I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Anne Boutet de Monvel and Lech Zielinski
Asymptotic formula for large eigenvalues of the two-photon quantum Rabi model
Volume 361 (2023), p. 1761-1766
Published online: 21 December 2023
https://doi.org/10.5802/crmath. 515
(G) Br \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

Asymptotic formula for large eigenvalues of the two-photon quantum Rabi model

Formule asymptotique pour les grandes valeurs propres du modèle quantique de Rabi à deux photons

Anne Boutet de Monvel ${ }^{a}$ and Lech Zielinski ${ }^{*, b}$
${ }^{a}$ Institut de Mathématiques de Jusieu, Université Paris Cité, 8 place Aurélie Nemours, 75013 Paris, France
${ }^{b}$ Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville UR 2597, Université du Littoral Côte d'Opale, 62228 Calais, France
E-mails: anne.boutet-de-monvel@imj-prg.fr, lech.zielinski@lmpa.univ-littoral.fr

Abstract

We prove that the spectrum of the two-photon quantum Rabi Hamiltonian consists of two eigenvalue sequences $\left(E_{m}^{+}\right)_{m=0}^{\infty},\left(E_{m}^{-}\right)_{m=0}^{\infty}$ satisfying a three-term asymptotic formula with the remainder estimate $O\left(m^{-1} \ln m\right)$ when m tends to infinity. By analogy to the one-photon quantum Rabi model, the leading three terms of this asymptotic formula, describe a generalized rotating-wave approximation for large eigenvalues of the two-photon quantum Rabi model. Résumé. Nous démontrons que le spectre de l'hamiltonien du modèle quantique de Rabi à deux photons est constitué de deux suites de valeurs propres $\left(E_{m}^{+}\right)_{m=0}^{\infty},\left(E_{m}^{-}\right)_{m=0}^{\infty}$ vérifiant une formule asymptotique à trois termes avec l'estimation de l'erreur $O\left(m^{-1} \ln m\right)$ quand m tend vers l'infini. Par analogie avec le modèle quantique de Rabi à un photon, les trois termes dominants dans cette formule asymptotique décrivent l'approximation de l'onde tournante pour les grandes valeurs propres du modèle quantique de Rabi à deux photons.

Manuscript received 11 May 2023, accepted 16 May 2023.

1. Introduction

The quantum Rabi model describes the interactions between a two-level system and a singlemode quantum field. It is considered as a fundamental model in various domains of theoretical physics, e.g. cavity optics, a theory of nanostructured semiconductors, superconducting circuits, trapped ions and quantum information. We refer to [15] for an exhaustive overview of theoretical and experimental works in the domain.

[^0]The papers Boutet de Monvel, Naboko, Silva [7,8] and Yanovich [14] (see also [13]) investigate the behaviour of large eigenvalues of operators related to the quantum Rabi model. The paper [9] gives the three-term asymptotic formula for large eigenvalues of the one-photon Rabi model (see Definition $1(1)$). The two-term asymptotic formula for the two-photon Rabi model (see Definition 1(2)) is given in [10] and this note gives the three-term asymptotic formula for this model. Concerning the two-photon Rabi model, we refer to $[2,5,15]$.

In Section 2 we give the definition of the basic quantum Rabi model in the one-photon and two-photon case. Our main result is Theorem 2, stated in Section 3. We describe main ingredients of the proof in Sections 4, 5 and 6.

We remark that our result is closely related to the method of the generalized rotating-wave approximation (GRWA), used by a great number of physicists working with the quantum Rabi model. The method takes its name from the famous paper of Irish [6], but the same idea was also used in the paper Feranchuk, Komarov, Ulyanenkov [4] under the name of the zeroth order approximation of the operator method (see also [3]). It appears that in the case of the one-photon quantum Rabi model, the GRWA given by the formula (25) in [4], coincides with the three-term asymptotic formula proved in [9]. In Section 6 we describe the relation between the assertion of Theorem 2 and the GRWA for large eigenvalues of the two-photon quantum Rabi model.

