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Abstract. Understanding the behavior of a black-box model with probabilistic inputs can be based on the
decomposition of a parameter of interest (e.g., its variance) into contributions attributed to each coalition of
inputs (i.e., subsets of inputs). In this paper, we produce conditions for obtaining unambiguous and inter-
pretable decompositions of very general parameters of interest. This allows recovering known decomposi-
tions, holding under weaker assumptions than the literature states.

Résumé. La compréhension du comportement d’un modèle boîte-noire, dont les entrées distribuées aléatoi-
rement, peut s’appuyer sur la décomposition d’un paramètre d’intérêt (par exemple sa variance) en contribu-
tions allouées à chaque coalition d’entrées du modèle (i.e., sous-ensembles des entrées d’un modèle). Dans
cet article, sous des hypothèses peu restrictives, nous obtenons des décompositions univoques et interpré-
tables de quantités d’intérêt très générales. Ces résultats nous permettent notamment de retrouver des résul-
tats connus, mais en allégeant leurs hypothèses.
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1. Introduction and preliminaries

The decomposition of a parameter of interest, also known as a quantity of interest (QoI) in
the uncertainty quantification framework, with respect to (w.r.t.) coalitions of covariables is
crucial in both the field of sensitivity analysis of numerical models and in explainable artificial
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intelligence [11]. These decompositions allow distributing shares of QoI to the inputs of an input-
output black-box model. Depending on the QoI, they both provide a better understanding of the
behavior of such models and allow for performing post-hoc interpretability [1].

For instance, the well-known Hoeffding–Sobol’ decomposition is a particular instance of
output variance decomposition, which has been used for both settings [2, 7, 18]. It relies on a
unique decomposition of an input-output model in L2. Nevertheless, it requires independent
covariables [10] but allows quantifying the influence (in terms of percentages of output variance)
of each input of a black-box model, as well as interaction influence due to coalitions of inputs.

In this paper, the concept of “coalitional decomposition of QoI” is developed, generalizing the
idea of the Hoeffding–Sobol’ variance decomposition to other types of QoIs, leveraging results
from the field of combinatorics. In particular, Rota’s extension of the Möbius inversion formula
to partially ordered sets [13]). Necessary conditions are presented in order to define coalitional
decompositions of abstract QoIs. It is shown, among other QoI decompositions proposed in the
literature, that the Hoeffding–Sobol’ decomposition still holds without the need for independent
inputs, but its interpretation as interaction effects holds only when input independence is
assumed. Furthermore, a quite general point of view is adopted, allowing the definition of
decompositions for a large variety of QoIs.

1.1. Notations and tools

1.1.1. Inputs, model, and outputs

Let (Ω,F ,P) be some probability space. Let, for i = 1, . . . ,d , d ∈ N∗, (Ei ,B(Ei )) be abstract
polish measurable space, i.e., Ei is a separable completely metrizable topological space, and
B(Ei ) denotes its associated Borel σ-algebra. Let D = {1, . . . ,d} and denote by P (D) its power-
set (i.e., the set of all possible subsets of D , including ;). For any A ⊆ D , denote the marginal
measurable spaces (E A ,EA), where

E A =×
i∈A

Ei , EA =⊗
i∈A

B(Ei ) =B

(
×
i∈A

Ei

)
,

Set also (E ,E ) := (ED ,ED ). Let X = (X1, . . . , Xd )⊤ be an E-valued random vector (i.e., a measurable
function X :Ω→ E), referred to as the inputs. Let PX be the distribution of the inputs. Define the
marginal distributions, for each A ⊂ D , as:

PX A =
∫

E Ā

dPX ,

where X A = (Xi )i∈A is the coalition of inputs whose indices are in A (i.e., the subset X A of X ).
Further, A denotes the complementary set of A in D (i.e. A = D \ A). Additionally, for every A ⊂ D ,
the conditional distributions PX A |X Ā

are assumed to be regular, and if not uniquely defined, they
are chosen to be regular (see [5], Chap. 4).

