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Abstract. Let h ≥ 2 be an integer. In this paper, we prove that if A is an asymptotic basis of order h and B is a
nonempty subset of A, then either there exists a finite subset F of A such that F ∪B is an asymptotic basis of
order h, or for any ε> 0, there exists a finite subset Fε of A such that dL (h(Fε∪B)) ≥ hdL (B)−ε, where dL (X )
denotes the lower asymptotic density of X and hX denotes the set of all x1 +·· ·+ xh with xi ∈ X (1 ≤ i ≤ h).
This generalizes a result of Nathanson and Sárközy.
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1. Introduction

LetN0 denote the set of all nonnegative integers. Let h ≥ 2 be an integer. For A ⊆N0, let

h A = {a1 +·· ·+ah : a1, . . . , ah ∈ A}.

We define

dL(A) = liminf
x→+∞

A(x)

x
,

where A(x) is the number of positive integers in A which do not exceed x. Usually, dL(A) is called
the lower asymptotic density of A. If

lim
x→+∞

A(x)

x
exists, then the limit value is called the asymptotic density of A and denote it by d(A).

A set A is called an asymptotic basis of order h if h A contains all sufficiently large integers. An
asymptotic basis A of order h is called minimal if no proper subset of A is an asymptotic basis of
order h. The notation of minimal asymptotic bases was introduced by Stöhr [10] in 1955. In 1956,
Härtter [4] proved that for each integer h ≥ 2, there exist minimal asymptotic bases of order h. In
1988, Erdős and Nathanson [3] constructed a minimal asymptotic basis A with d(A) = 1/h. For
related research, one may refer to Chen and Chen [1], Chen and Tang [2], Jańczak and Schoen [5],
Nathanson [7, 8], Sun [11] and Tang and Lin [12].

Nathanson and Sárközy [9] proved the following results:
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Theorem A. If A is an asymptotic basis of order h and B is a subset of A with dL(B) > 1/h, then
there exists a finite subset F of A such that F ∪B is an asymptotic basis of order h.

Theorem B. If A is a minimal asymptotic basis of order h, then dL(A) ≤ 1/h.

In this paper, the following results are proved.

Theorem 1. Let h ≥ 2 be an integer. If A is an asymptotic basis of order h and B is a nonempty
subset of A, then either there exists a finite subset F of A such that F ∪B is an asymptotic basis of
order h, or for any ε> 0, there exists a finite subset Fε of A such that dL(h(Fε∪B)) ≥ hdL(B)−ε.

Remark. Theorem A is a corollary of Theorem 1. Let A be an asymptotic basis of order h and B1

a subset of A with dL(B1) > 1/h. We take ε= (hdL(B1)−1)/2. Then hdL(B1)−ε= (hdL(B1)+1)/2 >
1 ≥ dL(h(E ∪B1)) for any finite subset E of A. By Theorem 1, there exists a finite subset F of A
such that F ∪B1 is an asymptotic basis of order h.

Corollary 2. Let h ≥ 2 be an integer and let B be a nonempty set of nonnegative integers. Then
either there exists a finite set F of nonnegative integers such that F ∪B is an asymptotic basis of
order h, or for any ε> 0, there exists a finite set Fε of nonnegative integers such that dL(h(Fε∪B)) ≥
hdL(B)−ε.

Theorem 3. Let h ≥ 2 be an integer. If A is a minimal asymptotic basis of order h and B is a
nonempty subset of A, then for any ε> 0, there exists a finite subset Fε of A such that dL(h(Fε∪B)) ≥
hdL(B)−ε.

Theorem 4. Let h ≥ 2 be an integer. If A is a set of nonnegative integers with dL(A) > 0, then there
exists a subset B of A with dL(B) > 0 such that F ∪B is not an asymptotic basis of order h for any
finite set F .

2. Proofs

We will use a well known result of Kneser. If two sets X and Y of nonnegative integers are coincide
from some point on, then we write X ∼ Y . For any set X of nonnegative integers and any positive
integer g , let X (g ) be the set of all nonnegative integers n with n ≡ x (mod g ) for some x ∈ X .

In 1953, Kneser [6] proved the following profound result.

Lemma 5 (Kneser [6]). Let h ≥ 2 be an integer and X a nonempty set of nonnegative integers.
Then either dL(hX ) ≥ hdL(X ) or there exists a positive integer g such that hX ∼ hX (g ) and

dL(hX ) ≥ hdL(X )− h −1

g
.

Proof of Theorem 1. If there exists a finite subset F of A such that F ∪B is an asymptotic basis
of order h, then we are done. Now we assume that for any finite subset F of A, F ∪B is not an
asymptotic basis of order h. Let ε > 0. For any positive integer g , let Ag = {ag ,1, . . . , ag ,sg } be a
subset of A such that for every a ∈ A, there exists 1 ≤ i ≤ sg with a ≡ ag ,i (mod g ). It is clear that

A(g )
g = A(g ). Let

Fε =
⋃

1≤g<(h−1)/ε
Ag .

Then Fε is finite. It is enough to prove that

dL(h(Fε∪B)) ≥ hdL(B)−ε.

