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Abstract. We consider the chemotaxis system:
{ut =V-(y)Vu-uéw)Vv)+pul-u), xeQ, t>0,
vy =Av—uv, xeQ, t>0,
under homogeneous Neumann boundary conditions in a bounded domain Q < R”,n = 2, with smooth
boundary. Here, the functions y(v) and ¢(v) are as:
Y@ =0+»"* and {w)=-0-a)y W),

where k>0and a € (0,1).
We prove that the classical solutions to the above system are uniformly-in-time bounded provided that

k(l1-a)< % and the initial value vy and p satisfy the following conditions:

A1-k(1-a)] %
kin+1)(1-a)

)

0<llvollo) =
and
kn(1-a)llvglreo )

(n+1)A+llvolligeo))”
This result improves the recent result obtained for this problem by Li and Lu (J. Math. Anal. Appl.) (2023).

Funding. This research was supported by a grant from PIAIS (No. 1402-10108).
Manuscript received 5 May 2023, revised 27 May 2023, accepted 29 May 2023.

1. Introduction

In this paper, we study the following initial boundary value problem:

ur=V-(y)Vu-ué)Vo) + pul —u), x€Q, t>0,

v =Av—uv, xeQ, t>0, M
du - 9v -y, x€0Q, t>0,
u(x,0) = ug, v(x,0) = vy, x€Q,
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where Q c R”, n = 2, is a bounded domain with smooth boundary, v denotes the unit outward
normal vector to 0Q2 and 1y and vy are initial functions. Here, u = u(x, t) denotes the cell density
and v = v(x, t) is the nutrient consumed chemical concentrations.

In mathematical biology, systems like (1) describe the mechanism of chemotaxis. The chemo-
taxis is the movement of cells towards a higher concentration of a chemical signal substance pro-
duced by the cells. If the second equation of problem (1) is changed and written as follows:

{utzv-(y(v)Vu—u{(v)Vu)+uu(1—u), X€Q, t>0, .

TV =Av—v+u, xeQ, t>0,

where 7 € {0, 1}, then this system is the classical chemotaxis system which has been introduced by
Keller and Segel [15]. For problem (2), in the absence oflogistic source, when the positive function
¥(v) belongs to C3((0,00)) and &(v) = —y'(v) as well as

1
Yoo :=limsupy(s) < —,
§—00 T

then for n = 1, the existence a unique global non-negative classical solution is proved [30]. Also,
the uniform-in-time boundedness of classical solutions is proved in any dimension when the
function y has strictly positive lower and upper bounds [30]. This result also is proved for n = 2,
when the function y decays at a certain slow rate at infinity [30].

In the special case y(v) = ¢ v~k with k > 0 and ¢y > 0, for n = 1, the global existence and
boundedness of the solution is proved for all £ > 0 under a smallness assumption on cy [31].
When n = 2, by removing the smallness condition on ¢y, and applying the condition k € (0, %),
the same result is proved in cases 7 =0 [1] and 7 =1 [8].

In the other special case y(v) = e *” with y > 0, for n = 2, it is proved that the classical solutions
for this problem are global and bounded if [, updx < 4% whereas for Jo uodx > A% blow up
occurs either in finite or infinite time [14]. For n =2 and 7 = 0, it is proved that the blow up occurs
in infinite time [9]. Also, for n = 2, it is proved that the classical solution is globally bounded if the
positive function y(v) decreases slower than an exponential speed at high signal concentrations.
For n = 3, this result is proved when y(v) decreases at certain algebraically speed [7]. Also, in
the presence of logistic source, when n = 2 and the positive function y(v) belongs to C3(]0,00)),
Y (v) <0, lim,_.ooy(v) =0 and lim,_ % exists, the existence of bounded classical solutions
are proved in [12]. For n = 3, if the last condition is replaced with |y’(v)| < m, where m is some
positive constant, then the global existence and boundedness of the solution is proved when
1> 0islarge [13].

