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1. Introduction

As it is well-known, the modulus of smoothness generated by the standard translation is equiva-
lent with the Peetre’s K-functional, see e.g. [6, p. 171]. This property is extended to Dunkl trans-
lation by E. S. Belkina and S. S. Platonov (see [2]) and Bessel translation in [12]. In this paper, we
prove the counterparts of results obtained in [2], i.e., we establish the equivalence between K -
functionals and modulus of smoothness in the Dunkl context (on (−1,1)) by using Fourier–Dunkl
expansions introduced in [4], instead of Dunkl transform. The orthonormal system associated
with this kind of series is a generalization of the trigonometric one (in particular, the periodicity
is lost).

Hereinafter the symbol α stands for a real value such that α > −1. We consider the Dunkl
operatorΛα associated with the reflection group Z2 on R given by

Λα f (x) = d

dx
f (x)+ 2α+1

x

(
f (x)− f (−x)

2

)
.

The initial value problem {
Λα f (x) = iλ f (x), λ ∈R
f (0) = 1
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has a unique solution Eα(iλ.) (called the Dunkl kernel) given by:

Eα(iλx) = jα(λx)+ iλx

2(α+1)
jα+1(λx), x ∈R, (1)

where jα is the normalized Bessel function of the first kind defined by

jα (x) = 2αΓ(α+1)
Jα (x)

xα
(2)

and Jα is the Bessel functions of the first kind of order α

Jα(x) =
( x

2

)α ∞∑
n=0

( i x
2

)2n

n!Γ(n +α+1)
.

From [15], for all x ∈R, we have

|Eα(i x)| ≤ 1 and |E ′
α(i x)| ≤ 1. (3)

Let Lp
(
(−1,1),dµα

)
, p ≥ 1, denote the Lebesgue spaces on the interval (−1,1) endowed with

the norm

∥ f ∥α,p =
(∫ 1

−1
| f (t )|p dµα(x)

) 1
p

.

where dµα(x) = (
2α+1Γ(α+1)

)−1 |x|2α+1dx. The Dunkl transform is a generalization of the Fourier
transform. It is defined for f ∈ L1

(
(−1,1),dµα

)
by the identity (see [7, 9])

Fα f (y) =
∫
R

f (x)Eα(−i y x)dµα(x), y ∈R.

The Fourier transform corresponds with the case α=−1/2 because E−1/2(i x) = ei x and dµ−1/2 is,
up to a multiplicative factor, the Lebesgue measure on R.

2. Equivalence of K-functionals and modulus of smoothness generated by a Dunkl
type operator on the interval (−1,1).

Let
{
λn :=λα+1,n ,n ∈N}

be the increasing sequence of positive zeros of Jα+1. It is proved in [10]
that

λn É nπ+απ/2+π/4 for α>−1/2. (4)

In [8] we find the following inequality

λn >α+nπ− π

2
+ 3

2
, α>−1, n = 1,2, . . .

then
λn > n, α>−1, n = 1,2, . . . . (5)

When the range of α is fixed, like −1 <αÉ− 1
2 (see Schafheitlin in [18, p. 490]) and no (essential)

restriction on n :

nπ+απ/2+π/4 <λn < nπ

(
−1 <αÉ−1

2

)
. (6)

Let cα =π+max{0,απ/2+π/4}. Combining (4), (5), and (6) gives

n <λn < cαn for all α>−1. (7)

The real-valued function ℑEα(i x) = x
2(α+1) jα+1(x) is odd and its zeros are {λn ,n ∈Z} where

λ−n =−λn and λ0 = 0.
Theorem 1 in [4] establishes that {Eα (iλn x)}n∈Z is a complete orthogonal system in

L2
(
(−1,1),dµα

)
. That is to say∫ 1

−1
Eα (iλn x)Eα (iλm x)dµα(x) = ∥Eα (iλn · )∥2

2,αδnm .
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For each appropriate function f on (−1,1), we define its Fourier series related to the system
{Eα (iλn x)}n∈Z, which are called Fourier–Dunkl series, as

f ∼ ∑
n∈Z

cn( f )Eα (iλn x)θn , cn( f ) =
∫ 1

−1
f (y)Eα

(
iλn y

)
dµα(y).

and
θn = ∥Eα (iλn ·)∥−2

2,α .

