I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Khadijeh Baghaei
Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source

Volume 361 (2023), p. 1641-1652
https://doi.org/10.5802/crmath. 519

(c) EY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source

Khadijeh Baghaei ${ }^{a}$

${ }^{a}$ Pasargad Institute for Advanced Innovative Solutions, No.30, Hakim Azam St., North Shiraz St., Mollasadra Ave., Tehran, Iran
E-mail: kh.baghaei@gmail.com

Abstract. We consider the chemotaxis system:

$$
\begin{cases}u_{t}=\nabla \cdot(\gamma(v) \nabla u-u \xi(v) \nabla v)+\mu u(1-u), & x \in \Omega, t>0 \\ v_{t}=\Delta v-u v, & x \in \Omega, t>0\end{cases}
$$

under homogeneous Neumann boundary conditions in a bounded domain $\Omega \subset \mathbb{R}^{n}, n \geq 2$, with smooth boundary. Here, the functions $\gamma(\nu)$ and $\xi(\nu)$ are as:

$$
\gamma(\nu)=(1+v)^{-k} \quad \text { and } \quad \xi(\nu)=-(1-\alpha) \gamma^{\prime}(\nu)
$$

where $k>0$ and $\alpha \in(0,1)$.
We prove that the classical solutions to the above system are uniformly-in-time bounded provided that $k(1-\alpha)<\frac{4}{n+5}$ and the initial value ν_{0} and μ satisfy the following conditions:

$$
0<\left\|v_{0}\right\|_{L^{\infty}(\Omega)} \leq\left[\frac{4[1-k(1-\alpha)]}{k(n+1)(1-\alpha)}\right]^{\frac{1}{k}}-1
$$

and

$$
\mu>\frac{k n(1-\alpha)\left\|v_{0}\right\|_{L^{\infty}(\Omega)}}{(n+1)\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right.}
$$

This result improves the recent result obtained for this problem by Li and Lu (J. Math. Anal. Appl.) (2023).
Funding. This research was supported by a grant from PIAIS (No. 1402-10108).
Manuscript received 5 May 2023, revised 27 May 2023, accepted 29 May 2023.

1. Introduction

In this paper, we study the following initial boundary value problem:

$$
\begin{cases}u_{t}=\nabla \cdot(\gamma(v) \nabla u-u \xi(\nu) \nabla v)+\mu u(1-u), & x \in \Omega, t>0, \tag{1}\\ v_{t}=\Delta v-u v, & x \in \Omega, t>0, \\ \frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0, & x \in \partial \Omega, t>0, \\ u(x, 0)=u_{0}, v(x, 0)=v_{0}, & x \in \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}, n \geq 2$, is a bounded domain with smooth boundary, v denotes the unit outward normal vector to $\partial \Omega$ and u_{0} and v_{0} are initial functions. Here, $u=u(x, t)$ denotes the cell density and $v=v(x, t)$ is the nutrient consumed chemical concentrations.

In mathematical biology, systems like (1) describe the mechanism of chemotaxis. The chemotaxis is the movement of cells towards a higher concentration of a chemical signal substance produced by the cells. If the second equation of problem (1) is changed and written as follows:

$$
\begin{cases}u_{t}=\nabla \cdot(\gamma(v) \nabla u-u \xi(v) \nabla v)+\mu u(1-u), & x \in \Omega, t>0 \tag{2}\\ \tau v_{t}=\Delta v-v+u, & x \in \Omega, t>0\end{cases}
$$

where $\tau \in\{0,1\}$, then this system is the classical chemotaxis system which has been introduced by Keller and Segel [15]. For problem (2), in the absence of logistic source, when the positive function $\gamma(\nu)$ belongs to $C^{3}((0, \infty))$ and $\xi(\nu)=-\gamma^{\prime}(\nu)$ as well as

$$
\gamma_{\infty}:=\limsup _{s \rightarrow \infty} \gamma(s)<\frac{1}{\tau}
$$

then for $n \geq 1$, the existence a unique global non-negative classical solution is proved [30]. Also, the uniform-in-time boundedness of classical solutions is proved in any dimension when the function γ has strictly positive lower and upper bounds [30]. This result also is proved for $n \geq 2$, when the function γ decays at a certain slow rate at infinity [30].

In the special case $\gamma(v)=c_{0} v^{-k}$ with $k>0$ and $c_{0}>0$, for $n \geq 1$, the global existence and boundedness of the solution is proved for all $k>0$ under a smallness assumption on c_{0} [31]. When $n \geq 2$, by removing the smallness condition on c_{0}, and applying the condition $k \in\left(0, \frac{2}{n-2}\right)$, the same result is proved in cases $\tau=0$ [1] and $\tau=1$ [8].

In the other special case $\gamma(v)=e^{-\chi v}$ with $\chi>0$, for $n=2$, it is proved that the classical solutions for this problem are global and bounded if $\int_{\Omega} u_{0} \mathrm{~d} x<\frac{4 \pi}{\chi}$, whereas for $\int_{\Omega} u_{0} \mathrm{~d} x>\frac{4 \pi}{\chi}$ blow up occurs either in finite or infinite time [14]. For $n=2$ and $\tau=0$, it is proved that the blow up occurs in infinite time [9]. Also, for $n=2$, it is proved that the classical solution is globally bounded if the positive function $\gamma(\nu)$ decreases slower than an exponential speed at high signal concentrations. For $n \geq 3$, this result is proved when $\gamma(\nu)$ decreases at certain algebraically speed [7]. Also, in the presence of logistic source, when $n=2$ and the positive function $\gamma(\nu)$ belongs to $C^{3}([0, \infty)$), $\gamma^{\prime}(\nu)<0, \lim _{\nu \rightarrow \infty} \gamma(\nu)=0$ and $\lim _{\nu \rightarrow \infty} \frac{\gamma^{\prime}(\nu)}{\gamma(\nu)}$ exists, the existence of bounded classical solutions are proved in [12]. For $n \geq 3$, if the last condition is replaced with $\left|\gamma^{\prime}(\nu)\right| \leq m$, where m is some positive constant, then the global existence and boundedness of the solution is proved when $\mu>0$ is large [13].