2. Definition of the quantum Rabi model

In what follows, \mathbb{Z} denotes the set of integers, $\mathbb{N}=\{n \in \mathbb{Z}: n \geq 0\}$ and $\ell^{2}(\mathbb{N})$ is the Hilbert space of square summable sequences $x: \mathbb{N} \rightarrow \mathbb{C}$. For $s \geq 0$ we denote

$$
\ell^{2, s}(\mathbb{N})=\left\{x \in \ell^{2}(\mathbb{N}): \sum_{k \in \mathbb{N}}\left(1+k^{2}\right)^{s}|x(k)|^{2}<\infty\right\} .
$$

We define the photon annihilation and creation operators \widehat{a} and \widehat{a}^{\dagger}, as linear maps $\ell^{2,1 / 2}(\mathbb{N}) \rightarrow$ $\ell^{2}(\mathbb{N})$ satisfying

$$
\begin{aligned}
\hat{a}^{\dagger} e_{m} & =\sqrt{m+1} e_{m+1} & \text { for } m=0,1,2, \ldots \\
\widehat{a} e_{m} & =\sqrt{m-1} e_{m-1} & \text { for } m=1,2,3, \ldots \text { and } \widehat{a} e_{0}=0,
\end{aligned}
$$

where $\left\{e_{m}\right\}_{m \in \mathbb{N}}$ is the canonical basis of $\ell^{2}(\mathbb{N})$.
Definition 1. We fix two real parameters: the energy spacing of the two-level system Δ and the coupling constant g.
(1) The Hamiltonian of the one-photon quantum Rabi model is given by the linear map $\mathbb{C}^{2} \otimes \ell^{2,1}(\mathbb{N}) \rightarrow \mathbb{C}^{2} \otimes \ell^{2}(\mathbb{N})$ of the form

$$
H_{1}=\left(\begin{array}{cc}
\frac{\Delta}{2} & 0 \tag{1}\\
0 & -\frac{\Delta}{2}
\end{array}\right) \otimes I_{\ell^{2}(\mathbb{N})}+I_{\mathbb{C}^{2}} \otimes \widehat{a}^{\dagger} \widehat{a}+\left(\begin{array}{ll}
0 & g \\
g & 0
\end{array}\right) \otimes\left(\widehat{a}^{\dagger}+\widehat{a}\right)
$$

(2) The Hamiltonian of the two-photon quantum Rabi model is given by the linear map $\mathbb{C}^{2} \otimes \ell^{2,1}(\mathbb{N}) \rightarrow \mathbb{C}^{2} \otimes \ell^{2}(\mathbb{N})$ of the form

$$
H_{2}=\left(\begin{array}{cc}
\frac{\Delta}{2} & 0 \tag{2}\\
0 & -\frac{\Delta}{2}
\end{array}\right) \otimes I_{\ell^{2}(\mathbb{N})}+I_{\mathbb{C}^{2}} \otimes \widehat{a}^{\dagger} \widehat{a}+\left(\begin{array}{ll}
0 & g \\
g & 0
\end{array}\right) \otimes\left(\left(\widehat{a}^{\dagger}\right)^{2}+\widehat{a}^{2}\right)
$$

3. Main result

In what follows, we assume $0<g<1 / 2$ and introduce

$$
\begin{equation*}
\beta:=\sqrt{1-4 g^{2}} . \tag{3}
\end{equation*}
$$

Let H_{2}^{0} denote the operator given by (2) with $\Delta=0$. If $0<g<1 / 2$, then the spectrum of H_{2}^{0} is explicitly known (see [2]): it is composed of the sequence of eigenvalues

$$
\begin{equation*}
E_{m}^{0}=m \beta+(\beta-1) / 2, \quad m=0,1,2, \ldots \tag{4}
\end{equation*}
$$

and each eigenvalue E_{m}^{0} is of multiplicity 2 . Thus $0<g<1 / 2$ ensures the fact that H_{2}^{0} is selfadjoint and has compact resolvent. Since $H_{2}-H_{2}^{0}$ is bounded, the operator H_{2} is self-adjoint and has compact resolvent if $0<g<1 / 2$. The explicit values of eigenvalues of H_{2} are not known when $\Delta \neq 0$, but we can described their asymptotic behavior in
Theorem 2. Assume that $0<g<1 / 2$. Then one can find $\left\{v_{m}^{+}\right\}_{m \in \mathbb{N}} \cup\left\{v_{m}^{-}\right\}_{m \in \mathbb{N}}$, an orthonormal basis of $\mathbb{C}^{2} \otimes \ell^{2}(\mathbb{N})$, such that

