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Abstract. It was proven in [1], that the étale fundamental group of a connected smooth projective variety
over an algebraically closed field k is topologically finitely presented. In this note, we extend this result to all
connected proper schemes over k.

Résumé. Il a été prouvé dans [1], que le groupe fondamental étale d’une variété projective lisse connexe sur
un corps algébriquement clos k est topologiquement de présentation finie. Dans cette note, nous étendons
ce résultat à tous les schémas propres connexes sur k.

2020 Mathematics Subject Classification. 14F35, 14F20.

Funding. The authors acknowledge support by Deutsche Forschungsgemeinschaft (DFG) through the Col-
laborative Research Centre TRR 326 “Geometry and Arithmetic of Uniformized Structures”, project number
444845124. The second author (VS) was supported during part of the preparation of the article by a J. C. Bose
Fellowship of the Department of Science and Technology, India. He also acknowledges support of the De-
partment of Atomic Energy, India under project number RTI4001. This material is partly based upon work
supported by the NSF Grant No. DMS-1928930 while the third named author (JS) was in residence at MSRI in
Berkeley (Spring 2023).

Manuscript received 4 April 2023, revised and accepted 25 May 2023.

1. Introduction

For a connected algebraic variety X over an algebraically closed field k of characteristic 0, the
étale fundamental group πét

1 (X , x) of X is a topologically finitely presented profinite group.
This is proven by first reducing to the case of k = C and then applying the Riemann Existence
Theorem [3, Exp. XII, Thm. 5.1] together with the fact that the topological fundamental group
π

top
1 (X (C), x) is of finite presentation as a discrete group (see e.g. [7] or [4]).
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In characteristic p > 0, the picture is much more subtle due to the existence of Artin–Schreier
covers of affine schemes, which makes πét

1 (Spec(A), x) typically not even topologically finitely
generated. Remark 5.7 of [3, Exp. IX] raised doubts whether πét

1 (X , x) is topologically finitely pre-
sented for proper varieties, even for proper smooth curves. In recent work, however, Shusterman
(in the case of curves [9]), and Esnault, Shusterman and the second named author [1] have shown
that for smooth projective varieties πét

1 (X , x) is still topologically finitely presented. Both results
are based on a criterion for finite presentation of profinite groups due to Lubotzky [8].

From now on, we will omit the base points.

Theorem 1 (part of Thm. 1.1 of [1]). Let X be a connected smooth projective variety over an
algebraically closed field k. Then the étale fundamental group πét

1 (X ) is topologically finitely
presented.

Our goal is to generalize Theorem 1 to all connected schemes that are proper over Spec(k)
(which is new only if k has characteristic p > 0). Such a generalization responds affirmatively to
a question raised by Esnault.

Theorem 2. Let X be a connected scheme that is proper over Spec(k) for an algebraically closed
field k. Then πét

1 (X ) is topologically finitely presented.

To prove the theorem, we use descent along an alteration map to X and the van Kampen
presentation of πét

1 (X ) arising in this way. More precisely, we use this trick twice.

2. The proof

For a scheme T , let FÉtT denote the category of finite étale covers of T . This gives rise to
a category fibred over schemes. Recall that a morphism g : T ′ → T of schemes is said to be
of effective descent for FÉt, if g∗ induces an equivalence of categories between FÉtT and the
category of descent data in FÉt along g .

Proposition 3 ([3, Exp. IX, Thm. 4.12]). Let f : X ′ → X be a proper surjective morphism of finite
presentation. Then f is of effective descent for FÉt.

Morphisms of effective descent f : X ′ → X for FÉt give rise to a van Kampen-like presentation
of πét

1 (X ) as the profinite completion of a quotient of the free topological product of the étale
fundamental groups of the connected components of X ′ and the usual topological fundamental
group of a suitably defined “dual graph”. This goes back to [3, Exp. IX, §5] and has been worked
out in detail in [10, Cor. 5.3].