Now, we want to write some results related to problem (1). But first, we explain the origin of the definition of this problem. Tuval et al. in [25] introduced the following chemotaxis-Navier-Stokes system which describes the motion of oxygen-driven swimming bacteria in an in-compressible fluid

$$
\begin{cases}u_{t}+\omega \cdot \nabla u=\nabla \cdot(\nabla u-u \xi(v) \nabla v), & x \in \Omega, t>0 \\ v_{t}+\omega \cdot \nabla v=\Delta v-u g(v), & x \in \Omega, t>0 \\ \omega_{t}+(\omega \cdot \nabla) \omega=\Delta \omega-\nabla P+u \nabla \phi, & x \in \Omega, t>0, t>0 \\ \nabla \cdot \omega=0, & x \in \Omega, t>0, t>0\end{cases}
$$

Here, u denotes the bacteria density and v is the oxygen concentration. Also, ω and P are the velocity and pressure of the fluid, respectively. The function ξ measures the chemotactic sensitivity, g is the consumption rate of the oxygen by the bacteria, and ϕ is a given potential function. We see that problem (1) can be obtained from the preceding chemotaxis-Navier-Stokes system upon the choice $\omega \equiv 0, \gamma(\nu) \equiv 1$ and $g(\nu)=\nu$. For the related results with the chemotaxis-Navier-Stokes systems, we refer the interested readers to [5, 6, 10, 29] and references therein. For the problem (1), in the absence of logistic source, when $\gamma(\nu) \equiv 1, \xi(\nu) \equiv \chi$, where χ is some
positive constant, in the two-dimensional case for the bounded convex domains with smooth boundary, it is proved that the classical solutions for this problem are global and bounded [23]. Also, for $n \geq 3$, the classical solutions for this problem are global and bounded provided that $\left\|v_{0}\right\|_{L^{\infty}(\Omega)} \leq \frac{1}{6(n+1) \chi}$ [22]. This condition extends to $\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)} \leq \frac{\pi}{\chi \sqrt{2(n+1)}}$ in [4]. Also, in the presence of logistic source under this condition, the existence of bounded classical solutions is proved in [3].

The authors in [20] studied the problem (1) when the positive function $\gamma(\nu)$ belongs to $C^{3}\left([0, \infty)\right.$) and $\gamma^{\prime}(\nu)<0$ for all $\nu \geq 0$ as well as $\xi(\nu)=-\gamma^{\prime}(\nu)$. For $n=2$ and $\mu>0$, they proved the global existence and boundedness of solution. Also, when $n \geq 3$ and μ is suitably large, they obtained the same result. Besides, they showed the solution converges exponentially to $(1,0)$ when t tends to infinity. In the case of $\mu=0$, under the same conditions on $\gamma(\nu)$, the authors in [19] proved the existence a unique global bounded classical solution with some suitable small initial data. Wang in [26] studied the above problem when the logistic source is as $f(u)=\alpha u-\mu u^{\kappa}$. He proved that this problem admits a global bounded classical solution if one of the cases ($n \leq 2, \kappa>1 ; n \geq 3, \kappa>2$ or $n \geq 3, \kappa=2$ and μ is large) holds.

In [21], the authors studied the problem (1). They assumed that the positive function $\gamma(\nu)$ belongs to $C^{2}\left([0, \infty)\right.$) such that $\gamma^{\prime}(\nu)<0, \gamma^{\prime \prime}(\nu) \geq 0$ and $\xi(\nu)=-(1-\alpha) \gamma^{\prime}(\nu)$ with $\alpha \in(0,1)$. Under the following conditions:

$$
\frac{\left(\gamma^{\prime}(\nu)\right)^{2}}{\gamma^{\prime \prime}(\nu)} \leq \frac{n}{2(n+1)^{3}}, \quad 0<\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)} \leq \gamma^{-1}\left(\frac{1}{n+1}\right)
$$

and

$$
\mu>\max _{0<\nu \leq\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}} \frac{-\gamma^{\prime}(\nu)\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}}{\gamma(\nu)},
$$

they proved that the problem (1) has a unique global classical solution that is uniformly in time bounded. Besides, under some conditions, they proved that the solution converges to $(1,0)$ when t tends to infinity. For this problem, there are other results. To see these results, we refer the interested readers to $[18,24,27]$ and references therein. In this paper, we focus on the functions $\gamma(\nu)$ and $\xi(\nu)$ as follows:

$$
\begin{equation*}
\gamma(\nu)=(1+\nu)^{-k} \quad \text { and } \quad \xi(\nu)=-(1-\alpha) \gamma^{\prime}(\nu) \tag{3}
\end{equation*}
$$

where $k>0$ and $\alpha \in(0,1)$. For these functions, we will prove the following theorem:
Theorem 1. Let $u_{0} \geq 0$ and $\nu_{0} \geq 0$ satisfy $\left(u_{0}, v_{0}\right) \in\left(W^{1, q}(\Omega)\right)^{2}$ for some $q>n$ and the functions $\gamma(\nu)$ and $\xi(\nu)$ are defined as (3). Also, assume that

$$
\begin{equation*}
k(1-\alpha)<\frac{4}{n+5} \tag{4}
\end{equation*}
$$

and the initial value ν_{0} and μ satisfy the following conditions:

$$
\begin{equation*}
0<\left\|v_{0}\right\|_{L^{\infty}(\Omega)} \leq\left[\frac{4[1-k(1-\alpha)]}{k(n+1)(1-\alpha)}\right]^{\frac{1}{k}}-1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu>\frac{k n(1-\alpha)\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}}{(n+1)\left(1+\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}\right)} . \tag{6}
\end{equation*}
$$

Then the solution of the problem (1) is global and bounded.
We note that the authors in [21] in the case of $\gamma(\nu)=(1+v)^{-k}(k>0)$ proved that the solution of the problem (1) is global and bounded provided that:

$$
k<\frac{n}{2(n+1)^{3}-n}, \quad \mu>k\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)} \quad \text { and } \quad\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)} \leq \gamma^{-1}\left(\frac{1}{n+1}\right) .
$$

Because of $\gamma^{\prime}(\nu)<0$, the last condition is written as:

$$
0<\left\|v_{0}\right\|_{L^{\infty}(\Omega)} \leq(n+1)^{\frac{1}{k}}-1 .
$$

In the following, we show that our result improves the obtained result in [21].

- For $\alpha \in(0,1)$, it is not difficult to see that:

$$
\frac{n}{2(n+1)^{3}-n}<\frac{4}{n+5}<\frac{4}{(n+5)(1-\alpha)} .
$$

Thus, our result extends the range of k.

