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Abstract. Let 1 = 2 be an integer. In this paper, we prove that if A is an asymptotic basis of order & and B is a
nonempty subset of A, then either there exists a finite subset F of A such that F U B is an asymptotic basis of
order h, or for any € > 0, there exists a finite subset F¢ of A such that dy (h(Fe U B)) = hdy (B) — €, where dr (X)
denotes the lower asymptotic density of X and hX denotes the set of all x] +---+ x;, with x; € X (1 <i < h).
This generalizes a result of Nathanson and Sarkozy.
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1. Introduction

Let Ny denote the set of all nonnegative integers. Let k = 2 be an integer. For A < N, let
hA={a,+---+ay:a,..., a,€ A}.

We define AW
dy(A) = liminf =2,
X—400 X
where A(x) is the number of positive integers in A which do not exceed x. Usually, dy (A) is called

the lower asymptotic density of A. If

exists, then the limit value is called the asymptotic density of A and denote it by d(A).

A set Ais called an asymptotic basis of order h if h A contains all sufficiently large integers. An
asymptotic basis A of order £ is called minimal if no proper subset of A is an asymptotic basis of
order h. The notation of minimal asymptotic bases was introduced by Stohr [10] in 1955. In 1956,
Hartter [4] proved that for each integer & = 2, there exist minimal asymptotic bases of order k. In
1988, Erd6s and Nathanson [3] constructed a minimal asymptotic basis A with d(A) = 1/h. For
related research, one may refer to Chen and Chen [1], Chen and Tang [2], Jaticzak and Schoen [5],
Nathanson [7, 8], Sun [11] and Tang and Lin [12].

Nathanson and Sarkézy [9] proved the following results:
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Theorem A. If A is an asymptotic basis of order h and B is a subset of A with d;(B) > 1/h, then
there exists a finite subset F of A such that F U B is an asymptotic basis of order h.

Theorem B. If A is a minimal asymptotic basis of order h, then dr(A) <1/h.
In this paper, the following results are proved.

Theorem 1. Let h = 2 be an integer. If A is an asymptotic basis of order h and B is a nonempty
subset of A, then either there exists a finite subset F of A such that F U B is an asymptotic basis of
order h, or for any € > 0, there exists a finite subset F; of A such that d;(h(F; U B)) = hdy(B) —¢.

Remark. Theorem A is a corollary of Theorem 1. Let A be an asymptotic basis of order # and By
a subset of Awith dy(B;) > 1/h. We take € = (hdy(B1)—1)/2. Then hd;(B;)—€ = (hd;(B1)+1)/2 >
1 = dy(h(E U By)) for any finite subset E of A. By Theorem 1, there exists a finite subset F of A
such that F U By is an asymptotic basis of order h.

Corollary 2. Let h = 2 be an integer and let B be a nonempty set of nonnegative integers. Then
either there exists a finite set F of nonnegative integers such that F U B is an asymptotic basis of
order h, or for any € > 0, there exists a finite set F, of nonnegative integers such that d; (h(F; UB)) =
hdp(B) —e.

Theorem 3. Let h = 2 be an integer. If A is a minimal asymptotic basis of order h and B is a
nonempty subset of A, then for any € > 0, there exists a finite subset F, of A such that dy(h(F;UB)) =
hdr(B) —e.

Theorem 4. Let h =2 be an integer. If A is a set of nonnegative integers with dp(A) > 0, then there
exists a subset B of A with dy(B) > 0 such that F U B is not an asymptotic basis of order h for any
finite set F.

2. Proofs

We will use a well known result of Kneser. If two sets X and Y of nonnegative integers are coincide
from some point on, then we write X ~ Y. For any set X of nonnegative integers and any positive
integer g, let X8 be the set of all nonnegative integers n with n = x (mod g) for some x € X.

In 1953, Kneser [6] proved the following profound result.

Lemma 5 (Kneser [6]). Let h = 2 be an integer and X a nonempty set of nonnegative integers.
Then either d; (hX) = hdy (X) or there exists a positive integer g such that hX ~ hX'® and

dr(hX) = hdp(X) - %

Proof of Theorem 1. If there exists a finite subset F of A such that F U B is an asymptotic basis
of order h, then we are done. Now we assume that for any finite subset F of A, FuU B is not an
asymptotic basis of order h. Let £ > 0. For any positive integer g, let Ag = {ag,..., dg,s,} be a
subset of A such that for every a € A, there exists 1 < i < sg with a = ag; (mod g). Itis clear that
A¥ = A®), Let
F.= U A
l=sg<(h-1/e
Then F; is finite. It is enough to prove that

dL(h(Fg UB)) = hdL(B) —E.

