25. Let ν be an infinite cardinal, and P be a poset such that Cov(x⊥) < ν for every x ∈ P.
If Q is a component of P, then Cov([x, y]P ) < ν for every x, y ∈Q such that x <P y.

Proof. Since [x, y]P ⊆ x⊥
1 ∪·· ·∪x⊥

n−1, Cov([x, y]P ) ≤ Cov(x⊥
1 )+·· ·+Cov(x⊥

n ) and since Cov(x⊥) < ν
for each x ∈ P , the corollary follows immediately. □

Lemma 23 and Corollary 25 are used next.
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Lemma 26. Let ν be an uncountable cardinal and P be a poset such that Cov(P ) ≥ ν, but

∀ p ∈ P Cov
(
p⊥)< ν. (7)

Then either

(1) each connected component of P has covering number < ν, and in this case Cov(P ) = ν =
sup{Cov(X ) : X is a component of P }, or else

(2) some connected component Q of P contains a subposet R such that Cov(R) ≥ ν, and R or
its dual has the property that Cov(R \↑x) < ν for every x ∈ R.

Proof. Decompose P into its ∼-equivalence classes. By Lemma 23, Cov(P ) = sup{Cov(X ) :
X is a component of P }.

If each component X has covering number < ν, then we are in Lemma 26(1), and ν= Cov(P )
is a limit cardinal. Otherwise, there exists Q, a connected component of P such that Cov(P ) =
Cov(Q) ≥ ν.

(1) If for every x ∈Q, Cov(Q ∩↑x) < ν then combining this condition with assumption (7) we
get that Cov(Q \↓x) < ν for every x ∈Q. In this case R =Q∗ satisfies Lemma 26(2).

(2) Otherwise, there is some x0 ∈ Q such that Cov(Q ∩ ↑x0) ≥ ν. In this case, we apply
Corollary 25 to Q and get that Cov[x0, y]P < ν for every y ∈Q such that x0 <P y . Thus, the
subposet R =Q∩(↑x0) satisfies Cov(R∩(↓x)) < ν for every x ∈ R. Combining this property
of R with assumption (7) we get that Cov(R \↑x) < ν for every x ∈ R. Now condition (2) of
our lemma holds for R (which is a subposet of P ).

In both cases, Lemma 26(2) holds for P or its inverse. □

Here is the reduction theorem which we intend to prove in the next section.

Theorem 27. Let ν= κ+ be any uncountable successor cardinal, and P be a poset with no infinite
antichain, satisfying

Cov(P ) ≥ ν ∧ Cov(P \↑x) < ν for every x ∈ P. (8)

Then P contains a copy of [ν]2.
Evidently, in (8), we can replace Cov(P \ ↑x) < ν with Cov(P \ ↓x) < ν and conclude that P

contains a copy of [ν]2 inverse.

In this section we prove that Theorem 27 implies Theorem 2, and for the proof of this impli-
cation some notations are needed. For any uncountable successor cardinal κ+ let Thm_27(κ+)
denote the statement of Theorem 27 for the specific cardinal ν = κ+, and for a limit uncount-
able cardinal ν, let Thm_27(< ν) be the statement that for every successor uncountable cardinal
κ+ < ν, Thm_27(κ+). Similar notations such as Thm_2(ν) and Thm_2∗(ν) will be used. Recall that
we proved

Thm_2(ν) ⇐⇒ Thm_2∗(ν) (9)

for every uncountable cardinal ν (this is Lemma 21).
The proof of Theorem 27 will occupy the next section, and we conclude this section with a

deduction of Theorem 2 from Theorem 27. This deduction is spread over two theorems, the first
for the successor case and the second for the limit case.

Theorem 28 (Successor case). Let κ+ be any uncountable successor cardinal. Then

Thm_27
(
κ+

)→ Thm_2
(
κ+

)
. (10)

Proof. We are going to prove that Thm_27(κ+) → Thm_2∗(κ+), and then use equivalence (9) in
order to conclude (10). Assume Thm_27(κ+), and let P be a FAC poset such that Cov(P ) ≥ κ+ and
for every p ∈ P , Cov(p⊥) ≤ κ. We have to prove that P or P∗ contains a copy of [κ+]2.