- We see that if $k<\frac{4}{\left((n+1)^{2}+4\right)(1-\alpha)}$, then:

$$
n+1<\frac{4[1-k(1-\alpha)]}{k(n+1)(1-\alpha)} .
$$

Because of

$$
\frac{n}{2(n+1)^{3}-n}<\frac{4}{(n+1)^{2}+4}<\frac{4}{\left((n+1)^{2}+4\right)(1-\alpha)},
$$

therefore, our result extends the upper bound obtained for $\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}$ corresponding to the range of k in [21].

- Also, we have

$$
\frac{n(1-\alpha)}{(n+1)\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right)}<1 .
$$

Thus, if we take the values k and $\left\|\nu_{0}\right\|_{L^{\infty}(\Omega)}$ in the range of obtained in [21], then the lower bound obtained in our result for μ is smaller than the lower bound obtained in [21].

2. Our results

Here, we state the standard well-posedness and classical solvability result.
Lemma 2. Let $u_{0} \geq 0$ and $v_{0} \geq 0$ satisfy $\left(u_{0}, v_{0}\right) \in\left(W^{1, q}(\Omega)\right)^{2}$ for some $q>n$. Then problem (1) has a unique local in time classical solution

$$
(u, v) \in\left(C\left(\left[0, T_{\max }\right) ; W^{1, q}(\Omega)\right) \cap C^{2,1}\left(\bar{\Omega} \times\left(0, T_{\max }\right)\right)^{2}\right.
$$

where $T_{\max }$ denotes the maximal existence time. In addition, if $T_{\max }<+\infty$, then:

$$
\limsup _{t \rightarrow T_{\text {max }}}\|u(\cdot, t)\|_{L^{\infty}(\Omega)}=+\infty .
$$

Moreover, u and v satisfy the following inequalities:

$$
\begin{equation*}
u \geq 0 \quad \text { and } \quad 0 \leq \nu \leq\left\|v_{0}\right\|_{L^{\infty}(\Omega)} \text { in } \Omega \times\left(0, T_{\max }\right), \tag{7}
\end{equation*}
$$

also,

$$
\begin{equation*}
\int_{\Omega} u(\cdot, t) \mathrm{d} x \leq c, \tag{8}
\end{equation*}
$$

where c is some positive constant.
For details of the proof, we refer the reader to [12,21].
Based on main idea in $[3,4,16,17]$, we write the following key lemma.
Lemma 3. Let (u, v) be the solution of problem (1). If there exists a smooth positive function $\varphi(v)$ such that for $p \geq 2$ the following inequality holds

$$
\begin{equation*}
(B(\nu))^{2}-4 A(\nu) C(\nu) \leq 0, \tag{9}
\end{equation*}
$$

where the functions A, B and C are defined as:

$$
\left\{\begin{array}{l}
A(v)=(p-1) \varphi(v) \gamma(v) \tag{10}\\
B(v)=(p-1) \varphi(v) \xi(v)-\varphi^{\prime}(v)(\gamma(v)+1) \\
C(v)=\frac{1}{p} \varphi^{\prime \prime}(v)-\varphi^{\prime}(v) \xi(v)
\end{array}\right.
$$

then:

$$
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x \leq-\int_{\Omega}\left[\mu \varphi(\nu)+\frac{1}{p} v \varphi^{\prime}(\nu)\right] u^{p+1} \mathrm{~d} x+\mu \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x
$$

Proof. We assume that there exists a smooth positive function $\varphi(\nu)$ such that for $p \geq 2$, (9) holds. We take this function and use (1) and integration by parts to write:

$$
\begin{align*}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x= & \int_{\Omega} u^{p-1} \varphi(\nu) u_{t} \mathrm{~d} x+\frac{1}{p} \int_{\Omega} u^{p} \varphi^{\prime}(\nu) v_{t} \mathrm{~d} x \\
= & (p-1) \int_{\Omega} u^{p-2} \varphi(\nu) \gamma(\nu)|\nabla u|^{2} \mathrm{~d} x \\
& +\int_{\Omega} u^{p-1}\left[(p-1) \varphi(v) \xi(v)-\varphi^{\prime}(\nu)(\gamma(v)+1)\right](\nabla u \cdot \nabla v) \mathrm{d} x \\
& +\int_{\Omega} u^{p}\left[\varphi^{\prime}(\nu) \xi(v)-\frac{1}{p} \varphi^{\prime \prime}(v)\right]|\nabla \nu|^{2} \mathrm{~d} x \\
& -\int_{\Omega}\left[\mu \varphi(\nu)+\frac{1}{p} v \varphi^{\prime}(v)\right] u^{p+1} \mathrm{~d} x+\mu \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x \tag{11}
\end{align*}
$$

For convenience in calculations, we write (11) as follows:

$$
\begin{equation*}
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x=\int_{\Omega} J(u, v) \mathrm{d} x-\int_{\Omega}\left[\mu \varphi(\nu)+\frac{1}{p} v \varphi^{\prime}(v)\right] u^{p+1} \mathrm{~d} x+\mu \int_{\Omega} u^{p} \varphi(v) \mathrm{d} x \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
J(u, v)=- & (p-1) u^{p-2} \varphi(v) \gamma(v)|\nabla u|^{2} \\
& +u^{p-1}\left[(p-1) \varphi(v) \xi(v)-\varphi^{\prime}(v)(\gamma(v)+1)\right](\nabla u \cdot \nabla v) \\
& +u^{p}\left[\varphi^{\prime}(v) \xi(v)-\frac{1}{p} \varphi^{\prime \prime}(v)\right]|\nabla v|^{2} \\
=- & u^{p-2} A(v)|\nabla u|^{2}+u^{p-1} B(v)(\nabla u \cdot \nabla v)-u^{p} C(v)|\nabla v|^{2}, \tag{13}
\end{align*}
$$

where A, B and C are defined as (10). Now, by considering (13), we can write

$$
\begin{aligned}
J(u, v)= & -\left(\sqrt{u^{p-2} A(v)} \nabla u-\frac{u^{p-1} B(v)}{2 \sqrt{u^{p-2} A(v)}} \nabla v\right) \cdot\left(\sqrt{u^{p-2} A(v)} \nabla u-\frac{u^{p-1} B(v)}{2 \sqrt{u^{p-2} A(v)}} \nabla v\right) \\
& +u^{p}\left[\frac{(B(v))^{2}}{4 A(v)}-C(v)\right]|\nabla v|^{2} \\
\leq & u^{p}\left[\frac{(B(v))^{2}-4 A(v) C(v)}{4 A(v)}\right]|\nabla v|^{2} .
\end{aligned}
$$

In view of the condition (9), we see that $J \leq 0$. Thus, the equality (12) becomes

$$
\frac{1}{p} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \varphi(\nu) \mathrm{d} x \leq-\int_{\Omega}\left[\mu \varphi(\nu)+\frac{1}{p} v \varphi^{\prime}(\nu)\right] u^{p+1} \mathrm{~d} x+\mu \int_{\Omega} u^{p} \varphi(\nu) \mathrm{d} x .
$$

This completes our proof.
In the following lemma, we present a function φ and show that for this function, the relation (9) holds.

