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1. Introduction

In many optimal control problems, the admissible set is defined as follows

A :=
{

f ∈ L∞(D) : f ( f −1) = 0,
∫

D
f dx =α

}
(1)

where D is a bounded (measurable) set in RN , α ∈ (0, |D|), and |D| denotes the Lebesgue measure
of D , see for example [7]. Henceforth, we identity L∞ as

(
L1

)⋆
, the dual of L1. Then, it is widely

known that

w⋆−closure of A =
{

f ∈ L∞(D) : 0 ≤ f ≤ 1,
∫

D
f dx =α

}
, (2)
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see Proposition 2.4 in [3]. This latter set is drastically more convenient to work with compared
to the former. For example, it is convex and weak⋆ compact in L∞(D), whereas A fails to retain
either of these two properties.

In this note, we answer a long standing question; mainly, there is an analogy of (2) for
n−valued functions. More precisely, we replace the set of {0,1}−valued functions (verifying the
integral constraint

∫
D f dx = α), i.e. A, by an appropriate set of n−valued functions. A natural

generalization of (1) is the following set

Ã =
{

f ∈ L∞(D) : ( f −γ1)( f −γ2) · · · ( f −γn) = 0,
∫

D
f dx =α

}
.

However, a function h ∈ Ã may not satisfy the condition |{x ∈ D : f (x) = γi }| > 0, i = 1,2, . . . ,n,
which we require, as illustrated by the following example:

Example. Let D = (0,1), α = 1 and γi = i −1, i = 1,2,3. Clearly, the set Ã contains the following
2-valued and 3-valued controls:

f1 = 2χ( 1
2 ,1), f2 =χ(0, 1

3 ) +2χ( 2
3 ,1).

Note that this drawback is irrelevant to A due to imposing the condition α ∈ (0, |D|). To
overcome this obstacle, we first make the following observation that

A = {
χE : E ⊆ D, |E | =α}

where χE denotes the characteristic function of E . Furthermore, we make a second observation
that {

χE : E ⊆ D, |E | =α}=R(χF )

where F can be any subset of D verifying |F | = α. Here, R(χF ) denotes the classical rearrange-
ment class generated by χF . In the following lines, we briefly recall the definition of two functions
being rearrangements of each other.

For two (measurable) functions f , g : D →R, we say f and g are rearrangements of each other if

λ f (α) =λg (α) for all α ∈R,

where λ f (similarly λg ) denotes the distribution function of f , i.e.

λ f (α) = |{x ∈ D : f (x) ≥α}|.
We use the notation R( f ) to indicate the set of functions defined on D which are rearrangements
of f ; R( f ) is called the rearrangement class generated by f . Note that if f and g are rearrange-
ments of each other, they will generate the same class of rearrangements, i.e. R( f ) =R(g ).

Now, for ci ∈R, i = 1,2, . . . ,n, we introduce the set

A =
{

n∑
i=1

ciχEi : Ei ⊆ D, {Ei } are mutually disjoint, |Ei | =αi

}
,

where αi > 0 are prescribed satisfying
∑n

i=1αi = |D|. Without loss of generality, we suppose {ci } is
strictly increasing. Our main result is the following

Theorem. Using the notations mentioned above, the following equation holds

A =
n∑

i=1
Ki (3)

where A denotes the weak⋆ closure of A ,

Ki =
{

f ∈ L∞(D) : 0 ≤ f ≤ ci − ci−1,
∫

D
f dx = (ci − ci−1)

n∑
k=i

αk

}
for all i = 2, . . . ,n,

and K1 = {c1}. Here, c1 denotes the constant function.
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Remark 1. A direct consequence of the Theorem is the following useful observation. Suppose
βi ∈R satisfies 0 <βn <βn−1 < ·· · <β1 < |D| and

Ki =
{

f ∈ L∞(D) : 0 ≤ f ≤ 1,
∫

D
f dx =βi

}
for all i = 1, . . . ,n.

If we set β0 = |D|, βn+1 = 0 and

A =
{

n+1∑
i=1

(i −1)χEi : Ei ⊆ D, {Ei } are mutually disjoint, |Ei | =βi−1 −βi

}
,

then we have

A =
n∑

i=1
Ki .

2. Proof of the Theorem

In the proof of the Theorem, we use the following important lemma from [2] which we include a
sketch of its proof for the convenience of readers.

Lemma. Let f1, f2, . . . , fn ∈ L∞(D) such that
∫

D fi f j dx = ∫ |D|
0 f △i f △j ds for all i , j = 1,2, . . . ,n. Then,

n∑
i=1

R( fi ) =R

(
n∑

i=1
fi

)
.