Let G : E → Z be a measurable function. Here Z denotes an abstract polish space. G(X ) is
the Z -valued random variable, resulting from the composition of G with X . In the following, the
function G is referred to as a model while G(X ) is referred to as the output of the model. Denote
P(E) the set of all probability distributions on (E ,E ). M (E) denotes the set of Z -valued models,
i.e., every Z -valued, measurable functions.

Remark 1. In essence, the random inputs X , and the output G(X ) are not restricted to be
real-valued, but can be defined on more complex measurable spaces (e.g., images, functions,
stochastic processes).
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A particular subset of M (E) is of interest in the present work whenever Z = R: L2(PX ,R). It
is the set of measurable, R-valued functions which are square-integrable against PX . Recall that
L2(PX ;R) is a Hilbert space with the inner product:

∀ f , g ∈ L2(PX ;R),
〈

f , g
〉

L2 =
∫

E
f (x)g (x)dPX (x),

and associated norm:

∀ f ∈ L2(PX ;R),
∥∥ f

∥∥2
L2 =

∫
E

f 2(x)dPX (x).

Denote, for any A ⊂ D , L2
(
PX A ;R

)
the Hilbert subspaces of L2(PX ;R), of square integrable,

EA-measurable functions. In other words, any f ∈ L2(PX A ,R) is a square-integrable function
f : E A →R: elements of L2(PX A ,R) only take |A| := card(A) inputs. Whenever Z =Rk for a positive
integer k, one can also define the set L2

(
PX ;Rk

)
accordingly (see [8]).

1.1.2. Some elements of combinatorics and abstract algebra

A partially ordered set (poset) is defined as a pair (S ,≤) where S is a non-empty set, and ≤ is
a partial order binary relation on elements of S . A poset (S ,≤) is said to be locally finite if, for
any x, z ∈S , the sets {y ∈S : x ≤ y ≤ z} (also called segments of S ) are finite.

A commutative ring with identity, is a triplet (A,+,×) where A is a non-empty set, and where
+ and × are addition and multiplication operators respectively, which are both associative and
commutative on A, × is distributive w.r.t. + on A, A contains both an additive and multiplicative
identity, but only an additive inverse. A commutative ring with identity that admits a multiplica-
tive inverse is generally called a field. In the following, abstract commutative rings with identity
are denoted A, and are assumed to be endowed with the usual addition and multiplication op-
erator unless stated otherwise. For instance, R is a commutative ring with identity (it is, in fact, a
field).

Denote IA(S ) the incidence algebra of a locally finite poset (S ,≤) over a commutative ring
with identity A, i.e., the set of functions f : S ×S → A such that f (x, y) = 0 if x ̸≤ y (see [17],
Definition 1.2.1 p. 10). (IA(S ),+,∗) forms an A-algebra with the usual pointwise addition +
and the usual convolution ∗, i.e., for any f , g ∈ IA(S ), and any x, z ∈ S such that the segment
{y ∈S : x ≤ y ≤ z} is non-empty,

( f ∗ g )(x, z) = ∑
x≤y≤z

f (x, y)g (y, z).

The zeta function ζ ∈ IA(S ) is the convolutional identity of the incidence algebra and is defined,
∀x, y ∈S , as:

ζ(x, y) =
{

1 if x = y,

0 otherwise.

The Möbius function, denoted µ ∈ IA(S ), in the case of locally finite posets S , is defined as the
inverse of the zeta function for the convolution operator defined on the incidence algebra of S ,
and can be computed recursively, for any x, y ∈S with x ≤ y , as [12]

µ(x, y) =
1 if x = y

− ∑
x≤z<y

µ(x, z) otherwise.

Finally, in the scope of this work, it is important to note that, for the finite set D , the pair
(P (D) ,⊆), where ⊆ denotes the inclusion between sets, forms a locally finite poset.
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1.2. Quantity of interest

A QoI (or parameter of interest) is the mapping of a model G ∈ M (E) and an input distribution
PX ∈P(E) to a commutative ring with identityA. They can be formally defined as follows:

Definition 2 (Quantity of interest). An A-valued QoI on a model G with random inputs X ∼ PX ,
is an application:

φ :P(E)×M (E) −→A

P ×H 7−→φP (H).

onto G and PX , i.e., φPX (G).