Lemma 4. Let $u_{0} \geq 0$ and $v_{0} \geq 0$ satisfy $\left(u_{0}, v_{0}\right) \in\left(W^{1, q}(\Omega)\right)^{2}$ for some $q>n$ and the functions $\gamma(v)$ and $\xi(\nu)$ are defined as (3). Also, assume that (4), (5) and (6) hold. Then there exists some positive constant c such that the first component of problem (1) for all $t \in\left(0, T_{\max }\right)$ satisfies

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{n+1}(\Omega)} \leq c \tag{14}
\end{equation*}
$$

Proof. We want to apply Lemma 3. Hence, at first, we take $p=n+1$ and define the function φ as:

$$
\varphi(\nu)=(1+v)^{-k \lambda} \quad \text { with } \quad \lambda=n(1-\alpha)
$$

For this function, we have:

$$
\varphi^{\prime}(v)=-k \lambda(1+v)^{-k \lambda-1}
$$

and

$$
\varphi^{\prime \prime}(\nu)=k \lambda(k \lambda+1)(1+v)^{-k \lambda-2}
$$

In the following, we show that for this function φ, the relation (9) holds. We know from (3) that $\gamma(\nu)=(1+v)^{-k}$ and $\xi(\nu)=k(1-\alpha)(1+\nu)^{-k-1}$. By considering these, we compute:

$$
\begin{aligned}
&(B(v))^{2}-4 A(v) C(v) \\
&= n^{2}(\varphi(\nu))^{2}(\xi(v))^{2}+\left(\varphi^{\prime}(\nu)\right)^{2}(\gamma(v)+1)^{2} \\
&-2 n \varphi(v) \varphi^{\prime}(v) \xi(v)(1-\gamma(v))-\frac{4 n}{n+1} \varphi(\nu) \varphi^{\prime \prime}(v) \gamma(v) \\
&= k^{2} n^{2}(1-\alpha)^{2}(1+v)^{-2(k+1)-2 k n(1-\alpha)} \\
&+k^{2} n^{2}(1-\alpha)^{2}(1+v)^{-2(k n(1-\alpha)+1)}\left[(1+v)^{-2 k}+2(1+v)^{-k}+1\right] \\
&+2 k^{2} n^{2}(1-\alpha)^{2}(1+v)^{-2 k n(1-\alpha)-k-2-2 k^{2} n^{2}(1-\alpha)^{2}(1+v)^{-2 k n(1-\alpha)-2 k-2}} \\
&-\frac{4 k n^{2}(1-\alpha)}{n+1}(k n(1-\alpha)+1)(1+v)^{-2 k n(1-\alpha)-k-2} \\
&= k n^{2}(1-\alpha)(1+v)^{-2(k n(1-\alpha)+1)}\left\{k(1-\alpha)(1+v)^{-2 k}+k(1-\alpha)\left[(1+v)^{-2 k}+2(1+v)^{-k}+1\right]\right. \\
&\left.+2 k(1-\alpha)(1+v)^{-k}-2 k(1-\alpha)(1+v)^{-2 k}-\frac{4}{n+1}(k n(1-\alpha)+1)(1+v)^{-k}\right\} \\
&= k n^{2}(1-\alpha)(1+v)^{-2(k n(1-\alpha)+1)}\left\{4\left[k(1-\alpha)-\frac{k n(1-\alpha)+1}{n+1}\right](1+v)^{-k}+k(1-\alpha)\right\} \\
&= \frac{k n^{2}(1-\alpha)(1+v)^{-2(k n(1-\alpha)+1)}}{n+1}\left\{k(n+1)(1-\alpha)-4[1-k(1-\alpha)](1+v)^{-k}\right\} \\
& \leq \frac{k n^{2}(1-\alpha)(1+v)^{-2(k n(1-\alpha)+1)}}{n+1}\left\{k(n+1)(1-\alpha)-4[1-k(1-\alpha)]\left(1+\left\|v_{0}\right\|_{\infty}\right)^{-k}\right\} .
\end{aligned}
$$

Under the condition (5), we see that

$$
(B(v))^{2}-4 A(v) C(v) \leq 0
$$

Thus, the relation (9) holds. We now can apply Lemma 3 and write:

$$
\begin{align*}
& \frac{1}{n+1} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x+\mu \int_{\Omega} u^{n+1}(1+\nu)^{-k n(1-\alpha)} \mathrm{d} x \\
& \quad \leq-\int_{\Omega}\left[\mu(1+v)-\frac{k n(1-\alpha)}{n+1} v\right](1+v)^{-k n(1-\alpha)-1} u^{n+2} \mathrm{~d} x+2 \mu \int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x \tag{15}
\end{align*}
$$

The Young inequality allows us to write:

$$
\begin{align*}
2 \mu \int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x & \leq \epsilon \int_{\Omega} u^{n+2}(1+v)^{-k n(1-\alpha)} \mathrm{d} x+c(\epsilon) \int_{\Omega}(1+v)^{-k n(1-\alpha)} \mathrm{d} x \\
& \leq \epsilon \int_{\Omega} u^{n+2}(1+v)^{-k n(1-\alpha)} \mathrm{d} x+c(\epsilon)|\Omega| \tag{16}
\end{align*}
$$

where ϵ is chosen as follows:

$$
0<\epsilon<\mu-\frac{k n(1-\alpha)\left\|v_{0}\right\|_{L^{\infty}(\Omega)}}{(n+1)\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right)}
$$

and:

$$
c(\epsilon)=\frac{1}{n+2}\left[\frac{n+1}{\epsilon(n+2)}\right]^{n+1}(2 \mu)^{n+2}
$$