We notice that Ó. Ciaurri and his collaborators have studied in [3] the weighted norm conver-
gence of the Fourier–Dunkl series and proved in [5] an uncertainty inequality associated to this
system. From [4, Lemma 1] we have

θn = 2αΓ(α+1)

| jα(λn)|2 , n ∈Z\ {0} (we recall that λn :=λα+1,n) (8)

and θ0 = 2α+1Γ(α+2). The following asymptotic formulas hold for the Bessel function Jα(u) ([18,
p. 490]):

Jα(u) =
√

2

πu

[
cos

(
u − απ

2
− π

4

)
+O

(
1

u

)]
,u →∞. (9)

Combining (8) and (9) gives
θn ∼π|λn |2α+1, |n|→∞. (10)

The sequence
{
cn( f ),n ∈Z}

is called the discrete Fourier–Dunkl transform of f . We define the
weighted spaces l p (Z, (θn)n∈Z) by

l p (Z, (θn)n∈Z) =
{

(xn)n∈Z :Z−→C :

( ∑
n∈Z

|xn |p θn

)1/p

<+∞
}

.

If f ∈ L2
(
(−1,1),dµα

)
, then the sequence

{
cn( f ),n ∈Z}

belongs to l 2 (Z, (θn)n∈Z) and we have

∥ f ∥2,α =
√

∞∑
n=−∞

∣∣cn( f )
∣∣2
θn . (11)

The Dunkl translation operator of a function f is defined for all h ∈R by (see [1, 13])

ταy f (x) =
∞∑

n=0
Λn
α f (x)

yn

γn,α
, α>−1 (12)

whereΛ0
α is the identity operator,Λn+1

α =Λα
(
Λn
α

)
, and

γn,α =
{

22k k !(α+1)k if n = 2k,

22k+1k !(α+1)k+1 if n = 2k +1.

The definition (12) is valid only for C∞-functions, and assuming also that the series on the right
is convergent. In particular, this can be guaranteed when f is a polynomial, because the operator
Λα applied to a polynomial of degree k generates a polynomial of degree k −1, so the series (12)
has only a finite number of nonzero summands. In the case α=−1/2, the translation ταy f is just
the Taylor expansion of a function f around a fixed point x, that is,

f (x + y) =
∞∑

n=0
f (n)(x)

yn

n!
.

Some properties of the translation operator, including an integral expression, can be found
in [11, 14, 16, 17]. For our purposes, we only need the identity [13, formula (4.2.2)]

ταh (Eα (iλx)) = Eα (iλh)Eα (iλx) for all x,h ∈R. (13)

That resembles the classical
eλ(h+x) = eλheλx .
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The scalar product in the Hilbert space L2
(
(−1,1),dµα

)
obeys the formula

( f , g ) =
∫ 1

−1
f (x)g (x)dµα(x).

We denote by E = E ((−1,1)), the set of all infinitely differentiable with compact support included
in the interval (−1,1). By the partial integration one can verify the relation∫ 1

−1
Λα f (x)g (x)dµα(x) = f (1)g (1)− f (−1)g (−1)

2α+1Γ(α+1)
−

∫ 1

−1
f (x)Λαg (x)dµα(x). (14)

Then for any functions f , g ∈ E , we have

(Λα f , g ) =−( f ,Λαg ). (15)

As usual, we endow the space E with a topology; this turns it into a topological vector space. Let
E ′ stand for the set of generalized functions, i.e., linear continuous functionals on the space E .
We denote the value of a functional f ∈ E ′ on a functionϕ ∈ E by 〈 f ,ϕ〉.The space L2

(
(−1,1),dµα

)
is embedded into E ′, provided that for f ∈ L2

(
(−1,1),dµα

)
and ϕ ∈ E ′ we put

〈 f ,ϕ〉 =
∫ 1

−1
f (x)ϕ(x)dµα(x)

We can extend the action of Dunkl operatorΛα onto the space of generalized functions E ′, putting

〈Λα f ,ϕ〉 =−〈 f ,Λαϕ〉, f ∈ E ′,ϕ ∈ E .