Now, we want to write some results related to problem (1). But first, we explain the origin of the
definition of this problem. Tuval et al. in [25] introduced the following chemotaxis-Navier—Stokes
system which describes the motion of oxygen-driven swimming bacteria in an in-compressible
fluid

Ur+w-Vu=V-(Vu-ué()Vv), xe€Q, r>0,

vitw-Vv=Av—-ug(v), x€Q, >0,
Wi+ (- Vo=Aw-VP+uVep, x€Q,t>0,>0,
V-w=0, xeQ, t>0,t>0.

Here, u denotes the bacteria density and v is the oxygen concentration. Also, w and P are
the velocity and pressure of the fluid, respectively. The function { measures the chemotactic
sensitivity, g is the consumption rate of the oxygen by the bacteria, and ¢ is a given potential
function. We see that problem (1) can be obtained from the preceding chemotaxis-Navier-Stokes
system upon the choice w =0,y (v) = 1 and g(v) = v. For the related results with the chemotaxis-
Navier-Stokes systems, we refer the interested readers to [5, 6, 10,29] and references therein. For
the problem (1), in the absence of logistic source, when y(v) = 1, {(v) = y, where y is some
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positive constant, in the two-dimensional case for the bounded convex domains with smooth
boundary, it is proved that the classical solutions for this problem are global and bounded [23].
Also, for n = 3, the classical solutions for this problem are global and bounded provided that
lvollzo () < m [22]. This condition extends to [|vgllzo(q) < )(\/2(+7+1) in [4]. Also, in the
presence of logistic source under this condition, the existence of bounded classical solutions is
proved in [3].

The authors in [20] studied the problem (1) when the positive function y(v) belongs to
C3([0,00)) and y'(v) < 0 for all v = 0 as well as ¢(v) = —y'(v). For n = 2 and u > 0, they proved
the global existence and boundedness of solution. Also, when n = 3 and p is suitably large,
they obtained the same result. Besides, they showed the solution converges exponentially to
(1,0) when ¢ tends to infinity. In the case of u = 0, under the same conditions on y(v), the
authors in [19] proved the existence a unique global bounded classical solution with some
suitable small initial data. Wang in [26] studied the above problem when the logistic source is
as f(u) = au— pu*. He proved that this problem admits a global bounded classical solution if
one of the cases (n <2,xk>1;n=3,x>20rn=3,x=2and pis large) holds.

In [21], the authors studied the problem (1). They assumed that the positive function y(v)
belongs to C?([0,00)) such that y'(v) <0, y"(v) = 0 and &(v) = —(1 — @)y’ (v) with a € (0,1). Under
the following conditions:

Y@y _  n

1
= » 0< o < g
')’H(U) 2n+ 1)3 Il vO“L Q=Y ( )

n+1
and

=Y () lvoll o
0<v=|lvgllfoo(q) y(v)
they proved that the problem (1) has a unique global classical solution that is uniformly in time
bounded. Besides, under some conditions, they proved that the solution converges to (1,0) when
t tends to infinity. For this problem, there are other results. To see these results, we refer the
interested readers to [18, 24, 27] and references therein. In this paper, we focus on the functions
Y (v) and ¢(v) as follows:

>

Yw)=1+»* and éw)=-0-a)y () 3
where k>0 and « € (0, 1). For these functions, we will prove the following theorem:

Theorem 1. Let ug = 0 and vy = 0 satisfy (ug, vo) € (Whd(Q))? for some q > n and the functions
yv(v) and ¢ (v) are defined as (3). Also, assume that

4
kl-a)<—— 4)
n+5
and the initial value vy and u satisfy the following conditions:
41-k(1-a)] %

(5)

0<|v 00 =
lvoll 2o () ks D (—a)

and
kn(-a)llvoll o

(n+ 1A+ lvoll o)
Then the solution of the problem (1) is global and bounded.

(6)

We note that the authors in [21] in the case of y(v) = (1 + )%k >0) proved that the solution
of the problem (1) is global and bounded provided that:

n

1
k< —m—, > k|l voll zoo and voll ooy < v H——1.
Ters TR L lwoll o < ¥ ( )

n+1
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Because of y/(v) <0, the last condition is written as:
1
0<llvgllzo =(n+1)% —1.