Here, f △i denotes the decreasing rearrangement on (0, |D|), i.e. f △i (s) := max
{
α :λ fi (α) ≥ s

}
.

Proof. We only sketch the proof here; the readers can refer to Theorem 3 in [2] for details.
The inclusion R

(∑n
i=1 fi

) ⊆ ∑n
i=1 R( fi ) follows from Theorem 18.10 in [5]. Now, we show the

inclusion in the other direction. To this end, we set f = ∑n
i=1 fi and utilize the condition that∫

D fi f j dx = ∫ |D|
0 f △i f △j ds to show the following

0 ≤
∫ |D|

0

(
f △−

n∑
i=1

f △i

)2

ds ≤
∫

D

(
f −

n∑
i=1

fi

)2

dx = 0.

This, in turn, implies (
n∑

i=1
fi

)△
=

n∑
i=1

f △i . (4)

Next, let h = ∑n
i=1 hi ∈ ∑n

i=1 R( fi ) with hi ∈ R( fi ) for i = 1,2, . . . ,n. We can use the standard
rearrangement techniques and (4) to derive∫ |D|

0
h△ ds =

∫ |D|

0

(
n∑

i=1
fi

)△
ds and

∫ t

0
h△ ds ≤

∫ t

0

(
n∑

i=1
fi

)△
ds,

for all t ∈ (0, |D|). This implies h ∈ R
(∑n

i=1 fi
)
, by [1] or Proposition 5 in [2]. The proof of the

Lemma is complete. □

Proof of the Theorem. The proof of the Theorem is in fact an immediate consequence of the
Lemma.

By setting c0 = 0, the key to the proof will be the decomposition in (5). We define

fi = (ci − ci−1)χ⋃n
k=i Ek

,

i = 1,2, . . . ,n. We then set

f =
n∑

i=1
fi . (5)
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Clearly, A =R( f ). On the other hand, for almost every s ∈ (0, |D|), we have

f △i (s) = (ci − ci−1)χ(0,
∑n

k=i αk )(s),

i = 1,2, . . . ,n. For i , j ∈ {1,2, . . . ,n} with i ≤ j , then we deduce, by direct computations, that∫
D

fi (x) f j (x)dx = (ci − ci−1)(c j − c j−1)
n∑

k= j
αk =

∫ |D|

0
f △i (s) f △j (s)ds. (6)

From (5), (6) and the Lemma, we infer that

A =R( f ) =R

(
n∑

i=1
fi

)
=

n∑
i=1

R( fi ).

Moreover, by Proposition 2.4 in [3], we have

Ki :=R( fi ) =
{

g ∈ L∞(D) : 0 ≤ g ≤ ci − ci−1,
∫

D
g dx = (ci − ci−1)

n∑
k=i

αk

}
,

i = 1,2, . . . ,n. Notice that R( f1) = { f1} = {c1}, hence we infer K1 = R( f1) = {c1}. Therefore, the
decomposition (3) follows. □

Remark 2. It is important to mention that everything stated in this paper holds true if the
Lebesgue measure is replaced by any other (finite) non-atomic measures.

This theorem has nice applications, for example, in spectral theory which we only outline here.
Consider the eigenvalue problem {

−∆u =λρ(x)u, in D

u = 0, on ∂D,
(7)

where this boundary value problem models the displacement, denoted u, of a clamped mem-
brane with density ρ(x) on the bounded domain D from the rest position. It is well known that if
ρ is a non-trivial function in L∞+ (D), then the eigenvalue problem (7) has a sequence of eigenval-
ues such that

0 <λ1 <λ2 ≤ . . . →∞,

see for example [6]. λ1(ρ), to emphasize its dependence on ρ, is called the principal eigenvalue
and it can be formulated in terms of the Rayleigh quotient

λ1(ρ) := inf

{∫
D |∇v |2 dx∫
D ρv2 dx

: v ∈ H 1
0 (D),

∫
D
ρv2 dx > 0

}
.

One is interested in the following maximization and minimization problems

sup
ρ∈K1+K2+···+Kn

λ1(ρ) and inf
ρ∈K1+K2+···+Kn

λ1(ρ). (8)

By using the Theorem, we can transform the above problems to the following rearrangement
optimization problems

sup
ρ∈A

λ1(ρ) and inf
ρ∈A

λ1(ρ)

which can be solved by the results in [4, 8]. Moreover, one can prove that the optimization
problems in (8) have optimal solutions which, in turn, give rise to free boundary problems related
to the eigenvalue problem (7).
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