$$
H_{2} v_{m}^{ \pm}=E_{m}^{ \pm} v_{m}^{ \pm}, \quad m=0,1,2, \ldots
$$

and the eigenvalue sequences $\left(E_{m}^{+}\right)_{m \in \mathbb{N}},\left(E_{m}^{-}\right)_{m \in \mathbb{N}}$, satisfy the large m estimates

$$
\begin{equation*}
E_{m}^{ \pm}=m \beta+(\beta-1) / 2 \pm r_{m}+O\left(m^{-1} \ln m\right) \tag{5}
\end{equation*}
$$

with r_{m} given by the formula

$$
r_{m}= \begin{cases}\frac{\Delta}{2} \sqrt{\frac{\beta}{\pi g m}} \cos ((2 m+1) \alpha) & \text { if } m \text { is even } \tag{6}\\ \frac{\Delta}{2} \sqrt{\frac{\beta}{\pi g m}} \sin ((2 m+1) \alpha) & \text { if } m \text { is odd }\end{cases}
$$

where we have denoted

$$
\begin{equation*}
\alpha:=\arctan \left(\sqrt{\frac{1-2 g}{1+2 g}}\right) \tag{7}
\end{equation*}
$$

Remarks.

(a) One has $E_{m}^{ \pm}-E_{m}^{0}=O\left(m^{-1 / 2}\right)$ in spite of the fact that $H_{2}-H_{2}^{0}$ is not compact. A similar fact was established in [14] for the one-photon Rabi model.
(b) Following [12], one can prove that the spectrum of H_{2} is not discrete if $g \geq 1 / 2$.

4. Initial reformulations

It is easy to check that the operator H_{2} has four closed invariant subspaces:

$$
\begin{aligned}
& \mathscr{H}_{0}^{-} \text {spanned by }\left\{(1,0) \otimes e_{4 k}: k \in \mathbb{N}\right\} \cup\left\{(0,1) \otimes e_{4 k+2}: k \in \mathbb{N}\right\} \\
& \mathscr{H}_{0}^{+} \text {spanned by }\left\{(0,1) \otimes e_{4 k}: k \in \mathbb{N}\right\} \cup\left\{(1,0) \otimes e_{4 k+2}: k \in \mathbb{N}\right\} \\
& \mathscr{H}_{1}^{-} \text {spanned by }\left\{(1,0) \otimes e_{4 k+1}: k \in \mathbb{N}\right\} \cup\left\{(0,1) \otimes e_{4 k+3}: k \in \mathbb{N}\right\} \\
& \mathscr{H}_{1}^{+} \text {spanned by }\left\{(0,1) \otimes e_{4 k+1}: k \in \mathbb{N}\right\} \cup\left\{(1,0) \otimes e_{4 k+3}: k \in \mathbb{N}\right\}
\end{aligned}
$$

and the matrix of H_{2} in a suitable basis of $\mathscr{C}_{\mu}^{ \pm} \mu=0,1$, can be written in the form

$$
J_{\mu}^{ \pm}=\left(\begin{array}{ccccc}
d_{\mu}^{ \pm}(0) & b_{\mu}(0) & 0 & 0 & \cdots \tag{8}\\
b_{\mu}(0) & d_{\mu}^{ \pm}(1) & b_{\mu}(1) & 0 & \cdots \\
0 & b_{\mu}(1) & d_{\mu}^{ \pm}(2) & b_{\mu}(2) & \cdots \\
0 & 0 & b_{\mu}(2) & d_{\mu}^{ \pm}(3) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where

$$
\begin{aligned}
d_{\mu}^{ \pm}(m) & :=2 m+\mu \pm(-1)^{m} \Delta / 2 \\
b_{\mu}(m) & :=g \sqrt{(2 m+1+\mu)(2 m+2+\mu)}
\end{aligned}
$$