In the following, we show that our result improves the obtained result in [21].
e For a € (0,1), it is not difficult to see that:
n 4 4
< < .
2n+1)3-n n+5 @m+50-a)
Thus, our result extends the range of k.
o We see that if k < ——*— then:

(D244 (1-a)’
41-k(1-a)]
kn+)(1-a)

n+l<

Because of
n 4 4
< < )
2n+1)8-n (+1D2+4 (n+1D2+4H)(1-a)
therefore, our result extends the upper bound obtained for || vyllz>~q) corresponding to
the range of k in [21].
e Also, we have

n(l-a
(n+ 1A+ llvoll o)
Thus, if we take the values k and || vyl 1 (q) in the range of obtained in [21], then the lower
bound obtained in our result for y is smaller than the lower bound obtained in [21].

2. Our results

Here, we state the standard well-posedness and classical solvability result.

Lemma2. Let ug =0 and vy = 0 satisfy (ug, vo) € (WV9(Q))? for some q > n. Then problem (1) has
a unique local in time classical solution

_ 2
(14,0) € (C(10, Trna); W) 1 C* (@ % (0, Ty
where Ty, 45 denotes the maximal existence time. In addition, if Tp,qx < +00, then:

limsup [[u(-, 1) Q) = +o0.

1= Tmax

Moreover, u and v satisfy the following inequalities:
uz0 and 0=sv<|wlq n Qx(0,Thax), @
also,
f u(-,Hdx<c, (8)
Q
where c is some positive constant.

For details of the proof, we refer the reader to [12,21].
Based on main idea in [3,4, 16, 17], we write the following key lemma.

Lemma 3. Let (u,v) be the solution of problem (1). If there exists a smooth positive function ¢(v)
such that for p = 2 the following inequality holds

(B(1))* —4A(W)C(v) <0, 9
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where the functions A, B and C are defined as:
A() = (p-De)y ),
B(w)=(p-Dew)éw) -¢' W)y +1), (10)
Cw) = 59" ) - ¢’ WEW),

then:

lif u”(p(V)dXS—f [utp(v)+lvqo’(v) u”“dx+;uf uPp(v)dx.
Q Q p Q

p dt

Proof. We assume that there exists a smooth positive function ¢(v) such that for p = 2, (9) holds.
We take this function and use (1) and integration by parts to write:

1d 1
—— | (v)dxzf uP o) u dx+—f uf o' (v)v;dx
pdtfg () 0 Y t o Y t

=—(p- 1)[ uP o)y () IVul® dx
Q

+£fﬂ*hp—D¢WﬁUﬂ—¢Twwun+D“VwVvﬁu

+fup
Q

I,

For convenience in calculations, we write (11) as follows:
1d f uP (v)dx—f](u v)dx—f[ (v) + lv "(v)
pdt Jo @ =)y 0 [y P 4

with

|Vv|2dx

1
@' (WEw) - ;(p”(v)

u’”“dx+uf uP(v)dx. a1
Q

1
) +—ve'(v)
He p @

uP+l dx+yfQ uPp(v)dx (12)

J(w,v) = =(p - DuP @)y () IVul®
+uwﬂhp—nwwmun—wwwwun+UMVmVu)

+uP IVv|?

1
@' (W) - ;(p”(v)
=—uP2AW)IVul® + u’ ' B(v)(Vu- Vv) - uP C() Vv, (13)

where A, B and C are defined as (10). Now, by considering (13), we can write

p-lp p-1p
J(u,v) = —(\/ uP2A(v)Vu-— u—(v)Vv) . (\/ uP2A(v)Vu-— u—(v)Vv
2y uP=2A(v) 2y uP=2A(v)
B 2
| B el iver
4A(v)
B(v))?-4A
<P (B(v) W) C(v) Vol
4A(v)
In view of the condition (9), we see that J < 0. Thus, the equality (12) becomes
1d 1
——f u”(p(v)dxs—f [u(p(v)+—mp’(v) u’”+1dx+uf uP p(v)dx.
pdtJa Q p Q
This completes our proof. O

In the following lemma, we present a function ¢ and show that for this function, the relation (9)
holds.
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Lemma4. Letuy =0 and vy = 0 satisfy (1, vo) € (W9(Q))? for some q > n and the functionsy(v)
and &(v) are defined as (3). Also, assume that (4), (5) and (6) hold. Then there exists some positive
constant c such that the first component of problem (1) for all t € (0, Trnax) Satisfies

”u(, t)”LrHl(Q) <C. (14)

Proof. We want to apply Lemma 3. Hence, at first, we take p = n+ 1 and define the function ¢ as:

—kA

e)=>10+v) with A=n(-a).