The existence of such a presentation allows one to “descend” finite generation/presentation of
the fundamental groups involved, as made precise in the following proposition. Every statement
below is about topological finite generation/presentation.

Proposition 4 ([3, Exp. IX, Cor. 5.2 + Cor. 5.3]). Let f : X ′ → X be a morphism of effective descent
for FÉt. We denote X ′×X X ′ by X ′′ and X ′×X X ′×X X ′ by X ′′′.

(a) Assume that X ′, X ′′ have finite π0’s and that πét
1 ’s of the connected components of X ′ are

finitely generated. Then πét
1 (X ) is finitely generated.

(b) Assume that X ′, X ′′, X ′′′ have finite π0’s, that πét
1 ’s of the connected components of X ′ are of

finite presentation and that πét
1 ’s of the connected components of X ′′ are finitely generated.

Then πét
1 (X ) is of finite presentation.

Let us now recall a result of de Jong specialized to our setting.

Proposition 5 (see [6, Thm. 4.1]). Let X be a scheme that is proper over Spec(k) for an alge-
braically closed field k. Then there exists a proper surjective morphism (of finite presentation)
f : X ′ → X from a smooth projective variety X ′ over Spec(k).
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Proof. Let ν : X ν → X be the normalization of X . The map ν is finite, and thus the scheme X ν is
still proper over Spec(k).

Let then f1 : X ′ → X ν be the alteration map of [6, Thm. 4.1] applied to each connected
component of X ν. The map f1 is proper, dominant, and thus surjective. Moreover, loc. cit.
guarantees that X ′ is regular and projective (and not merely proper!) over Spec(k). Now, as k
is algebraically closed, X ′ is smooth over Spec(k). The composition f = ν◦ f1 : X ′ → X has all the
requested properties. □

We are now ready to finish the proof of the main result.

Proof of Theorem 2. Take f : X ′ → X as in Proposition 5. By Theorem 1 and Proposition 3 the
map f satisfies the assumptions for Proposition 4(a). This shows that πét

1 (X ) is finitely generated,
for any scheme X that is proper over Spec(k). In fact, finite generation was already proven in [3,
Exp. X, Thm. 2.9], and we included the argument here for the convenience of the reader.

We are going to apply finite generation to the connected components of X ′′ = X ′×X X ′, which
are connected proper schemes over Spec(k). Indeed, using Theorem 1 (this time crucially!) and
Proposition 3 again, the map f now satisfies the assumptions of Proposition 4(b). This shows
that πét

1 (X ) is finitely presented. □

3. More general base fields

Similarly to [1, §5], our main result extends to more arithmetic settings. We thank Peter Haine for
essentially suggesting the following corollary.

Corollary 6. Let X be a connected scheme that is proper over Spec(k) for a field k. Then πét
1 (X ) is

finitely presented if and only if the absolute Galois group Galk is finitely presented.

Proof. We may assume X is reduced and thus k ′ = H0(X ,OX ) is a finite field extension of k. Let
k be an algebraic closure of k containing k ′. Then X → Spec(k ′) being the Stein factorization of
X → Spec(k) implies that X = X ×k ′ k is connected. By Theorem 2, the group π1(X ) is finitely
presented. The fundamental exact sequence [3, Exp. IX, Thm. 6.1]

1 →π1(X ) →π1(X ) → Galk ′ → 1

shows that π1(X ) is finitely presented if and only if Galk ′ is finitely presented. The latter is
equivalent to Galk being finitely presented, see for example [2, Prop. 2.3]. □

Remark 7. Examples of fields k with finitely presented Galk include: fields algebraic over a finite
field, local p-adic fields, R and more generally real closed fields, K ((t )) for a field of characteristic
0 with GalK of finite presentation, and by [5, Thm. 5.1] for a hilbertian field k, probabilistically
almost always (for the Haar measure on Galk ) the fixed field kΣ in the separable closure k of a
finite subset Σ⊂ Galk .
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