It therefore remains to investigate the asymptotic behavior of eigenvalues of operators defined by $J_{0}^{-}, J_{0}^{+}, J_{1}^{-}$and J_{1}^{+}. For this purpose, we remark that

$$
\begin{equation*}
b_{\mu}(m)=2 g(m+\gamma)+O\left(m^{-1}\right) \text { holds with } \gamma:=\frac{\mu}{2}+\frac{3}{4} \tag{9}
\end{equation*}
$$

Using the result of Rozenblum stated in Theorem 1.1 of [11], we find that modulo $O\left(m^{-1}\right)$, the asymptotic behaviour of the m-th eigenvalue remains the same if the entries $\left\{b_{\mu}(m)\right\}_{m \in \mathbb{N}}$ are replaced by $\{2 g(m+\gamma)\}_{m \in \mathbb{N}}$ with $\gamma:=\frac{\mu}{2}+\frac{3}{4}$. This fact allows us to deduce the assertion of Theorem 2 from

Theorem 3. Assume that $0<g<1 / 2$. Let δ, γ be some real numbers and let $\widehat{J}_{\gamma}^{\delta}$ be the linear map $\ell^{2,1}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ defined by the formula

$$
\begin{equation*}
\widehat{J}_{\gamma}^{\delta} e_{m}=\left(m+(-1)^{m} \delta\right) e_{m}+g(m+\gamma) e_{m+1}+g(m-1+\gamma) e_{m-1}, \quad m \in \mathbb{N} \tag{10}
\end{equation*}
$$

where $\left\{e_{m}\right\}_{m \in \mathbb{N}}$ is the canonical basis in $\ell^{2}(\mathbb{N})$ and by convention $g(m-1+\gamma) e_{m-1}=0$ if $m=0$. Then $\widehat{J}_{\gamma}^{\delta}$ has discrete spectrum and its non-decreasing eigenvalue sequence satisfies the large n asymptotic formula

$$
\begin{equation*}
\lambda_{n}\left(\widehat{J}_{\gamma}^{\delta}\right)=\beta n+(\gamma-1 / 2)(\beta-1)+\delta r_{\gamma, n}+O\left(n^{-1} \ln n\right) \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
r_{\gamma, n}=\sqrt{\frac{\beta}{2 \pi g n}} \cos \left(4 \alpha n+\widehat{\theta}_{\gamma}\right) \tag{12}
\end{equation*}
$$

where β is given by (3), α by (7) and

$$
\begin{equation*}
\widehat{\theta}_{\gamma}=(\gamma-1 / 2)(4 \alpha-\pi)+\pi / 4 \tag{13}
\end{equation*}
$$

In order to prove Theorem 3, we move from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{Z})$, the Hilbert space of square summable sequences $x: \mathbb{Z} \rightarrow \mathbb{C}$. For $s>0$ we denote

$$
\ell^{2, s}(\mathbb{Z})=\left\{x \in \ell^{2}(\mathbb{Z}): \sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{s}|x(k)|^{2}<\infty\right\}
$$

and define $\widetilde{J}_{\gamma}^{\delta}$ as the linear map $\ell^{2,1}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ given by

$$
\begin{equation*}
\widetilde{J}_{\gamma}^{\delta} e_{k}=\left(k+(-1)^{k} \delta\right) e_{k}+g(k+\gamma) e_{k+1}+g(k-1+\gamma) e_{k-1}, \quad k \in \mathbb{Z} \tag{14}
\end{equation*}
$$

where $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is the canonical basis of $\ell^{2}(\mathbb{Z})$. We can identify $\ell^{2}(\mathbb{N})$ with

$$
\left\{x \in \ell^{2}(\mathbb{Z}): x(k)=0 \text { for } k \in \mathbb{Z} \backslash \mathbb{N}\right\}
$$

and consider $\widetilde{J}_{\gamma}^{\delta}$ as an extension of $\widehat{J}_{\gamma}^{\delta}$. Using Theorem 1.1 in [11], we find that the spectrum of $\widetilde{J}_{\gamma}^{\delta}$ is composed of a non-decreasing sequence of eigenvalues $\left\{\lambda_{j}\left(\widetilde{J}_{\gamma}^{\delta}\right)\right\}_{j \in \mathbb{Z}}$, which can be labeled so that for any $N>0$ one has the estimate

$$
\begin{equation*}
\lambda_{n}\left(\widetilde{J}_{\gamma}^{\delta}\right)=\lambda_{n}\left(\widehat{J}_{\gamma}^{\delta}\right)+O\left(n^{-N}\right) \text { when } n \rightarrow \infty \tag{15}
\end{equation*}
$$