For this function, we have:
@ (V) = —kA(1+0v) 1
and
@" (W) = kA (kA +1)(1+ v)FA2,

In the following, we show that for this function ¢, the relation (9) holds. We know from (3) that
y(w)y=>10+ v Fandé) =kQ-a)1+ )~k L By considering these, we compute:

(B(1))* —4A(W)C(v)
=2 (@W)?EW)? + (@' W)*(y(v) + 1)?

4n
—2npW) @' (W) EW) 1—yW) - m(p(v)(p”(v)}/(l/)
— k2 nz(l _ a)z(l + U)—Z(k+1)—2kn(1—a)
+ k2 n2(1 - a)? (1 + v) 2% 00D (1 4 1)"2K L2 (14 0) K 1]
+2 kz n2(1 _ a)Z (1 + 0)72kn(17a)7k72 _2 kZ n2(1 _ a)Z (1 + v)*zkn (1*(1)*2]6*2

_4Icn2(1—a)

(kn(1-a)+1)1 + p) 2knl-a)=k=2
n+1

=kn*(l-a)1+ U)_z(k”(l_“)“){k(l —)A+ ) k- [+ 20+ )77 +1]

+2k(1-a) (1+u)_k—2k(l—a)(1+v)_2k—%(kn(l—a)+1)(l+v)_k}

_kn(l—a)+1

(1+v)’k+k(1—a)}

kn2(1 _ a)(l + U)—Z(kn(l—a')+l)
B n+1l

an(l _ (X)(l + U)72(kn(lfa)+1)
<
B n+1

{k(n+ DA-a)-41-k(1-a)](1+ U)_k}

{k(n+ D-a)-41-k1-a)](1+ ||u0||oo)*k}.
Under the condition (5), we see that
(B(1)? —4A(W)C(v) <0.

Thus, the relation (9) holds. We now can apply Lemma 3 and write:

1 i[ w1+ p)kna-a dx+,uf w1+ p)kn-w gy
n+1dtJo Q
kn(l-
< —f u(l+v)— M1/ (1+ p)~kn-a)=1,n+2 dx+2pf W1+ p)Tkn-d gy (15)
Q n+1 Q
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The Young inequality allows us to write:
Zuf W1+ )00 gy < ef w1+ p) 0O gy 4 c(e)f (1+ ) kr0-a 4y
Q Q Q

sef W21+ )P x4 ce) Q) (16)
Q

where € is chosen as follows:
kn(1-a)llvolizo@

O<e<pu-
(n+ 1A+ vl o))
and: )
1 n+1 1™
cle) = 20)"*2,
€ n+2le(n+2) @H)
We now combine the inequality (16) with (15) and use from 0 < v < || vyl () and (6) to obtain:
1 d n+l —kn(l-a) f 1 —kn(l-
— | "+ dx + W1+ )R -a gy
ey pf oo
kn(l-a)v
sf €— knd-ajv. (1+p) k- n+2 444 ce)|Q
Q (mn+1D(1+v)
kn(l-a)llvgl o
sf € A= avoll=y | p)-knt-ame2 44 01,
Q (n+ 1A+ voll o))
We put:

y(0) :f U1 4 p)knA-@ gy,
Q
We see that the value of ¢ allows us to write:

Y () +un+1D)y) <cl) (n+1)|Ql

This yields:
¥ smax{y(m, cOw } a7)
Making use of 0 < v < [[yg || 1o () and (17), we have:
L W dx < (14 ol zmeqey) 0 max{y(O), c©)1Q] }
Thus, we obtain the desired result. U

The proof of the following lemma is the same as [22, Lemma 3.2]. But, we write it to comple-
ment our content.