Lemma 26 yields two possibilities for P :
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(1) For every component X of P , Cov(X ) ≤ κ. In this case, the chains that cover the different
components can be attached to form a covering of P with ≤ κ chains in contradiction to
Cov(P ) ≥ κ+. So this case is void.

(2) There is a subposet Q of P such that Cov(Q) ≥ κ+ and Q or Q∗ satisfies the condition that

∀ x ∈Q (Cov(Q \↑x) ≤ κ) . (11)

Then we can use Thm_27(κ+) and conclude that Q or Q∗ contains a copy of [κ+]2.
Evidently, it follows that P or P∗ contains such a copy.

□

Theorem 29 (Limit case). Let ν be any uncountable limit cardinal. Then Thm_27(< ν) implies
Thm_2(ν).

Proof. Suppose Thm_27(< ν), namely that Theorem 27 holds for every uncountable successor
cardinal κ+ < ν. Then, by the previous theorem (the successor case),

Thm_ 2
(
κ+

)
holds for every uncountable successor cardinal κ+ < ν. (12)

Given a FAC poset P such that Cov(P ) ≥ ν, our aim is to prove that P or P∗ contains a sum
Σa∈C [κ+a ] as in item 2 of Theorem 2.

For every connected component X of P define ρ(X ) = Cov(X ). Then (by Lemma 23)

Cov(P ) = sup
{
ρ(X ) : X is a component of P

}
. (13)

Apply Lemma 26 to P , and consider its two cases.

(1) The first case is when ρ(X ) < ν for every component X of P . In this case, take an
increasing sequence of successor cardinals (κ+i : i < cf(κ)) with supremum ν, and for each
κi take a specific component Xi with covering number ρ(Xi ) ≥ κ+i . This procedure yields
a linear ordering D (not necessarily well-ordered) of cardinality cf(ν) of components such
that P contains a sum of components,

∑
i ∈D Xi , where Cov(Xi ) ≥ κ+i .

Since Theorem 2 holds for uncountable successor cardinals smaller than ν, Xi embeds
either [κ+i ]2 or its dual. It follows that for some C ⊆ D of cardinality cf(ν), P or P∗ contains
a sum of the form

∑
i ∈C [κ+i ]2 where sup{κ+i : i ∈C } = ν.

(2) The second case is that P contains a subposet Q such that Cov(Q) ≥ ν and Q or Q∗

satisfies
Cov(Q \↑x) < ν for every x ∈Q. (14)

The following lemma applies to Q and concludes the proof of Theorem 29.

Lemma 30. Suppose that ν is an uncountable limit cardinal such that Thm_27(< ν) holds. If Q
satisfies equation (14), then Q contains a sum Σa∈C [κ+a ]2 where C is a linear order of order-type
cf(ν) and sup{κa : a ∈C } = ν.

Proof. Suppose that assumption (14) holds for a limit uncountable cardinal ν (which could be
regular or singular). We must conclude that Q contains a sum

∑
a∈C [κ+a ]2 as required.

We prove first for any X ⊆Q that

|X | < cf(ν) ⇒ X is bounded in Q. (15)

By assumption (14), Cov(Q \ ↑x) < ν for every x, and hence the covering number of Y =⋃
x∈X (Q \↑x) is less than ν. So there exists some x0 ∈Q \ Y , which is necessarily an upper-bound

of X .
Let (κ+α)α<cf(ν) be an increasing sequence of successor cardinals, all less than ν, such that

sup{κ+α :α< cf(ν)} = ν.
We construct an increasing sequence (xα)α<cf(ν) in Q such that Cov([xα, xα+1)) ≥ κ+α for every

α< cf(ν).
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Equation (15) shows that for limit ordinals δ< cf(ν), if the sequence (xα)α<δ is defined, then an
upper-bound xδ can be obtained (and for δ= 0, x0 ∈Q is arbitrarily chosen). Suppose that xα ∈Q
is defined. Since Cov(Q) ≥ ν but Cov(Q \↑xα) < ν, Cov(↑xα) ≥ ν> κ++α . We concluded in (12) that
Thm_2(κ+) holds for any successor cardinals κ+ < ν, and thus ↑xα contains a copy of [κ++α ]2 or
its reversed dual. Since [κ++α ]2 contains a bounded copy of [κ+α]2, there is some element xδ+1 ∈Q
such that a copy of [κ+α]2 or of its reverse is contained in the interval [xδ, xδ+1]. (The inverse of any
[κ]2 is certainly bounded.)