5. Diagonalisation of $\widetilde{J}_{\gamma}^{\delta}$ when $\delta=0$

The operator $\widetilde{J}_{\gamma}^{\delta}$ with $\delta=0$ was investigated in [1]. Let S be the shift $S e_{j}=e_{j+1}$ in $\ell^{2}(\mathbb{Z})$ and denote $\Lambda:=\operatorname{diag}(j)_{j \in \mathbb{Z}}$. Then (14) gives

$$
\widetilde{J}_{\gamma}^{0}=\Lambda+g\left(S(\Lambda+\gamma)+(\Lambda+\gamma) S^{-1}\right)=\Lambda+g(S(\Lambda+\gamma)+\text { h.c. })
$$

Let $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ and let $\mathscr{F}_{\mathbb{T}}$ be the isometric isomorphism $\mathrm{L}^{2}(\mathbb{T}) \rightarrow \ell^{2}(\mathbb{Z})$ given by

$$
\begin{equation*}
\left(\mathscr{F}_{\mathbb{T}} f\right)(j)=\int_{-\pi}^{\pi} f(\theta) \mathrm{e}^{-\mathrm{i} j \theta} \frac{\mathrm{~d} \theta}{2 \pi} \tag{16}
\end{equation*}
$$

Then $L_{\gamma}:=\mathscr{F}_{\mathbb{T}}^{-1} \widetilde{J}_{\gamma}^{0} \mathscr{F}_{\mathbb{T}}$ is the first order differential operator

$$
L_{\gamma}=\frac{1}{2}\left((1+2 g \cos \theta)\left(-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\right)+\text { h.c. }\right)+(1+2 \gamma) \cos \theta
$$

and following [1], we define the diffeomorphism of $]-\pi, \pi$ [given by

$$
\begin{equation*}
\Phi(\theta):=\int_{0}^{\theta} \frac{\beta \mathrm{d} \theta^{\prime}}{1+2 g \cos \theta^{\prime}}=2 \arctan \left(\sqrt{\frac{1-2 g}{1+2 g}} \tan \left(\frac{\theta}{2}\right)\right) . \tag{17}
\end{equation*}
$$

The change of variable $\eta=\Phi(\theta)$ defines the unitary operator acting in $\mathrm{L}^{2}(\mathbb{T})$ according to the formula

$$
\begin{equation*}
\left(U_{\Phi} f\right)(\theta)=\Phi^{\prime}(\theta)^{1 / 2} f(\Phi(\theta)) \tag{18}
\end{equation*}
$$

and the direct computation gives

$$
U_{\Phi}^{-1} L_{\gamma} U_{\Phi}=\beta\left(-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \eta}+q_{\gamma}(\eta)\right)
$$

with

$$
q_{\gamma}(\eta):=\beta^{-1}(1+2 \gamma) \cos \left(\Phi^{-1}(\eta)\right)
$$

Let \widetilde{q}_{γ} be a primitive of q_{γ}. We compute

$$
\left\langle q_{\gamma}\right\rangle:=\left(\widetilde{q}_{\gamma}(\pi)-\widetilde{q}_{\gamma}(-\pi)\right) /(2 \pi)=(\gamma-1 / 2)(1-1 / \beta)
$$

and remark that $\eta \rightarrow\left\langle q_{\gamma}\right\rangle \eta-\widetilde{q}_{\gamma}(\eta)$ is 2π-periodic, hence we can define $\left(f_{\gamma, j}\right)_{j \in \mathbb{Z}}$, the orthonormal basis in $\mathrm{L}^{2}(\mathbb{T})$ given by

$$
\begin{equation*}
f_{\gamma, j}(\eta)=\mathrm{e}^{\mathrm{i} j \eta} \mathrm{e}^{\mathrm{i}\left(\left\langle q_{\gamma}\right\rangle \eta-\tilde{q}_{\gamma}(\eta)\right)} \tag{19}
\end{equation*}
$$