Whenever Z =A= R, for inputs X ∼ PX and a model G ∈ L2(PX ;R), an example of a QoI on G
and X can be the variance of the output:

φPX (G) =
∫

E

(
G(x)−

∫
E

G(t )dPX (t )

)2

dPX (x)

= ∥G −E [G(X )]∥2
L2

=V (G(X ))

Other examples of QoIs on G can be its generalized moments w.r.t. X , the probability that G(X )
exceeds a fixed threshold or a quantile of G(X ) given a certain level. This definition of a QoI is
very general on purpose. In essence, QoIs can also be random variables. However, for the sake of
simplicity, in the remainder of this work, it is assumed that for any model G with inputs X ∼ PX ,
φPX (G) is not random.

1.3. Möbius inversion formula and the Inclusion-Exclusion principle

Originally, the “classic” Möbius inversion formula has been first discovered in the field of number
theory by [14]. It provides a particular relation between pairs of arithmetic functions (i.e., defined
on the natural numbers). This result has since been extended to locally finite posets and became
one of the main foundational results in the field of combinatorics [15]. This extension, as stated
in [13, Section 3.1.2 p. 108] writes as follows:

Theorem 3 (Möbius inversion formula on locally finite posets). Let S be any non-empty set
and (S ,≤) form a locally finite poset, where ≤ is a binary relation. Let ϕ and ψ be functions from
S toA. Then, the following equivalence hold:

ϕ(x) = ∑
y :y≤x

ψ(y), ∀x ∈S ⇐⇒ ψ(x) = ∑
y :y≤x

ϕ(y)µ(y, x), ∀x ∈S .

where µ is the Möbius function.

The Möbius function, for certain particular posets, admits a closed form. In particular, on
the locally finite poset formed by (P (D) ,⊆), for any B ⊆ A ∈ P (D), the Möbius function writes
(see [15, Corollary p. 345]):

µ(B , A) = (−1)|A|−|B |.
It comes from the fact that the poset (P (D) ,⊆) is a Boolean lattice [15]. It leads to the following
result (see [13, Section 3.1.1 p. 108]).

Corollary 4 (Möbius inversion formula on power-sets). Let ϕ and ψ be functions from P (D) to
A. Then the following equivalence holds:

ϕA = ∑
B⊆A

ψB , ∀A ∈P (D) ⇐⇒ ψA = ∑
B⊆A

(−1)|A|−|B |ϕB , ∀A ∈P (D) .
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Corollary 4 can be seen as a generalization of the Inclusion-Exclusion principle. It allows the
decomposition of additive functions f : S → R where S is an algebra of sets. It is widely used
in probability theory. However, in light of this generalization, two main differences arise when
compared to the classical principle:

• Both statements in Corollary 4 are equivalent, whereas, for the classical Inclusion-
Exclusion principle, the left-hand statement only implies the right-left statement;

• The functions to be decomposed are not restricted to be additive and valued in R (or
even a field) anymore, but they must only be valued in a commutative ring with identity
(or even, in some cases, an Abelian group).

The consequences of these differences allow defining coalitional QoI decompositions for a broad
range of QoIs and with minimal assumptions on the model G and the distribution PX of its inputs.

2. Coalitional decompositions of QoIs

A coalition of inputs indexed by A ∈P (D) refers to the subset of E A-valued random inputs X A . In
its essence, a coalitional QoI decomposition amounts to writing a QoI as a sum of terms indexed
by a set A ∈P (D), relative to each subset X A of inputs. They can be formally defined as follows.

Definition 5 (Coalitional decompositions). Let G ∈ M (E) be a model with E-valued random
inputs X ∼ PX ∈ P(E), and φPX (G) be an A-valued QoI. One says that a QoI φPX (G) admits a
coalitional decomposition if it can be written as:

φPX (G) = ∑
A∈P (D)

ψA

whereψ : P (D) →A. The right-hand side is referred to as the coalitional decomposition ofφPX (G).