In particular, the action of the operator Λα f is defined for any function f ∈ L2
(
(−1,1),dµα

)
, but,

generally speaking,Λα f is a generalized function.
Analogously to Λα, we can extend the operator ταh by continuity on the whole space

L2
(
(−1,1),dµα

)
. Indeed, Let P be a vector space generated by the system {Eα (iλn x)}n∈Z and

f ∈ P , then f can be written as f (x) = ∑m
n=−m cnEα (iλn x)θn . Using (3) and (13) we check eas-

ily that
∥ταh f ∥2,α ≤ ∥ f ∥2,α. (16)

As P is a dense subspace of L2
(
(−1,1),dµα

)
, it follows from (16) that ταh can be extended by

continuity to a bounded operator in L2
(
(−1,1),dµα

)
. The extended operator is also denoted by

ταh ; inequality (16) remains valid for it.
For every function f ∈ L2

(
(−1,1),dµα

)
we define the differences ∆m

h f of order, m ∈ N =
{1,2,3, . . . }, with step h ∈ R by the formula ∆1

h f (t ) = ∆h f (t ) = (ταh − I ) f (t ), where I is the identity
operator in L2

(
(−1,1),dµα

)
and for m > 1

∆m
h f (t ) =∆h(∆m−1

h f (t )) = (ταh − I )m f (t ) =
m∑

i=0
(−1)m−1

(
m

i

)
(ταh )i f (t ),

where
(ταh )0 f (t ) = f (t ), (ταh )i f (t ) = ταh ((ταh )i−1 f (t )), i = 1,2, . . . ,m.

The moduli of smoothness generated by general translations are defined as follows.

ωm( f ,δ)2,α := sup
0<h≤δ

∥∥∆m
h f

∥∥
2,α , δ> 0, f ∈ L2 (

(−1,1),dµα
)

.

Let W m
2,α be the Sobolev space constructed by the operatorΛα, i.e.,

W m
2,α :=

{
f ∈ L2 (

(−1,1),dµα
)

:Λ j
α f ∈ L2 (

(−1,1),dµα
)

, j = 1,2, . . . ,m
}

.

Then the corresponding K-functional is

K ( f , t ,W m
2,α) := inf

{∥∥ f − g
∥∥

2,α+ t
∥∥Λm

α g
∥∥

2,α : g ∈W m
2,α

}
where f ∈ L2

(
(−1,1),dµα

)
and t > 0. For brevity, we denote

Km( f , t )2,α := K ( f , t ,W m
2,α).
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The following theorem establishes an equivalence between the modulus of smoothness and
the K-functional. It is analogous to the theorem on the equivalence between the modulus of
smoothness and the K-functional in classical approximation theory.

Theorem 1. One can find positive numbers C1 = C1(m,α) and C2 = C2(m,α) which satisfy the
inequality

C1ωm( f ,δ)2,α ≤ Km( f ,δm)2,α ≤C2ωm( f ,δ)2,α

where f ∈ L2
(
(−1,1),dµα

)
and δ> 0.

Using that E−1/2(i x) = ei x , it is easy to check that Theorem 1 reduces to an equivalence
between the modulus of smoothness and the K-functional on the basis of Fourier series and usual
translation.

When we consider real even and odd functions the Fourier–Dunkl series can be seen as
Fourier–Dini and Fourier–Bessel series respectively. From this fact, applying Theorem 1 to even
or odd functions, we can deduce analogs of Theorem 1 for these kinds of series.

3. Proof

Some technical facts are needed to prove our result. They are included in the next lemmas.

Lemma 2.

(i) For x ∈R the following inequality is fulfilled

|1−Eα(i x)| ≤ |x|.
(ii) For |x| ≥ 1, there exists a certain constant c > 0 which depends only on α such that

|1−Eα(i x)| ≥ c.

Proof. (i). It follows by the estimates provided in (3) together with standard application of
Lagrange’s mean value theorem.

(ii). The asymptotic formulas (9) imply that jα(x) → 0 as |x|→∞. Consequently, a number η> 0
exists such that with |x| ≥ η the inequality

∣∣ jα(x)
∣∣≤ 1/2 is true. Let

m = min
1≤|x|≤η

∣∣1− jα(x)
∣∣ .