We now combine the inequality (16) with (15) and use from $0 \leq v \leq\left\|v_{0}\right\|_{L^{\infty}(\Omega)}$ and (6) to obtain:

$$
\begin{aligned}
& \frac{1}{n+1} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x+\mu \int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x \\
& \leq \int_{\Omega}\left[\epsilon-\mu+\frac{k n(1-\alpha) v}{(n+1)(1+v)}\right](1+v)^{-k n(1-\alpha)} u^{n+2} \mathrm{~d} x+c(\epsilon)|\Omega| \\
& \leq \int_{\Omega}\left[\epsilon-\mu+\frac{k n(1-\alpha)\left\|v_{0}\right\|_{L^{\infty}(\Omega)}}{(n+1)\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right)}\right](1+v)^{-k n(1-\alpha)} u^{n+2} \mathrm{~d} x+c(\epsilon)|\Omega| .
\end{aligned}
$$

We put:

$$
y(t)=\int_{\Omega} u^{n+1}(1+v)^{-k n(1-\alpha)} \mathrm{d} x
$$

We see that the value of ϵ allows us to write:

$$
y^{\prime}(t)+\mu(n+1) y(t) \leq c(\epsilon)(n+1)|\Omega|
$$

This yields:

$$
\begin{equation*}
y(t) \leq \max \left\{y(0), \frac{c(\epsilon)|\Omega|}{\mu}\right\} \tag{17}
\end{equation*}
$$

Making use of $0 \leq v \leq\left\|v_{0}\right\|_{L^{\infty}(\Omega)}$ and (17), we have:

$$
\int_{\Omega} u^{n+1} \mathrm{~d} x \leq\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right)^{k n(1-\alpha)} \max \left\{y(0), \frac{c(\epsilon)|\Omega|}{\mu}\right\} .
$$

Thus, we obtain the desired result.
The proof of the following lemma is the same as [22, Lemma 3.2]. But, we write it to complement our content.

Lemma 5. Let $u_{0} \geq 0$ and $v_{0} \geq 0$ satisfy $\left(u_{0}, v_{0}\right) \in\left(W^{1, q}(\Omega)\right)^{2}$ for some $q>n$. Also, assume that (4), (5) and (6) hold. Then there exists some positive constant C such that

$$
\begin{equation*}
\|\nabla v\|_{L^{\infty}(\Omega)} \leq C \tag{18}
\end{equation*}
$$

for all $t \in\left(0, T_{\max }\right)$.
Proof. By considering Lemma 2, we see that it is sufficient to prove for any $\tau \in\left(0, T_{\max }\right)$,

$$
\begin{equation*}
\|\nabla v(\cdot, t)\|_{L^{\infty}(\Omega)} \leq C \quad \text { for all } t \in\left(\tau, T_{\max }\right) \tag{19}
\end{equation*}
$$

We use the representation formula for the second equation (1) to have:

$$
v(\cdot, t)=\mathrm{e}^{t(\Delta-1)} v_{0}+\int_{0}^{t} \mathrm{e}^{(t-s)(\Delta-1)}(1-u(\cdot, s)) v(\cdot, s) \mathrm{d} s, \quad t \in\left(0, T_{\max }\right)
$$

We now take $p=n+1$ and use from $0 \leq v \leq\left\|v_{0}\right\|_{L^{\infty}(\Omega)}$ and (14) to write:

$$
\begin{align*}
\|(1-u(\cdot, s)) v(\cdot, s)\|_{L^{p}(\Omega)} & \left.\leq\left.\|v(\cdot, s)\|_{L^{\infty}(\Omega)}\left(\int_{\Omega} \mid 1-u(\cdot, s)\right)\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \left.\leq\|v(\cdot, s)\|_{L^{\infty}(\Omega)}\left(\int_{\Omega}(1+\mid u(\cdot, s)) \mid\right)^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \left.\leq\|v(\cdot, s)\|_{L^{\infty}(\Omega)}\left(\left.2^{p-1} \int_{\Omega}(1+\mid u(\cdot, s))\right|^{p}\right) \mathrm{d} x\right)^{\frac{1}{p}} \\
& \left.\leq 2^{\frac{p-1}{p}}\|v(\cdot, s)\|_{L^{\infty}(\Omega)}\left(|\Omega|^{\frac{1}{p}}+\mid \| u(\cdot, s)\right) \|_{L^{p}(\Omega)}\right) \\
& \leq c \tag{20}
\end{align*}
$$

where we have used the inequality $(a+b)^{m} \leq 2^{m-1}\left(a^{m}+b^{m}\right)$ with $a, b \geq 0$ and $m>1$, also $(a+b)^{m^{\prime}} \leq\left(a^{m^{\prime}}+b^{m^{\prime}}\right)$ with $0<m^{\prime}<1$. In order to prove (19), we take $\tau \in\left(0, \min \left\{1, T_{\max }\right\}\right)$ and $\theta \in\left(\frac{2 n+1}{2(n+1)}, 1\right)$ and use the estimates (3.16) and (3.17) in [22], also (20) to obtain:

$$
\begin{aligned}
\|v(\cdot, t)\|_{W^{1, \infty}(\Omega)} & \leq c\left\|(-\Delta+1)^{\theta} v(\cdot, t)\right\|_{L^{p}(\Omega)} \\
& \leq c t^{-\theta} \mathrm{e}^{-\delta t}\left\|v_{0}\right\|_{L^{p}(\Omega)}+c \int_{0}^{t}(t-s)^{-\theta} \mathrm{e}^{-\delta(t-s)}\|(1-u(\cdot, s)) v(\cdot, s)\|_{L^{p}(\Omega)} \mathrm{d} s \\
& \leq c t^{-\theta}+c \int_{0}^{t}(t-s)^{-\theta} \mathrm{e}^{-\delta(t-s)} \mathrm{d} s \\
& \leq c t^{-\theta}+c \int_{0}^{+\infty} \sigma^{-\theta} \mathrm{e}^{-\delta \sigma} \mathrm{d} \sigma \\
& \leq c\left(\tau^{-\theta}+1\right), \quad t \in\left(\tau, T_{\max }\right)
\end{aligned}
$$

where the constant c can vary from line to line. This completes our proof.
Upon the well-known Moser Alikakos iteration procedure [2], we prove the following lemma similar to [22, Lemma 3.2].
Lemma 6. Let $u_{0} \geq 0$ and $v_{0} \geq 0$ satisfy $\left(u_{0}, v_{0}\right) \in\left(W^{1, q}(\Omega)\right)^{2}$ for some $q>n$. Also, assume that (4), (5) and (6) hold. Then there exists some positive constant c such that the first component of problem (1) for all $t \in\left(0, T_{\max }\right)$ satisfies

$$
\|u(\cdot, t)\|_{L^{\infty}(\Omega)} \leq c
$$

Proof. We take $p \geq 2$ and use from (1) and integration by parts to obtain:

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \mathrm{~d} x=p \int_{\Omega} u^{p-1}[\nabla \cdot(\gamma(v) \nabla u-u \xi(\nu) \nabla v)+\mu u(1-u)] \mathrm{d} x \\
& \quad=-p(p-1) \int_{\Omega} \gamma(v) u^{p-2}|\nabla u|^{2} \mathrm{~d} x+p(p-1) \int_{\Omega} u^{p-1} \xi(\nu) \nabla u \cdot \nabla v \mathrm{~d} x+\mu p \int_{\Omega} u^{p}(1-u) \mathrm{d} x \tag{21}
\end{align*}
$$

Because of $0 \leq v \leq\left\|v_{0}\right\|_{L^{\infty}(\Omega)}$, we have:

$$
\begin{aligned}
& \gamma(v)=(1+v)^{-k} \geq\left(1+\left\|v_{0}\right\|_{L^{\infty}(\Omega)}\right)^{-k}:=c_{1} \\
& \xi(v)=k(1-\alpha)(1+v)^{-k-1} \leq k(1-\alpha):=c_{2}
\end{aligned}
$$

Making use of these, (18) and Young's inequality, we can write (21) as follows:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \mathrm{~d} x & \leq-c_{1} p(p-1) \int_{\Omega} u^{p-2}|\nabla u|^{2} \mathrm{~d} x+C c_{2} p(p-1) \int_{\Omega} u^{p-1}|\nabla u| \mathrm{d} x+\mu p \int_{\Omega} u^{p} \mathrm{~d} x \\
& =-\frac{4 c_{1}(p-1)}{p} \int_{\Omega}\left|\nabla u^{\frac{p}{2}}\right|^{2} \mathrm{~d} x+2 C c_{2}(p-1) \int_{\Omega} u^{\frac{p}{2}} \cdot\left|\nabla u^{\frac{p}{2}}\right| \mathrm{d} x+\mu p \int_{\Omega} u^{p} \mathrm{~d} x \\
& \leq-\frac{2 c_{1}(p-1)}{p} \int_{\Omega}\left|\nabla u^{\frac{p}{2}}\right|^{2} \mathrm{~d} x+p\left(\frac{(p-1) C^{2} c_{2}^{2}}{2 c_{1}}+\mu\right) \int_{\Omega} u^{p} \mathrm{~d} x . \tag{22}
\end{align*}
$$

We now add $p \int_{\Omega} u^{p} \mathrm{~d} x$ on both sides of (22) to have:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \mathrm{~d} x+p \int_{\Omega} u^{p} \mathrm{~d} x \leq-\frac{2 c_{1}(p-1)}{p} \int_{\Omega}\left|\nabla u^{\frac{p}{2}}\right|^{2} \mathrm{~d} x+c_{3} \int_{\Omega} u^{p} \mathrm{~d} x \tag{23}
\end{equation*}
$$

with

$$
c_{3}=p\left(\frac{(p-1) C^{2} c_{2}^{2}}{2 c_{1}}+\mu+1\right)
$$

To estimate the last term on the right hand side of (23), we use the following known GagliardoNirenberg inequality (see [11, 28], for instance):

$$
\|\psi\|_{L^{q}(\Omega)} \leq C_{G N}\left(\|\nabla \psi\|_{L^{2}(\Omega)}^{\vartheta}\|\psi\|_{L^{r}(\Omega)}^{1-\vartheta}+\|\psi\|_{L^{r}(\Omega)}\right)
$$

where

$$
q(n-2)<2 n, \quad r \in(0, q) \quad \text { and } \quad \vartheta=\frac{\frac{n}{r}-\frac{n}{q}}{1-\frac{n}{2}+\frac{n}{r}} \in(0,1)
$$

and $C_{G N}$ is the constant in the Gagliardo-Nirenberg inequality. Now, we apply the GagliardoNirenberg inequality with $\psi=u^{\frac{p}{2}}, q=2, r=1$ and $\vartheta=\frac{n}{n+2}$, and then use the Young inequality with exponents $r=\frac{n+2}{n}$ and $s=\frac{n+2}{2}$ to obtain:

$$
\begin{aligned}
c_{3} \int_{\Omega} u^{p} \mathrm{~d} x=c_{3}\left\|u^{\frac{p}{2}}\right\|_{L^{2}(\Omega)}^{2} & \leq c_{3}\left(C_{G N}\right)^{2}\left(\left\|\nabla u^{\frac{p}{2}}\right\|_{L^{2}(\Omega)}^{\frac{n}{n+2}}\left\|u^{\frac{p}{2}}\right\|_{L^{1}(\Omega)}^{\frac{2}{n+2}}+\left\|u^{\frac{p}{2}}\right\|_{L^{1}(\Omega)}\right)^{2} \\
& \leq 2 c_{3}\left(C_{G N}\right)^{2}\left(\left\|\nabla u^{\frac{p}{2}}\right\|_{L^{2}(\Omega)}^{\frac{2 n}{n+2}}\left\|u^{\frac{p}{2}}\right\|_{L^{1}(\Omega)}^{\frac{4}{n+2}}+\left\|u^{\frac{p}{2}}\right\|_{L^{1}(\Omega)}^{2}\right) \\
& \leq \frac{2 c_{1}(p-1)}{p}\left\|\nabla u^{\frac{p}{2}}\right\|_{L^{2}(\Omega)}^{2}+\left(c_{4}+2 c_{3}\left(C_{G N}\right)^{2}\right)\left\|u^{\frac{p}{2}}\right\|_{L^{1}(\Omega)}^{2} \\
& =\frac{2 c_{1}(p-1)}{p} \int_{\Omega}\left|\nabla u^{\frac{p}{2}}\right|^{2} \mathrm{~d} x+c_{5}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2}
\end{aligned}
$$

with

$$
c_{4}=\frac{1}{s}\left(\frac{2 c_{1} r(p-1)}{p}\right)^{-\frac{s}{r}}\left(2 c_{3}\left(C_{G N}\right)^{2}\right)^{s} \quad \text { and } \quad c_{5}=c_{4}+2 c_{3}\left(C_{G N}\right)^{2} .
$$