2.1. Main result

It is important to note that there exist infinitely many coalitional decompositions for a fixed
QoI. However, the following result leverages Corollary 4 in order to characterize a particular
class of coalitional decompositions. Sufficient conditions on ψ are given in order to ensure a
coalitional QoI decomposition. Notice that it remarkably involves very limited assumptions on
the probabilistic structure PX and the model G .

Lemma 6 (Möbius decomposition). Let G ∈M a model with E-valued random inputs X ∼ PX ∈
P(E). Let φPX (G) be a QoI on G. Let ϕ : P (D) →A be a set function such that:

ϕD =φPX (G).

and ∀A ∈P (D) ,ϕA is well-defined. Then,φPX (G) admits the following coalitional decomposition:

φPX (G) = ∑
A∈P (D)

ψA , (1)

where, ∀A ⊆ D,

ψA = ∑
B⊆A

(−1)|A|−|B |ϕB . (2)

This particular characterization of the coalitional decomposition of φPX (G) is referred to as its
Möbius decomposition.
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Proof of Lemma 6. Since, by assumption, ϕA is well defined ∀A ∈P (D), let:

ψA = ∑
B⊆A

(−1)|A|−|B |ϕB , ∀A ∈P (D) .

By Corollary 4, it is equivalent to:

ϕA = ∑
B⊆A

ψB , ∀A ∈P (D) ,

and, in particular:
ϕD =φPX (G) = ∑

A∈P (D)
ψA .

□

One can notice from Lemma 6 that defining a coalitional QoI decomposition amounts to
choosing a set function ϕ such that ϕD = φPX (G), with very limited assumptions on both G and
the inputs’ probability structure PX (i.e., the well-definition of ϕA , ∀A ∈P (D)).

2.2. Desirable coalitional decomposition properties

Some Möbius decompositions can be trivial: take, for instance,ϕA =φPX (G),∀A ∈P (D). In those
cases, even if the decomposition holds, ψA is not meaningful, in the sense that it is not related to
the subset of inputs X A . Hence, to ensure the meaningfulness of a Möbius decomposition, some
properties can be desired, as detailed in the following.

Definition 7 (Gradual Möbius decomposition). Let G ∈M (E) be a model with E-valued random
inputs X ∼ PX ∈ P(E), and let φPX (G) be an A-valued QoI on G. Assume that this QoI admits a
Möbius decomposition (i.e., it can be written as (1) with (2)). Ifϕ can be written, for any A ∈P (D),
as:

ϕA =φPX ( f A),

where f A ∈ M (E A) is a Z -valued E A-measurable function, then the decomposition is said to be
gradual.

The term gradual refers to the functions f A , whose input dimension is increasing with the
cardinal of A ∈ P (D). It ensures that each ϕA is somewhat linked to the coalition of inputs
X A ∼ PX A through the functions f A , and subsequently, ψA as well.

While graduality ensures a link between each ψA and the coalitions of inputs XB for B ⊆ A,
one can also be interested in their subsequent interpretation. In the particular case whereA=R,
and where the QoI is not random, one natural, desirable property would be to interpret this
decomposition as shares of QoI.

Definition 8 (Fractional Möbius decomposition). Let G ∈ M (E) be a model with E-valued
random inputs X ∼ PX , and let φPX (G) be a non-random, non-zero R-valued QoI. Assume that
φPX (G) admits a Möbius decomposition (i.e., it can be written as (1) with (2)). If, ∀A ∈P (D):

sign
(
ψA

)= sign
(
φPX (G)

)
,

Then the Möbius decomposition of φPX (G) is said to be fractional.

If a Möbius decomposition of ψPX (G) is fractional, it ensures that the ratios,
ψA

φPX (G)
, ∀A ∈P (D) , (3)

are in [0,1], and subsequently that, ∑
A∈P (D)

ψA

φPX (G)
= 1.
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Essentially, it means that these ratios can be interpreted as shares of QoI attributed to each
possible coalition of inputs.