With |x| ≥ 1 we get the inequality
∣∣1− jα(x)

∣∣≥ c, where c = min{m,1/2}. Taking only the reel part
of 1−Eα (iλn x) gives

c ≤ ∣∣1− jα(x)
∣∣≤ |1−Eα (iλn x)| .

□

Proposition 3. Let x ∈ (−1,1) and h ∈R. If f ∈ L2
(
(−1,1),dµα

)
with

f (x) = ∑
n∈Z

cn( f )Eα (iλn x)θn ,

then
ταh f (x) = ∑

n∈Z
cn( f )Eα (iλnh)Eα (iλn x)θn . (17)

Proof. By product formula (13) of ταh , we have

ταh Eα (iλn x) = Eα (iλnh)Eα (iλn x) .

So, for any Dunkl-polynomial function

QN (x) =
N∑

n=−N
cn( f )Eα (iλn x)θn ,
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(this can be considered as a generalization of the trigonometric polynomial in the classical case
α=−1/2) since ταh is linear, we have

ταhQN (x) =
N∑

n=−N
cn( f )Eα (iλnh)Eα (iλn x)θn . (18)

By using the fact that ταh is extended to a continuous linear operator in L2
(
(−1,1),dµα

)
and the

set of all polynomials QN (x) is everywhere dense in L2
(
(−1,1),dµα

)
, passage to the limit in (18)

gives the desired equality. □

Corollary 4. Let f ∈ L2
(
(−1,1),dµα

)
and h ∈R, then∥∥∆m

h f
∥∥

2,α ≤ 2m ∥∥ f
∥∥

2,α . (19)

Proof. Let h ∈R. According to the formula (17), we obtain

cn
(
∆1

h f
)= cn

(
ταh f

)− cn( f )

= (Eα (iλnh)−1)cn( f ).

Using induction with respect to m, we have

cn
(
∆m

h f
)= (Eα (iλnh)−1)m cn( f ). (20)

Then
cn

(
∆m

h f
)≤ 2mcn( f ).

□

Lemma 5. If f ∈ E , we get
cn(Λα f ) = iλncn( f ) (21)

for all n ∈Z.

Proof. Let f ∈ E , we put cn( f ) = ∫ 1
−1 f (y)Eα

(
iλn y

)
dµα(y). It follows from (15) that

cn(Λα f ) =
∫ 1

−1
Λα f (y)Eα

(−iλn y
)

dµα(y),

=−
∫ 1

−1
f (y)ΛαEα

(−iλn y
)

dµα(y),

= iλn

∫ 1

−1
f (y)Eα

(−iλn y
)

dµα(y),

= iλncn( f ).

Then the equality (21) is valid in E . □

Remark 6. Using induction with respect to m and Lemma 5, we can see that for all f ∈W m
2,α

cn(Λm
α f ) = (iλn)mcn( f ) (22)

for all n ∈Z and m = 0,1,2, . . . .

Lemma 7. Assume that δ> 0 and f ∈W m
2,α. The following inequality is true:

ωm( f ,δ)2,α ≤ δm ∥∥Λm f
∥∥

2,α .

Proof. Let h ∈ (0,δ]. According to the formula (20), we have

cn
(
∆m

h f
)= (Eα (iλnh)−1)m cn( f ).

It follows from the Parseval identity (11) and Lemma 2 that∥∥∆m
h f

∥∥2
2,α = ∑

n∈Z
(1−Eα (iλnh))2m ∣∣cn( f )

∣∣2
θn ≤ h2m

∑
n∈Z

(
1−Eα (iλnh)

λnh

)2m ∣∣λm
n cn( f )

∣∣2
θn

≤ h2m ∥∥Λm
α f

∥∥2
2,α ≤ δ2m ∥∥Λm

α f
∥∥2

2,α .
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Calculating the supremum with respect to all h ∈ (0,δ], we obtainωm( f ,δ)2,α ≤ δm
∥∥Λm

α f
∥∥

2,α. □

Definition 8. For any function f ∈ L2
(
(−1,1),dµα

)
and any number σ> 0, we define the function

Pσ( f )(t ) := ∑
n∈Z

Xσ(λn)cn( f )Eα (iλn t )θn

where Xσ(n) is the characteristic function defined by

Xσ(λn) :=
{

1 if |λn | ≤σ,

0 if |λn | >σ.