Lemma5. Letuy =0 and vy = 0 satisfy (up, vo) € (whd(Q))? for some g > n. Also, assume that (4),
(5) and (6) hold. Then there exists some positive constant C such that

VUl =C (18)
forall t € (0, Trax)-
Proof. By considering Lemma 2, we see that it is sufficient to prove for any 7 € (0, Tax),
IVv(-, )llfo = C forall te (z, Tinax)- (19)

We use the representation formula for the second equation (1) to have:

t
v(-, 1) =e@ Dyy+ f eV —y(-,s)v(-,9)ds, te 0, Tmax).
0
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We now take p = n+1 and use from 0 < v < ||yl 1=~ (q) and (14) to write:

1
N1 —=ul-, v, )l < IIU(',S)IILOO(Q)UQII— u(-,S))I”dx)p

< ||U(',S)||L°°(Q)(fﬂ(1+ |u(-,S))|)pdx)p

1
s||v(-,s)||Lw(Q)(2P‘1L(1+|u(-,s))|p)dx)”

p-1 1

<277 00, 9l (1217 +1ul, Dl )

<gc (20)
where we have used the inequality (a + b)™ < 2™~1(a™ + b™) with a,b = 0 and m > 1, also
(a+b)™ < (@™ + b™) with 0 < m’ < 1. In order to prove (19), we take T € (0, min{l, Thax}) and

fe (%, 1) and use the estimates (3.16) and (3.17) in [22], also (20) to obtain:

loC, Ollwreoy < cl(=A+ D% (-, Dllpo
t
<ct e uyllpiq) + C[ (t-5) %91 - u(-, ) (-, 9llr @ ds
0
t
SCt_6+cf (t—s) e 00945
0

0 o g s
<ct” +c[ o ’e %do
0

<c@?+1), te@ Tnad
where the constant ¢ can vary from line to line. This completes our proof. U

Upon the well-known Moser Alikakos iteration procedure [2], we prove the following lemma
similar to [22, Lemma 3.2].

Lemma 6. Let uy = 0 and vy = 0 satisfy (ug, vg) € (WH9(Q))? for some q > n. Also, assume
that (4), (5) and (6) hold. Then there exists some positive constant c such that the first component
of problem (1) for all t € (0, Timax) satisfies

(-, Dl < c.

Proof. We take p = 2 and use from (1) and integration by parts to obtain:

if u’”dxzpf up_l[V-(y(v)Vu—ué(u)Vu)+uu(l—u)]dx
dt Ja Q

=—P(P—1)f Y() u”‘ZIVulzdx+p(p—1)f up‘lg(y)vu.vyder”pf Wl-wdx. @D
Because of 0 < v SQII vollzeo(q), we have: ? .
YW) =1+ ) = A+lvlo@) =,
W =kl-a)A+v) " <k(l-a):=c.

Making use of these, (18) and Young’s inequality, we can write (21) as follows:

d
—f u”dxs—clp(p—l)f u”_ZIVulzdx+C02p(p—l)f u’”_1|Vu|dx+upf uPdx
dr Jo Q Q Q
4 -1
=—Mf|Vu§|2dx+2Ccz(p—l)f u§-|Vug’dx+/pr u” dx
p Q Q Q

_ -1)C%c3
c-fawsh Wu%|2dx+p(u+u)f uPdx. (22)
p Q 2¢ Q
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We now add p [, u” dx on both sides of (22) to have:

d 2 -1
—/ u”dx+pf u”dxs—mf IVuglzdx+c;.;f uP dx 23)
dr Jao Q p Q Q
with
(p-1)C%c2 .
=p|————=+u+1|.
C3 P( 20, H© )

To estimate the last term on the right hand side of (23), we use the following known Gagliardo—
Nirenberg inequality (see [11, 28], for instance):