Then (see [1]), for every $j \in \mathbb{Z}$, one has

$$
\beta\left(-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \eta}+q_{\gamma}\right) f_{\gamma, j}=\beta\left(j+\left\langle q_{\gamma}\right\rangle\right) f_{\gamma, j} .
$$

Consequently, for every $j \in \mathbb{Z}$,

$$
\begin{equation*}
\tilde{J}_{\gamma}^{0} u_{\gamma, j}=d_{\gamma, j} u_{\gamma, j} \tag{20}
\end{equation*}
$$

holds with

$$
\begin{gather*}
u_{\gamma, j}=\mathscr{F}_{\mathbb{T}} U_{\Phi} f_{\gamma, j}, \tag{21}\\
d_{\gamma, j}=\beta\left(j+\left\langle q_{\gamma}\right\rangle\right)=\beta j+(\gamma-1 / 2)(\beta-1) . \tag{22}
\end{gather*}
$$

6. Generalized rotating-wave approximation (GRWA)

The idea of the GRWA consists in using the diagonal entries of a perturbation as the first correction for eigenvalues of a perturbed diagonal matrix and we refer to [3] for numerous examples of this approach. In order to apply this idea, we consider $\widetilde{J}_{\gamma}^{\delta}$ as a perturbation of $\widetilde{J}_{\gamma}^{0}$ and use the diagonalisation (20). We remark that

$$
\begin{equation*}
\widetilde{J}_{\gamma}^{\delta}=\widetilde{J}_{\gamma}^{0}+\delta V \tag{23}
\end{equation*}
$$

holds with $V:=\operatorname{diag}\left((-1)^{j}\right)_{j \in \mathbb{Z}}$. Let U_{γ} be the unitary operator in $\ell^{2}(\mathbb{Z})$ defined by $U_{\gamma} e_{j}=u_{\gamma, j}$, where $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ is the canonical basis of $\ell^{2}(\mathbb{Z})$ and $\left\{u_{\gamma, j}\right\}_{j \in \mathbb{Z}}$ is the basis given by (21). Then (23) gives

$$
\begin{equation*}
U_{\gamma}^{-1} \widetilde{J}_{\gamma}^{\delta} U_{\gamma}=D_{\gamma}+\delta V_{\gamma}, \tag{24}
\end{equation*}
$$

where $D_{\gamma}=\operatorname{diag}\left(d_{\gamma, j}\right)_{j \in \mathbb{Z}}$ and $V_{\gamma}=U_{\gamma}^{-1} V U_{\gamma}$. We claim that the asymptotic estimate (11)-(13) follows from

$$
\begin{equation*}
\lambda_{j}\left(D_{\gamma}+\delta V_{\gamma}\right)=d_{\gamma, j}+\delta V_{\gamma}(j, j)+O\left(j^{-1} \ln j\right) \text { when } j \rightarrow \infty \tag{25}
\end{equation*}
$$

where

$$
V_{\gamma}(j, j)=\left\langle e_{j}, V_{\gamma} e_{j}\right\rangle_{\ell^{2}(\mathbb{Z})}=\left\langle u_{\gamma, j}, V u_{\gamma, j}\right\rangle_{\ell^{2}(\mathbb{Z})} .
$$

Indeed, since $\mathscr{F}_{\mathbb{U}}^{-1} V \mathscr{F}_{\mathbb{T}}=T_{\pi}$ is the translation $\theta+2 \pi \mathbb{Z} \rightarrow \theta+\pi+2 \pi \mathbb{Z}$, we find that

$$
\begin{equation*}
V_{\gamma}(j, j)=\left\langle U_{\Phi} f_{\gamma, j}, T_{\pi} U_{\Phi} f_{\gamma, j}\right\rangle_{\mathrm{L}^{2}(\mathbb{T})}=\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} j\left(\Phi-T_{\pi} \Phi\right)(\theta)} p_{\gamma}(\theta) \overline{\left(T_{\pi} p_{\gamma}\right)(\theta)} \frac{\mathrm{d} \theta}{2 \pi} \tag{26}
\end{equation*}
$$