Proposition 9. Let σ> 0. For any function f ∈ L2
(
(−1,1),dµα

)
the following inequality is true:

∥ f −Pσ( f )∥2,α ≤C∥∆m
1
σ

f ∥2,α.

Proof. Using the Parseval equality, we obtain

∥ f −Pσ( f )∥2
2,α = ∑

n∈Z
(1−Xσ(λn))|cn( f )|2θn , (23)

= ∑
n∈Z

(1−Xσ(λn))(
1−Eα

(
iλnσ−1

))2m

(
1−Eα

(
iλnσ

−1))2m |cn( f )|2θn . (24)

Note that C1 ≤ |1−Eα (i x)| with |x| ≥ 1 (see Lemma 2). Hence

sup
n∈Z

1−Xσ(λn)

1−Eα
(
iλnσ−1

) ≤ sup
|x|≥1

1

1−Eα (i x)
≤ 1

C1
. (25)

Relations (24) and (25) give
∥ f −Pσ( f )∥2,α ≤C∥∆m

1
σ

f ∥2,α

where C = 1

C m
1

. □

Corollary 10. For any function f ∈ L2
(
(−1,1),dµα

)
the following inequality is true:

∥ f −Pσ( f )∥2,α ≤Cωm

(
f ,

1

σ

)
2,α

.

Proposition 11. Suppose that f ∈ L2
(
(−1,1),dµα

)
, m ∈N, and σ> 0. Then we have

∥Λm
α Pσ( f )∥2,α ≤C3σ

m∥∆m
1
σ

f ∥2,α.

Proof. Using the Parseval equality, we obtain

∥Λm
α Pσ( f )∥2

2,α = ∑
n∈Z

λ2m
n Xσ(λn)|cn( f )|2θn , (26)

=σ2m
∑

n∈Z

Xσ(λn)(λnσ
−1)2m(

1−Eα
(
iλnσ−1

))2m

(
1−Eα

(
iλnσ

−1))2m |cn( f )|2θn . (27)

Note that

sup
n∈Z

∣∣∣∣ Xσ(λn)λnσ
−1

1−Eα
(
iλnσ−1

) ∣∣∣∣≤ sup
|x|≤1

∣∣∣∣ x

1−Eα (i x)

∣∣∣∣=C2. (28)

Then formula (27) yields
∥Λm

α Pσ( f )∥2,α ≤C3σ
m∥∆m

1
σ

f ∥2,α

where C3 =C m
2 . □

Corollary 12. For any function f ∈ L2
(
(−1,1),dµα

)
the following inequality is true:

∥Λm
α Pσ( f )∥2,α ≤C3σ

mωm

(
f ,

1

σ

)
2,α

.
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Proof of Theorem 1.

Proof of the inequality 2−mωm( f ,δ)2,α ≤ Km( f ,δm)2,α.
Let h ∈ (0,δ], g ∈W m

2,α. Using Lemma 7 and inequality (19), we obtain∥∥∆m
h f

∥∥
2,α ≤ ∥∥∆m

h f − g
∥∥

2,α+
∥∥∆m

h g
∥∥

2,α ≤ 2m ∥∥ f − g
∥∥

2,α+hm ∥∥Λm
α f

∥∥
2,α

≤ 2m
(∥∥ f − g

∥∥
2,α+hm ∥∥Λm

α f
∥∥

2,α

)
.

Calculating the supremum with respect to h ∈ (0,δ] and the infimum with respect to all possible
functions g ∈W m

2,α we obtain

2−mωm( f ,δ)2,α ≤ Km( f ,δm)2,α.

Proof of the inequality Km( f ,δm)2,α ≤C1ωm( f ,δ)2,α.
Since Pσ( f ) ∈W m

2,α by the definition of a K -functional we have

Km( f ,δm)2,α ≤ ∥∥ f −Pσ( f )
∥∥

2,α+δm ∥∥Λm
α Pσ( f )

∥∥
2,α .

Using Corollaries 10 and 12, this gives

Km( f ,δm)2,α ≤ωm

(
f ,

1

σ

)
2,α

+C3(δσ)nωm

(
f ,

1

σ

)
2,α

.

Since σ is an arbitrary positive value, choosing σ= 1/δ, we obtain the inequality. □
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