By picking a subsequence, we may assume that all intervals [xδ, xδ+1] contain copies of the
corresponding [κ+α]2 or else that all of them contain copies of the dual of these posets. □

□

This ends the proof of Theorem 29 (the limit case), and together with Theorem 28 we get that

∀ κ>ω(
Thm_27

(
κ+

))→∀ ν>ω (Thm_2(ν)) . (16)

Thus it remains to prove that Theorem 27 holds for all uncountable successor cardinals.

3.1. Proofs of Theorem 27

Lemma 31. Let ν = κ+ be a successor cardinal, and suppose that P is an up-directed FAC poset
such that Cov(P ) ≥ ν, but Cov(P \↑p) < ν for every p ∈ P. If P does not contain a copy of [κ+]2,
then there is a well-ordered chain with order-type some regular λ≥ ν that is cofinal in P.

Proof. Since Cov(P \ ↑x) < ν for every x ∈ P and Cov(P ) ≥ ν, then P is up-directed. Indeed, we
proved in (15) that every set of cardinality < cf(ν) is bounded, and thus certainly P is up-directed.
According to Theorem 7, P has a cofinal subset A isomorphic to a productα1×·· ·×αn of pairwise
distinct regular cardinals enumerated (for clarity) in increasing order.

We claim that, assuming P does not contain a copy of [κ+]2, each cardinal α j , for 1 ≤ j ≤ n,
is at least ν. For the proof, suppose on the contrary that α1 < ν. Since ν = κ+ is a successor
cardinal and α1 is a cardinal, α1 ≤ κ. Let A1 := {xα : α < α1} be the image in A of the chain
{(z,0, . . . , 0) ∈α1×·· ·×αn : z <α1}. Since Cov(P \↑xα) ≤ κ andα1 ≤ κ, Cov(

⋃
α<α1 (P \↑xα)) ≤ κ. But

this union is P since the chain A1 is unbounded. This contradicts Cov(P ) ≥ κ+. Thus the product
α1 ×·· ·×αn consists of cardinals that are ≥ κ+. If this product consists of two or more cardinals,
then P contains a copy of [κ+]2. Thus, if we assume that P does not contain a copy of [κ+]2, then
P has a cofinal chain of order-type some regular λ≥ ν. □

From this point of the article the two proofs of Theorem 27 split. For one proof jump to
section 3.1.2, and for the other proof continue reading.

3.1.1. Completion of proof of Theorem 27

Let’s restate Theorem 27 for convenience.

Theorem (Theorem 27). Assume that P has only finite antichains, and that ν = κ+ is an
uncountable successor cardinal such that Cov(P ) ≥ κ+ but Cov(P \↑p) ≤ κ for every p ∈ P. Then
P contains a subposet in P (κ+) and hence P contains a copy of [κ+]2. (And, correspondingly, if for
every p ∈ P, Cov(P \↓p) ≤ κ, then P∗ contains a copy of [κ+]2.)

Proof. With Lemma 31 we may further assume that P has a cofinal chain A = {xξ : ξ < λ} of
order-type λ ≥ κ+ (λ is regular). Let γ0 ≤ λ be the first ordinal such that the initial segment
I = ⋃

{↓xξ : ξ < γ0} has covering number ≥ κ+. Then redefine P := I , λ := cf γ0, so that the
assumptions of our theorem remain for the new P and λ. The set {xξ : ξ<λ} of order-type λ≥ κ+
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is cofinal in P , and we gain a useful property that if Q is a subposet of P of cofinality cf(Q) < λ

then:

Cov(Q) ≤ κ. (17)

For every ζ<λ define

Dζ =
(↓xζ

)
\

⋃
ξ<ζ

(↓xξ
)

. (18)

Dζ is said to be the ζ layer of P . Surely xζ ∈ Dζ so that Dζ ̸= ;.
The following is obvious.