By Lemma 5, either
dr(h(F; UB)) = hd(F; UB),
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or there exists a positive integer g; such that h(F,; U B) ~ h((F; U B)8V) and

dr(h(F:UB)) = hdp(F; UB) —

g
Since F; is finite, it follows that d; (F. U B) = d;(B). Hence, either
dr(h(Fe UB)) = hd(B),

or there exists a positive integer g; such that h(F. U B) ~ h((F. U B)8V) and

d;(h(F, UB)) = hdy(B) — hg_ L
1

If
dr(h(Fe U B)) = hdL(B),

then we are done. Now we assume that there exists a positive integer g; such that h(F; U B) ~
h((F; UB)¥V) and
h-1
dr(h(F; UB)) = hdr(B) - .
81
If (h—1)/g1 < ¢, then we are done. Now we assume that (h—1)/g; > ¢. We will derive a

contradiction. By (h—1)/g; > ¢, we have g; < (h—1)/¢. Thus,

Ac A®) = A8 c F8Y < (F,uB)®).

Hence
hA< h((F, UB)®) cNj. 1)
Since A is an asymptotic basis of order i, we have h A ~ Nj. It follows from (1) that h((F.uB)®Y) ~
No. Noting that h(F. U B) ~ h((F. U B)8V), we have h(F; U B) ~ Njy. This means that F, U B is an
asymptotic basis of order £, a contradiction.
This completes the proof of Theorem 1. O

Proof of Corollary 2. Since Ny is an asymptotic basis of order & and B < Ny, Corollary 2 follows
from Theorem 1 immediately. g

Proof of Theorem 3. Since A is a minimal asymptotic basis of order #, it follows that hA ~ Ny. So
dp(hA)=1. By Theorem B, d (B) < dr(A) <1/h. Thus, hd;(B) < 1. Let e > 0. If A\ B is finite, then
for F. = A\ B,

dr(h(F;UB))=dr(hA) =1= hdy(B) —¢.
Now we assume that A\ B is infinite. Thus, for any finite subset F of A, we have FuU B # A. Since
A is a minimal asymptotic basis of order £, it follows that for any finite subset F of A, FU B is not
an asymptotic basis of order 4. Now Theorem 3 follows from Theorem 1 immediately. g

Proof of Theorem 4. Let

O 2 2
B= nL:JO(((m DL (R4 1)+ )mA).

For a sufficiently large x, let k be the integer with
(h+DF <x< (h+1ED,
Let ¢ be the integer with

h(h+1)+dp(A)

t—1
TSI AT,

<(h+1)%.
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Itisclearthat t=1.Ifx < (h + 1)’“2”, then
Bu)>B«h+U“)> 1 B((h+D¥)
x x T (h+ D! (h+ DR
di(A)  B((h+1D¥)
h(h+1)+di(A) (h+1)F

Since
2 2 k-1 , ,
B((h+ D) = A+ DF) = Y ((h+ )™ = (h+ 1" +1)
n=0
zA((h+l)kz)_k(hﬂ)(k—nzu’
it follows that i 2
B((h+DF)  A(h+1DF)
= +0(1) = dr(A) +o(1).
(h+ Dk e Tow=did+ol)
Hence . o
X L
X = h(h+1)+d(A) (dL(A) +o(1)).
If x > (h+ DK+, then
k , )
B(x)= A(x) - Z ((h+1)” +1 —(h+ D" +1)
n=0

k
—AW-RY B+ k-1
n=0
> A(X) = h(h+D* — hk(h+ D%V Z 1
h hk

- —k-1.
(h+1)tx (h+1)2k—1+tx

> A(x) —

It follows that
B(x) _ Ax) h
= - -o(l
X = X (h+ 1)t ol)
h(h+1)d(A) 3
h(h+1)+dp(A)
dr(A)?
— L —o(l).
h(h+1)+dp(A)
Combining the above arguments, we have

=di(A) - o(1)

di(A)?
h(h+1)+dp(A)
Let F be a finite set of nonnegative integers. Then there exists a positive integer m such that

dr(B) z

Fel0,(h+1)"™ ).
For any integer n > m, by the definition of B,
[(h+ D™, (h+ 1" AFUB) =[(h+ 1", (h+ )" nB=o.
Since
(h+ 1" > h(h+ 1),
it follows that (h+1)"*1 ¢ h(FU B). Therefore, F U B is not an asymptotic basis of order # for any

finite set F.
This completes the proof of Theorem 4. d
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