Combining the last inequality with (23) yields:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u^{p} \mathrm{~d} x+p \int_{\Omega} u^{p} \mathrm{~d} x \leq c_{5}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2}
$$

For $0 \leq t \leq T_{\max }$, we can write:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{p t} \int_{\Omega} u^{p} \mathrm{~d} x\right) \leq c_{5} e^{p t}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2}
$$

Now, we integrate and use $e^{-p t} \leq 1$ to get:

$$
\begin{aligned}
\int_{\Omega} u^{p} \mathrm{~d} x & \leq \int_{\Omega} u_{0}^{p} \mathrm{~d} x+\frac{c_{5}}{p} \sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2} \\
& \leq|\Omega|\left\|u_{0}\right\|_{L^{\infty}(\Omega)}^{p}+\frac{c_{5}}{p} \sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2}
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left(\int_{\Omega} u^{p} \mathrm{~d} x\right)^{\frac{1}{p}} & \leq\left[|\Omega|\left\|u_{0}\right\|_{L^{\infty}(\Omega)}^{p}+\frac{c_{5}}{p} \sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{2}\right]^{\frac{1}{p}} \\
& \leq|\Omega|^{\frac{1}{p}}\left\|u_{0}\right\|_{L^{\infty}(\Omega)}+\left(\frac{c_{5}}{p}\right)^{\frac{1}{p}} \sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{\frac{2}{p}} . \tag{24}
\end{align*}
$$

We note that

$$
\begin{aligned}
c_{5} & =c_{4}+2 c_{3}\left(C_{G N}\right)^{2} \\
& =\frac{1}{s}\left(\frac{2 c_{1} r(p-1)}{p}\right)^{-\frac{s}{r}}\left(2 c_{3}\left(C_{G N}\right)^{2}\right)^{s}+2 c_{3}\left(C_{G N}\right)^{2} \\
& =\frac{1}{s}\left(2 c_{1} r\right)^{-\frac{s}{r}}\left(2\left(C_{G N}\right)^{2}\right)^{s}\left(\frac{p}{p-1}\right)^{\frac{n}{2}}\left(c_{3}\right)^{s}+2 c_{3}\left(C_{G N}\right)^{2} \\
& \leq m\left[\left(\frac{p}{p-1}\right)^{\frac{n}{2}}\left(c_{3}\right)^{s}+c_{3}\right] \\
& \leq m\left[\left(\frac{p}{p-1}\right)^{\frac{n}{2}}+1\right]\left(c_{3}\right)^{s}
\end{aligned}
$$

with

$$
m=\max \left\{\frac{1}{s}\left(2 c_{1} r\right)^{-\frac{s}{r}}\left(2\left(C_{G N}\right)^{2}\right)^{s}, 2\left(C_{G N}\right)^{2}\right\}
$$

Here, we have used from $c_{3}>1$ and $s>1$. By inserting c_{3} and using $p \geq 2$, we obtain:

$$
\begin{align*}
\frac{c_{5}}{p} & \leq m\left[\left(\frac{p}{p-1}\right)^{\frac{n}{2}}+1\right]\left(\frac{(p-1) C^{2} c_{2}^{2}}{2 c_{1}}+\mu+1\right)^{\frac{n}{2}+1} p^{\frac{n}{2}} \\
& \leq 2 m\left(\frac{C^{2} c_{2}^{2}}{2 c_{1}}+\mu+1\right)^{\frac{n}{2}+1}\left(\frac{p}{p-1}\right)^{\frac{n}{2}}(p-1)^{\frac{n}{2}+1} p^{\frac{n}{2}} \\
& =c_{6}(p-1) p^{n} \\
& \leq c_{6} p^{n+1} \tag{25}
\end{align*}
$$

with

$$
c_{6}=2 m\left(\frac{C^{2} c_{2}^{2}}{2 c_{1}}+\mu+1\right)^{\frac{n}{2}+1} .
$$

Making use of (25) and $p^{\frac{n+1}{p}}>1$, we can write (24) as follows:

$$
\begin{align*}
\left(\int_{\Omega} u^{p} \mathrm{~d} x\right)^{\frac{1}{p}} & \leq|\Omega|^{\frac{1}{p}}\left\|u_{0}\right\|_{L^{\infty}(\Omega)}+\left(c_{6} p^{n+1}\right)^{\frac{1}{p}} \sup _{0 \leq t \leq T_{\operatorname{Tax}}}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{\frac{2}{p}} \\
& \leq c_{7}^{\frac{1}{p}} p^{\frac{n+1}{p}}\left(\left\|u_{0}\right\|_{L^{\infty}(\Omega)}+\sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{\frac{p}{2}} \mathrm{~d} x\right)^{\frac{2}{p}}\right) \tag{26}
\end{align*}
$$

with $c_{7}=|\Omega|+c_{6}$. We now define:

$$
M(p)=\max \left\{\left\|u_{0}\right\|_{L^{\infty}(\Omega)}, \sup _{0 \leq t \leq T_{\max }}\left(\int_{\Omega} u^{p} \mathrm{~d} x\right)^{\frac{1}{p}}\right\}
$$

This allows us to write (26) as:

$$
M(p) \leq 2 c_{7}^{\frac{1}{p}} p^{\frac{n+1}{p}} M\left(\frac{p}{2}\right)
$$

We now take $p=2^{i}(i \in \mathbb{N})$ to obtain:

$$
\begin{align*}
M\left(2^{i}\right) & \leq 2 c_{7}^{2^{-i}} 2^{\frac{(n+1) i}{2^{i}}} M\left(2^{i-1}\right) \\
& \leq 2 c_{7}^{2^{-i}+2^{-i+1}} 2^{(n+1)\left(\frac{i}{2^{i}+}+\frac{i-1}{2^{i-1}}\right)} M\left(2^{i-2}\right) \\
& \leq \cdots \\
& \leq 2 c_{7}^{2^{-i}+2^{-i+1}++2^{-1}} 2^{(n+1)\left(\frac{i}{2^{i}+\frac{i-1}{2^{i-1}}+++\frac{1}{2}}\right)} M(1) . \tag{27}
\end{align*}
$$

We now compute the following elementary series

$$
S:=\sum_{i=1}^{\infty} \frac{i}{2^{i}}=\sum_{i=0}^{\infty} \frac{i+1}{2^{i+1}}=\sum_{i=0}^{\infty}\left(\frac{i}{2^{i+1}}+\frac{1}{2^{i+1}}\right)=\frac{1}{2} \sum_{i=1}^{\infty} \frac{i}{2^{i}}+\sum_{i=0}^{\infty} \frac{1}{2^{i+1}}=\frac{1}{2} S+1 .
$$

Thus, $S=2$. Making use of this, $\lim _{i \rightarrow \infty}\|u(\cdot, t)\|_{L^{2^{i}}(\Omega)}=\|u(\cdot, t)\|_{L^{\infty}(\Omega)}$ and (8), by letting $i \rightarrow \infty$ in (27), we obtain the desired result.