(1) xζ ∈ Dζ is the maximum of Dζ, and P =⋃
ζ<λDζ is a partition of P into its layers.

(2) If ζ′ < ζ< λ, x ∈ Dζ′ , y ∈ Dζ then ¬(y ≤P x) so that if x and y are comparable, then x < y .
Thus any<P relation that exists between members of P at different layers is in accordance
with the layers’ indexes.

(3) Since Dζ ⊆ (↓xζ), Dζ is a union of κ chains.

Definition 32. Define F : P →λ by F (p) = ξ iff ξ<λ is the first ordinal such that ¬(xξ <P p).

Claim 33.

(1) For every ξ<λ, F−1{ξ} ⊆ {xξ}∪ (P \ ↑xξ) and hence F−1{ξ} is a union of κ-chains. If xζ < p
then F (p) > ζ. If p ∈ Dζ then F (p) ≤ ζ.

(2) If x <P y then F (x) ≤ F (y).
(3) If ζ′ < ζ<λ, x ∈ Dζ′ , y ∈ Dζ and F (x) > F (y), then x ⊥ y.
(4) For every ξ<λ, F (xξ) = ξ.

Proof. All items follow directly the definition of F . To prove Item (3) for example, suppose that x
is comparable to y . Then x <P y follows and Item (2) implies that F (x) ≤ F (y), which contradicts
assumption F (x) > F (y). Item (3) will lead to the conclusion that P contains a poset in P (κ+). □

For every ξ ∈λ define γ(ξ) ≤λ by

γ(ξ) = sup
{
µ ∈λ : ∃ x ∈ Dµ (F (x) = ξ)

}
.

Since F (xξ) = ξ, ξ≤ γ(ξ).
Define a partition of λ into two sets, B and U = λ \ B (Bounded and Unbounded): β ∈ B iff

γ(β) <λ (i.e. F−1{β} intersects only a bounded set of layers). It follows immediately that

p ∈ Dµ∧F (p) = ξ ∈ B →µ≤ γ(ξ). (19)

Since U = λ \ B , β ∈ U iff γ(β) = λ, i.e. the set of layers that intersect F−1 is unbounded in λ.
Define B = F−1B and U = F−1U , so that P =B∪U .

We prove next that Cov(B) ≤ κ and conclude that Cov(U ) > κ. Then we will prove that U

contains a copy of [κ+]2 (thereby proving Theorem 27).

Lemma 34. Cov(B) ≤ κ.

Proof. Consider the function γ ↾ B defined over B . Cardinal λ is uncountable and regular, and
hence the set C = {δ ∈ λ :∀ β ∈ B ∩δ (γ(β) < δ)} is closed unbounded in λ. For every δ ∈ C let
δ′ ∈C denote the first ordinal in C above δ, and let Iδ = [δ,δ′) be the ordinal interval δ′ \δ. Then
λ=⋃

δ∈C Iδ is a partition of λ into slices of cardinality <λ each. Define, for δ ∈C ,

B(δ) := ⋃
ξ∈ Iδ

Dξ∩F−1B. (20)

Then B(δ) is a union of κ chains because
⋃
ξ∈ Iδ (↓xξ) is a subset of P with a cofinal subset of

cardinality |Iδ| <λ, and hence is a union of κ chains by (17). Thus its subset, B(δ), is also a union
of κ chains.
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Claim 35.

(1) Suppose that p ∈B(δ) (where δ ∈C ). Then p <P xδ′ and F (p) ≥ δ.
(2) If δ1 < δ2 are in the club set C defined above, then for every p1 ∈ B(δ1) and p2 ∈ B(p2),

p1 <P p2.

Proof. Suppose that p ∈ B(δ). Then p ∈ Dµ for some µ ∈ Iδ, and hence p ≤ xµ < xδ′ . Also,
F (p) ≥ δ, or else F (p) = ζ< δ would imply that µ≤ γ(ζ) < δ, by (19), in contradiction to µ ∈ Iδ.