holds with

$$
p_{\gamma}(\theta):=\mathrm{e}^{\mathrm{i}\left\langle q_{\gamma}\right\rangle \Phi(\theta)-\mathrm{i} \tilde{q}_{\gamma}(\Phi(\theta))} \beta^{1 / 2}(1+2 g \cos \theta)^{-1 / 2}
$$

and the stationary phase method gives

$$
\begin{equation*}
V_{\gamma}(j, j)=r_{\gamma, j}+O\left(j^{-1}\right) \text { when } j \rightarrow \infty \tag{27}
\end{equation*}
$$

where $r_{\gamma, j}$ is given by (12)-(13). Thus (11)-(13) follow from (25), (27) and (15).
The proof of (25) is based on the approach of Yanovich [14] and the explicit expressions of the entries

$$
\begin{equation*}
V_{\gamma}(j, k)=\left\langle U_{\Phi} f_{\gamma, j}, T_{\pi} U_{\Phi} f_{\gamma, k}\right\rangle_{\mathrm{L}^{2}(\mathbb{T})} . \tag{28}
\end{equation*}
$$

References

[1] J. Edward, "Spectra of Jacobi matrices, differential equations on the circle, and the $s u(1,1)$ Lie algebra", SIAMJ. Math. Anal. 24 (1993), no. 3, p. 824-831.
[2] C. Emary, R. F. Bishop, "Bogoliubov transformations and exact isolated solutions for simple nonadiabatic Hamiltonians", J. Math. Phys. 43 (2002), no. 8, p. 3916-3926.
[3] I. D. Feranchuk, A. Ivanov, V.-H. Le, A. P. Ulyanenkov, Non-perturbative description of quantum systems, Lecture Notes in Physics, vol. 894, Springer, 2015.
[4] I. D. Feranchuk, L. I. Komarov, A. P. Ulyanenkov, "Two-level systems in a one-mode quantum field: Numerical solution on the basis of the operator method", J. Phys. A. Math. Gen. 29 (1996), no. 14, p. 4035-4047.
[5] C. Gerry, "Two-photon Jaynes-Cummings model interacting with the squeezed vacuum", Phys. Rev. A 37 (1988), no. 7, p. 2683-2686.
[6] E. K. Irish, "Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling", Phys. Rev. Lett. 99 (2007), article no. 173601.
[7] A. Boutet de Monvel, S. Naboko, L. O. Silva, "Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations", Comptes Rendus Math. Acad. Sci. Paris 338 (2004), no. 1, p. 103-107.
[8] -, "The asymptotic behavior of eigenvalues of a modified Jaynes-Cummings model", Asymptotic Anal. 47 (2006), no. 3-4, p. 291-315.
[9] A. Boutet de Monvel, L. Zielinski, "Oscillatory behavior of large eigenvalues in quantum Rabi models", Int. Math. Res. Not. 2021 (2019), no. 7, p. 5155-5213.
[10] , "Asymptotic behavior of large eigenvalues of the two-photon Rabi model", in Schrödinger operators, spectral analysis and number theory. In memory of Erik Balslev, Springer Proceedings in Mathematics \& Statistics, vol. 348, Springer, 2021, p. 89-115.
[11] G. V. Rozenblum, "Near-similarity of operators and the spectral asymptotic behavior of pseudodifferential operators on the circle", Tr. Mosk. Mat. O.-va 36 (1975), p. 59-84.
[12] J. Sahbani, "Spectral theory of certain unbounded Jacobi matrices", J. Math. Anal. Appl. 342 (2008), no. 1, p. 663-681.
[13] E. A. Tur, "Jaynes-Cummings model without rotating wave approximation", https://arxiv.org/abs/math-ph/ 0211055, 2002.
[14] E. A. (Tur) Yanovich, "Asymptotics of eigenvalues of an energy operator in a problem of quantum physics", in Operator methods in mathematical physics. Conference on operator theory, analysis and mathematical physics (OTAMP) 2010, Bedlewo, Poland, Operator Theory: Advances and Applications, vol. 227, Birkhäuser, 2013, p. 165177.
[15] Q. Xie, H. Zhong, M. T. Batchelor, C. Lee, "The quantum Rabi model: solution and dynamics", J. Phys. A. Math. Theor. 50 (2017), no. 11, article no. 113001 (40 pages).

[^0]: * Corresponding author.