Proof of Theorem 1. By considering the extensibility criterion provided by Lemma 2, the proof is a consequence of (9) and Lemma 6.

Acknowledgments

The author would like to thank the anonymous referees for their careful reading and valuable suggestions on this article.

References

[1] J. Ahn, C. Yoon, "Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing", Nonlinearity 32 (2019), no. 4, p. 1327-1351.
[2] N. D. Alikakos, " L^{p} bounds of solutions of reaction-diffusion equations", Commun. Partial Differ. Equations 4 (1979), p. 827-868.
[3] K. Baghaei, A. Khelghati, "Global existence and boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant and logistic source", Math. Methods Appl. Sci. 40 (2017), no. 10, p. 3799-3807.
[4] -, "Les solutions classiques d'un modèle de chimiotaxie avec consommation de chimioattracteurs sont bornées", C. R. Acad. Sci. Paris 355 (2017), no. 6, p. 633-639.
[5] T. Black, M. Winkler, "Global weak solutions and absorbing sets in a chemotaxis-Navier-Stokes system with prescribed signal concentration on the boundary", Math. Models Methods Appl. Sci. 32 (2022), no. 1, p. 137-173.
[6] X. Cao, J. Lankeit, "Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities", Calc. Var. Partial Differ. Equ. 55 (2016), no. 4, article no. 107 (39 pages).
[7] K. Fujie, J. Jiang, "Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities", Acta Appl. Math. 176 (2021), article no. 3 (36 pages).
[8] K. Fujie, T. Senba, "Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions", Nonlinearity 35 (2022), no. 7, p. 3777-3811.
[9] K. Fujie, J. Jiang, "Global existence for a kinetic model of pattern formation with density-suppressed motilities", J. Differ. Equations 269 (2020), no. 6, p. 5338-5378.
[10] J. Han, C. Liu, "Global weak solution for a chemotaxis Navier-Stokes system with p-Laplacian diffusion and singular sensitivity", Nonlinear Anal., Real World Appl. 73 (2023), article no. 103898 (24 pages).
[11] D. Horstmann, M. Winkler, "Boundedness vs. blow-up in a chemotaxis system", J. Differ. Equations 215 (2005), no. 1, p. 52-107.
[12] H.-Y. Jin, Y.-J. Kim, Z.-A. Wang, "Boundedness, stabilization, and pattern formation driven by density-suppressed motility", SIAM J. Appl. Math. 78 (2018), no. 3, p. 1632-1657.
[13] _, "Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth", J. Math. Phys. 60 (2019), no. 1, article no. 011507 (14 pages).
[14] H.-Y. Jin, Z.-A. Wang, "Critical mass on the Keller-Segel system with signal-dependent motility", Proc. Am. Math. Soc. 148 (2020), no. 11, p. 4855-4873.
[15] E. F. Keller, L. A. Segel, "Initiation of slime mold aggregation viewed as an instability", J. Theor. Biol. 26 (1970), no. 3, p. 399-415.
[16] A. Khelghati, K. Baghaei, "Boundedness of classical solutions for a chemotaxis model with rotational flux terms", Z. Angew. Math. Mech. 98 (2018), p. 1864-1877.
[17] ——, "Boundedness of classical solutions for a chemotaxis system with general sensitivity function", Appl. Anal. 98 (2019), no. 3, p. 611-621.
[18] J. Lankeit, M. Winkler, "Depleting the signal: Analysis of chemotaxis-consumption models-A survey", 2023, https: //arxiv.org/abs/2304.02449.
[19] D. Li, J. Zhao, "Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility", Z. Angew. Math. Phys. 72 (2021), no. 2, article no. 57 (21 pages).
[20] X. Li, L. Wang, X. Pan, "Boundedness and stabilization in the chemotaxis consumption model with signal dependent motility", Z. Angew. Math. Phys. 72 (2021), no. 4, article no. 170 (18 pages).
[21] Y. Li, S. Lu, "Global solutions to a chemotaxis-growth system with signal-dependent motilities and signal consumption", J. Math. Anal. Appl. 521 (2023), no. 1, article no. 126902 (17 pages).
[22] Y. Tao, "Boundedness in a chemotaxis model with oxygen consumption by bacteria", J. Math. Anal. Appl. 381 (2011), no. 2, p. 521-529.
[23] Y. Tao, M. Winkler, "Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant", J. Differ. Equations 252 (2012), no. 3, p. 2520-2543.
$[24] \quad$, "Global solutions to a Keller-Segel-consumption system involving singularly signal-dependent motilities in domains of arbitrary dimension", J. Differ. Equations 343 (2023), p. 390-418.
[25] I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, R. E. Goldstein, "Bacterial swimming and oxygen transport near contact lines", Proc. Natl. Acad. Sci. USA 102 (2005), no. 7, p. 2277-2282.
[26] L. Wang, "Global dynamics for a chemotaxis consumption system with signal-dependent motility and logistic source", J. Differ. Equations 348 (2023), p. 191-222.
[27] , "Global dynamics for a chemotaxis consumption system with signal-dependent motility and logistic source", J. Differ. Equations 348 (2023), p. 191-222.
[28] L. Wang, C. Mu, P. Zheng, "On a quasilinear parabolic-elliptic chemotaxis system with logistic source", J. Differ. Equations 256 (2014), no. 4, p. 1847-1872.
[29] M. Winkler, "Stabilization in a two-dimensional chemotaxis-Navier-Stokes system", Arch. Ration. Mech. Anal. 211 (2014), no. 2, p. 455-487.
[30] Y. Xiao, J. Jiang, "Global existence and uniform boundedness in a fully parabolic Keller-Segel system with nonmonotonic signal-dependent motility", J. Differ. Equations 354 (2023), p. 403-429.
[31] C. Yoon, Y.-J. Kim, "Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion", Acta Appl. Math. 149 (2017), no. 1, p. 101-123.