9 -9
vl o = CGN(HV‘/’”LZ(Q) ”U’”ir(n) + “W”Lr(ﬂ))’
where
n_n
qn-2)<2n, re(0,q) and ﬁ:l_rﬂ—jﬂe(o,l),
2 r

and Cgy is the constant in the Gagliardo—Nirenberg inequality. Now, we apply the Gagliardo—
Nirenberg inequality with ¢ = ug, g =2,r =1and 9 = -5, and then use the Young inequality
with exponents r = "T” and s = ”TJ'Z to obtain:
n_ 2 2
o [ wdr=calluf g = e Com {1Vt 1757, ek 17, + N s )
2n_ 4
=2c¢3 (CGN)Z(”vug I ”u§ (. ||u§ ”il(m)

12(Q) L'
2 -1
< 2alp-l) ||Vu§ Hizm) +(ca+2c3(Con)?) || ut ”il(ﬂ)

2 -1 2
_2alp )f|vug|2dx+c5(f ugdx)
p Q Q
with
I(ZClr(p—l)

= - P ) (2 C3 (CGN)Z)S and Cs =Cy +203(CGN)2.

s
Combining the last inequality with (23) yields:
d Y
—f u”dx+pf u’”dxscs(f uz dx) .
dr Jo Q Q
d
a(e’”fﬂu’”dx) <csel!
p G 2 Y
fupdxsfuodx+— sup fude
Q Q P 0=t<Tmax \YQ
p Cs5 r 2
< Q| lugll5e0ry + — SU f uz dx) .
| | " 0 ”L Q) p p ( o

For 0 < £ < Tihax, We can write:
) 2
f uz dx) .
Q
Now, we integrate and use e~ ? '<1to get:
0<t<Tmax

Thus,

1 2
p Cs P p
updx) < [IQIIIuOIIpOO +— sup (f uz dx)
(fQ L= P 0=t<Tma \VQ

1 Cs, 1 P P
5|Q|p"u0”L°°(Q)+(?5)p sup U;zuz dx) . (24)

0=1=Tiax
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We note that
¢s = cq+2¢3(Con)?
1(2ar(p-1))""
= ;(i)) (2(,‘3 (CGN)Z)S+263(CGN)2
1 _s ns| P z s 2
23(261 I’) r(Z(CGN) ) E (e3)” +2¢3(Con)
(L) (c3)° +c3
p-1
p s
(_]9 1) 1|(c3)
with

m= max{% 2ear) 7 (2(Cen?) 2 (CGN)Z}-

Here, we have used from c¢3 > 1 and s > 1. By inserting ¢3 and using p = 2, we obtain:

2 —1DC2c? 41
ESm[(i) +1](u+u+l) p?

p p-1 20
C22 7+1 p % " "
<2 + —_ -zt pz
U I e A
=c(p—-1p"
SCﬁpn+1
with
C22 441
=2 +u+1 .
=2 vue)

n+l
Making use of (25) and p% > 1, we can write (24) as follows:

1 2
1 1
(f u”dx)p <1QI7 llugll Loy + (cs p”“)ﬁ sup (f u? dx) '
Q Q

0<t<Tmax

% n+1 P %
sc; p P |luollpo+ sup uzdx
Q

0<t<Tmax

with ¢; = |Q| + cg. We now define:

1

P
M(P)ZmaX{HUOHL‘X’(Q), sup Uﬂu”dx) }

0<t<Tmax

This allows us to write (26) as:
M(p)<2c P M(p)
We now take p = 2 (i € N)) to obtain:
. oi rthi -
MEh=2¢2 "2 2 MR
<2¢; iy () iz
S--.

i
< g2 v ey (G e d) gy

(25)

(26)

27)
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We now compute the following elementary series

i XRi+l & i 1
S:ZE: _2i+1:Z( + ):
i=1 i=0 i=0

2i+1 2i+1

Thus, S = 2. Making use of this, lim;_ [|z(:, t)”in(Q) = |lu(-, )iz~ and (8), by letting i — oo
in (27), we obtain the desired result. Il

Proof of Theorem 1. By considering the extensibility criterion provided by Lemma 2, the proof
is a consequence of (9) and Lemma 6. O
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