Now, if δ1 < δ2 are in C , p1 ∈B(δ1) and p2 ∈B(p2), then Item (1) says that F (p2) ≥ δ2 and that
p1 <p xδ′1 . Hence p1 <P p2. □

Claim 35 implies that B = ⋃
δ∈C B(δ) is a union of κ chains. Indeed, we know that B(δ) is a

union of κ chains, and we can enumerate these chains in a sequence of length κ. Then, for any
index τ < κ, the chains of B(δ) with index τ for δ ∈ C can be united to form a chain of P , which
yields a covering of F−1B with κ chains. This proves Lemma 34. □

So the covering number of B is ≤ κ, and hence the covering number of its complement U is
> κ. It remains to prove that U = F−1U contains a copy of [κ+]2 in order to conclude the proof of
Theorem 27.

We prove first that |U | ≥ κ+. If not, if |U | ≤ κ then U =⋃
ζ∈U F−1{ζ} is covered by κ chains since

every F−1{ζ} is so covered (by item (1) of Claim 33).
To prove that U contains a copy of [κ+]2, let U0 ⊆U be a subset of order-type κ+. For α ∈U0,

γ(α) = λ, i.e. Sα = {µ ∈ λ :∃ x ∈ DµF (x) = α} is a subset of λ of cardinality λ. It is not difficult to
find Rα ⊂ Sα that are pairwise disjoint and of order-type κ+ such that R = ⋃

α∈U0 Rα is also of
order-type κ+. We identify R ≃ κ+ with κ+. For every µ ∈ R there is some α ∈ U0 and p(µ) ∈ Dµ

such that F (p(µ)) =α. Define P0 = {p(µ) : µ ∈ R} ⊂ P , and then the injection p : R → P0 induces a
partial ordering on R ≃ κ+ which is isomorphic to P0. That is, for ζ1,ζ2 ∈ κ+, we define ζ1 <P ζ2

iff p(ζ1) <P p(ζ2). The function F : R →U0 defined by F(µ) = F (p(µ)) shows that P ∈ P (κ+) (use
item (3) of Claim 33). Thus [κ+]2 is embeddable in R. This completes the proof of Theorem 27. □

3.1.2. Second proof of Theorem 27

Recall that in Lemma 31 we proved that if P is a FAC poset such that Cov(P ) ≥ ν = κ+, but
for every p ∈ P , Cov(P \↑p) ≤ κ, then there is a chain A cofinal in P with well ordered order
type some regular λ ≥ ν (or else [ν]2 is embeddable into P , and in that case the theorem follows
immediately). Hence we may assume in the following discussion that A = {xξ : ξ < λ} is an
increasing and cofinal in P sequence.

We use the conclusion of Lemma 31 in proving

Lemma 36. Assume that ν= κ+ is a successor cardinal and P is a FAC poset such that Cov(P ) ≥ ν
but for every p ∈ P, Cov(P \↑p) ≤ κ. Then P is impure.

Proof. Suppose for the sake of a contradiction that P is pure. According to Theorem 9, P is
a lexicographical sum

∑
a∈K Pa where K is a chain with cofinality cf(P ) = λ. For each a ∈ K ,

Cov(Pa) ≤ κ, because Pa is bounded by any member of Pb for a <K b, and Cov(↓p) < ν for any
p ∈ P since ↓p ⊆ P \ ↑p. As Cov(Pa) ≤ κ for every a ∈ K , and since P is a sum of the Pa convex
subposets, we get (by union of chains) that Cov(P ) ≤ κ. This contradicts our hypothesis that
Cov(P ) ≥ ν= κ+. □

Lemma 37. Under the assumptions of Lemma 36, P contains a proper initial segment J that is
unbounded and has a cofinal sequence of order-type λ.