By Lemma 5, either
dL(h(Fε∪B)) ≥ hdL(Fε∪B),
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or there exists a positive integer g1 such that h(Fε∪B) ∼ h((Fε∪B)(g1)) and

dL(h(Fε∪B)) ≥ hdL(Fε∪B)− h −1

g1
.

Since Fε is finite, it follows that dL(Fε∪B) = dL(B). Hence, either

dL(h(Fε∪B)) ≥ hdL(B),

or there exists a positive integer g1 such that h(Fε∪B) ∼ h((Fε∪B)(g1)) and

dL(h(Fε∪B)) ≥ hdL(B)− h −1

g1
.

If

dL(h(Fε∪B)) ≥ hdL(B),

then we are done. Now we assume that there exists a positive integer g1 such that h(Fε ∪B) ∼
h((Fε∪B)(g1)) and

dL(h(Fε∪B)) ≥ hdL(B)− h −1

g1
.

If (h − 1)/g1 ≤ ε, then we are done. Now we assume that (h − 1)/g1 > ε. We will derive a
contradiction. By (h −1)/g1 > ε, we have g1 < (h −1)/ε. Thus,

A ⊆ A(g1) = A(g1)
g1

⊆ F (g1)
ε ⊆ (Fε∪B)(g1).

Hence

h A ⊆ h((Fε∪B)(g1)) ⊆N0. (1)

Since A is an asymptotic basis of order h, we have h A ∼N0. It follows from (1) that h((Fε∪B)(g1)) ∼
N0. Noting that h(Fε∪B) ∼ h((Fε∪B)(g1)), we have h(Fε∪B) ∼N0. This means that Fε∪B is an
asymptotic basis of order h, a contradiction.

This completes the proof of Theorem 1. □

Proof of Corollary 2. Since N0 is an asymptotic basis of order h and B ⊆N0, Corollary 2 follows
from Theorem 1 immediately. □

Proof of Theorem 3. Since A is a minimal asymptotic basis of order h, it follows that h A ∼N0. So
dL(h A) = 1. By Theorem B, dL(B) ≤ dL(A) ≤ 1/h. Thus, hdL(B) ≤ 1. Let ε> 0. If A \B is finite, then
for Fε = A \ B ,

dL(h(Fε∪B)) = dL(h A) = 1 ≥ hdL(B)−ε.

Now we assume that A \ B is infinite. Thus, for any finite subset F of A, we have F ∪B ̸= A. Since
A is a minimal asymptotic basis of order h, it follows that for any finite subset F of A, F ∪B is not
an asymptotic basis of order h. Now Theorem 3 follows from Theorem 1 immediately. □

Proof of Theorem 4. Let

B =
∞⋃

n=0

((
(h +1)n2+1, (h +1)(n+1)2

)
∩ A

)
.

For a sufficiently large x, let k be the integer with

(h +1)k2 ≤ x < (h +1)(k+1)2
.

Let t be the integer with

(h +1)t−1 < h(h +1)+dL(A)

(h +1)dL(A)
≤ (h +1)t .
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It is clear that t ≥ 1. If x ≤ (h +1)k2+t , then

B(x)

x
≥ B((h +1)k2

)

x
≥ 1

(h +1)t

B((h +1)k2
)

(h +1)k2

> dL(A)

h(h +1)+dL(A)

B((h +1)k2
)

(h +1)k2 .

Since

B((h +1)k2
) ≥ A((h +1)k2

)−
k−1∑
n=0

(
(h +1)n2+1 − (h +1)n2 +1

)
≥ A((h +1)k2

)−k(h +1)(k−1)2+1,

it follows that
B((h +1)k2

)

(h +1)k2 ≥ A((h +1)k2
)

(h +1)k2 +o(1) ≥ dL(A)+o(1).

Hence
B(x)

x
≥ dL(A)

h(h +1)+dL(A)
(dL(A)+o(1)).

If x > (h +1)k2+t , then

B(x) ≥ A(x)−
k∑

n=0

(
(h +1)n2+1 − (h +1)n2 +1

)
= A(x)−h

k∑
n=0

(h +1)n2 −k −1

≥ A(x)−h(h +1)k2 −hk(h +1)(k−1)2 −k −1

> A(x)− h

(h +1)t x − hk

(h +1)2k−1+t
x −k −1.

It follows that
B(x)

x
≥ A(x)

x
− h

(h +1)t −o(1)

≥ dL(A)− h(h +1)dL(A)

h(h +1)+dL(A)
−o(1)

= dL(A)2

h(h +1)+dL(A)
−o(1).

Combining the above arguments, we have

dL(B) ≥ dL(A)2

h(h +1)+dL(A)
> 0.

Let F be a finite set of nonnegative integers. Then there exists a positive integer m such that

F ⊆ [0, (h +1)m2+1].

For any integer n > m, by the definition of B ,

[(h +1)n2
, (h +1)n2+1]∩ (F ∪B) = [(h +1)n2

, (h +1)n2+1]∩B =;.

Since

(h +1)n2+1 > h(h +1)n2
,

it follows that (h+1)n2+1 ∉ h(F ∪B). Therefore, F ∪B is not an asymptotic basis of order h for any
finite set F .

This completes the proof of Theorem 4. □
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