3. Möbius decompositions for global sensitivity analysis

The Möbius decompositions defined in Lemma 6 are especially useful in the context of global
sensitivity analysis [6]. In particular, one can:

• Show that some existing QoI decompositions proposed in the literature are Möbius
decompositions and actually hold with weaker assumptions on PX and G ;

• Define decompositions of QoIs being valued in a commutative ring with identity other
than R.

3.1. Variance decomposition

Let X ∼ PX be E-valued random inputs of an R-valued model G ∈ L2(PX ;R) ⊆M (E), and let:

φPX (G) =V (G(X )) ,

be the R-valued QoI, i.e., the variance of the random output G(X ).

Proposition 9 (Variance decomposition). Let, ∀A ∈P (D):

f A(X A) = E [G(X ) | X A] ,

and,

ϕA =φPX ( f A) =V (E [G(X ) | X A]) .

Then, V (G(X )) admits the following gradual Möbius decomposition:

V (G(X )) =
∑

A∈P (D)
ψA ,

where, ∀A ∈P (D),

ψA = ∑
B⊆A

(−1)|A|−|B |V (E [G(X ) | XB ]) .

Additionally, if the inputs are independent (i.e., PX = ∏d
i=1 PXi ), then this decomposition is also

fractional.

Proof of Proposition 9. Since G ∈ L2(PX ;R), one has that, ∀A ∈P (D):

V (E [G(X ) | X A]) <∞.

Moreover, notice that ϕD = V (G(X )). Applying Lemma 6 proves the decomposition. Whenever
the inputs X are independent, it is well known that ψA ≥ 0,∀A ∈ P (D) (see [18]), and since
V (G(X )) > 0, the decomposition is thus fractional. □

This result is analogue to the Hoeffding–Sobol’ functional analysis-of-variance (FANOVA)
[10, 16]. Traditionally, this decomposition is the result of a functional decomposition of the
model G when it is assumed to be in L2(PX ;R), into orthogonal elements, requiring the inputs
to be independent. However, as shown above, this decomposition holds even when the inputs
are endowed with a dependence structure. However, one can notice that input independence
allows the decomposition to be fractional, and hence, in-fine, lets the ratios (i.e., as in (3)) to be
interpreted as a percentage of the output’s variance attributed to each input coalition.
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3.2. Covariance decomposition

Now, let G : E → R2 be a model with a bivariate output. Denote G = (G1
G2

)
and assume that

G ∈ L2(PX ;R2). Let

φPX (G) = 〈G1 −E [G1(X )] ,G2 −E [G2(X )]〉L2

= Cov(G1(X ),G2(X )) ,

in other words, the QoI is the covariance between the two random outputs of the model.

Proposition 10 (Covariance decomposition). Let, ∀A ∈P (D):

f A(X A) =
(
E [G1(X ) | X A]
E [G2(X ) | X A]

)
,

and,

ϕA =φPX ( f A) = 〈E [G1(X ) | X A]−E [G1(X )] ,E [G2(X ) | X A]−E [G2(X )]〉L2

= Cov(E [G1(X ) | X A] ,E [G2(X ) | X A])

Then, φPX (G) admits the following gradual Möbius decomposition:

Cov(G1(X ),G2(X )) =
∑

A∈P (D)
ψA ,

where, ∀A ∈P (D),

ψA = ∑
B⊆A

(−1)|A|−|B | Cov(E [G1(X ) | XB ] ,E [G2(X ) | XB ]) .

Proof of Proposition 10. Notice that since G ∈ L2(PX ;R2), ∀A ∈ P (D), the quantities
Cov(E [G1(X ) | X A] ,E [G2(X ) | X A]) are well defined, and that ϕD = Cov(G1(X ),G2(X )). Apply-
ing Lemma 6 then leads to the gradual decomposition. □

Whenever G : E → Rk , for k ∈ N∗, the two previous results can be generalized using a
covariance matrix decomposition (see [8]). Let Dk be the set of (k ×k) symmetric semi-definite
(positive or negative) matrices with non-zero entries on the diagonal, and where elements on
the diagonal have the same sign. Note that the triplet (Dk ,+,◦) where + denotes the usual
element-wise matrix addition and ◦ denotes the element-wise (Hadamard) multiplication, forms
a commutative ring with identity (if all the entries were non-zero, it would be a field since the
Hadamard inverse would always be well-defined). Let Σ be the covariance matrix of the output
G(X ) = (G1(X ), . . . ,Gk (X ))⊤, defined element-wise, for i , j = 1, . . . ,k:

Σi j = Cov
(
Gi (X ),G j (X )

)
.