Proof. The previous lemma says that P is impure and hence contains a proper initial segment I
that is unbounded in P . Let cf(I ) =λ0 be the cofinality of I , and let {aα :α<λ0} be a cofinal subset
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of I . Define a function f : λ→ λ0 thus: since xα ∈ A is not an upper-bound of I , there is some aβ
that is not dominated by xα; define f (α) =β for the least β<λ0 such that ¬(aβ ≤ xα). Note that if
α1 <α2 <λ then either a f (α1)⊥a f (α2) or a f (α1) ≤P a f (α2).

Apply the Erdös–Dushnik–Miller theorem to the partition of λ that gives one color to the pair
α1 <α2 <λ if a f (α1)⊥a f (α2) and the other color if not. Since P satisfies the FAC, there is a set X ⊂λ
of cardinality λ that is homogeneous for the comparability color. The set K = {a f (α) : α ∈ X } is a
chain of P and the function xα⇝ a f (α) is <P monotonic. Moreover, K is unbounded in P because
any p ∈ P is bounded by some xα and hence ¬(a f (α) ≤P p. Thus the ideal J = ↓K has K as a cofinal
sequence of order-type λ. □

Note that if x ∈ P then P ′ := ↑x has the same properties of P , i.e. Cov(P ′) ≥ κ+ and for every
p ∈ P ′, Cov(p⊥) ≤ κ. Hence Lemma 37 applies to P ′ and there is a proper initial segment of P ′ that
is unbounded (even in P ) and has a cofinal sequence of order-type λ.

Let IP (λ) be the set of unbounded ideals of P containing a cofinal chain of type λ. By
hypothesis, P ∈ IP (λ). Let IP (λ)− := IP (λ) \ {P }. We order IP (λ)− by set inclusion. We saw in
Lemma 37 that IP (λ)− is not empty, and the following lemma shows more with a similar proof.

Lemma 38. cf(IP (λ)−) ≥λ.

Proof. Let (Jα)α<µ with µ := cf(IP (λ)−) be a sequence cofinal in IP (λ)−. For each α < µ, pick
xα ∈ A \ Jα. If µ< λ then, since λ is a regular cardinal, there is some x ∈ A majorizing all the x ′

αs.
In order to get a contradiction, it suffices to show that there is some J such that x ∈ J ∈ IP (λ)−.
According to our hypothesis, the final segment ↑x is impure. Hence, it contains a proper initial
segment I which is unbounded (in ↑x). Let Ax := ↑x ∩ A. For each y ∈ Ax , we may pick some
cy ∈ I \ ↓y since y does not majorize I . Apply Erdös–Dushnik–Miller’s Theorem to the sequence
(cy )y ∈ Ax . Since P has no infinite antichain, there is an increasing subsequence (cy )y ∈D with D
cofinal in Ax . The values of this sequence cannot be bounded in P . (otherwise, if a is an upper
bound, pick y ≥ a in D and get a contradiction with cy ) hence they generate an unbounded ideal;
since it is included in ↓I it is distinct of P . □

Claim 39. IP (λ)− has no infinite antichain.

Proof. This relies on the fact that λ is uncountable and regular. Indeed, suppose the sake of a
contradiction that IP (λ)− contains an infinite antichain (Jn)n<ω. For each n ̸= m < ω there is
some xn,m ∈ Jn \ Jm . Since Jn contains a cofinal chain of uncountable regular type, it contains
an element xn majorizing all the xn,m . Then {xn : n < ω} is an infinite antichain in P , which is
impossible. □

With this claim, we complete the proof of Theorem 27 as follows. We pick a well founded
cofinal subset in IP (λ)−. It is well quasi-ordered by Claim 39 and by Claim 38, and has cardinality
at least λ. By Erdös–Dushnik–Miller’s theorem, it contains a chain of type λ. Let (Jα : α < κ+)
enumerate an increasing sequence of ideals in IP (λ)−, and let Iα ⊂ Jα be a cofinal subset of order-
type λ. We may assume that if α1 <α2 then no member of Iα2 is below one of Iα1 .

To deduce the proof of Theorem 27 we embed a copy of [κ+]2 into
⋃

{Iα : α < κ+}. Following
the same procedure as in Claim 18, we define inductively an embedding of [β]2 into

⋃
α<β Iα in

such a way that the image of {(x, y) ∈ [β]2 : x =α} is in Iα.
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