Σ is necessarily semi-definite positive (since it is a covariance matrix) and is in Dk under the
assumption that each element of the output is not constant almost surely. It is then a Dk -valued
QoI, and can be decomposed as follows:

Proposition 11 (Covariance matrix decomposition). Let, ∀A ∈ P (D), the matrices ΣA ∈ Dk be
defined element-wise as:

ΣA
i , j = Cov

(
E [Gi (X )|X A] ,E

[
G j (X )

∣∣X A
])

, i , j = 1, . . . ,k.

Then, Σ admits the following gradual Möbius decomposition:

Σ= ∑
A∈P (D)

ψA ,

where, ∀A ∈P (D),
ψA = ∑

B⊆A
(−1)|A|−|B |ΣB .
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Proof of Proposition 11. Notice that since G ∈ L2(PX ;Rk ), ΣA is well-defined ∀A ∈P (D). More-
over, notice that ΣD =Σ. Applying Lemma 6 then leads to the decomposition. □

One can notice that, in that setting, decomposing Σ amounts to performing the variance
decomposition of Proposition 9 on the diagonal elements and the covariance decomposition of
Proposition 10 on the other elements.

3.3. Mean maximum-mean discrepancy decomposition

Aside from moment-based quantities, more complicated QoIs can also be decomposed. Such
quantities can be based on kernel embedding of the model G . One can refer to [6] for additional
details. For the sake of completeness, some elements are recalled here.

Let G ∈M (E), be a Z -valued model with inputs X ∼ PX ∈ P(E). Denote PY the distribution of
the random output G(X ). Moreover, for any A ∈ P (D), let the conditional distribution of G(X )
given X A be denoted by PY |X A . Let k : Z ×Z →R be a kernel associated with a reproducing kernel
Hilbert space (RKHS) H [3]. Let:

µG (t ) =
∫

Z
k (z, t )dPY (z) =

∫
E

k (G(z), t )dPX (z) = E [k (G(X ), t )]

denotes the kernel mean embedding of G(X ). Moreover, denote:

µG|X (t ) = E [k (G(X ), t ) | X ] = k (G(X ), t ) .

The maximum-mean discrepancy between PY and PY |X is given by:

MMD2(PY ,PY |X ) = ∥∥µG −µG|X
∥∥2

H

= E[
µG (G(X ))

]+µG|X (G(X ))−2E [k (G(X ),G(X ))]

One is interested in the QoI defined as the mean MMD, i.e.,

SMMD := E[
MMD2(PY ,PY |X )

]
= E[

µG (G(X ))
]−E [k (G(X ),G(X ))]

Proposition 12. Let X ∼ PX be E-valued random inputs of a model G : E → Z . Let k : Z × Z → R

be the reproducing kernel of an RKHS H . Assume that k is such that, ∀A ∈P (D):

SMMD
A := EX A

[
MMD2(PY ,PY |X A )

]<∞.

Then, SMMD admits the following Möbius decomposition:

SMMD = ∑
A∈P (D)

ψA ,

where, ∀A ∈P (D),

ψA = ∑
B⊆A

(−1)|A|−|B |SMMD
B

Proof. By assumption, SMMD
A is well-defined ∀A ∈ P (D). Moreover, notice that SMMD

D = SMMD.
Applying Lemma 6 then leads to the decomposition. □

This decomposition, analogous to the one presented in [6], not only holds when the inputs are
independent but also when they are endowed with a dependence structure.
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4. Discussion

Traditionally, in the field of global sensitivity analysis, QoI decompositions are defined using a
“model-centric” approach. It can be summarized as follows: find a suitable coalitional decom-
position of the model G in L2, such that φPX becomes an additive map when applied to G . For
instance, if the QoI is the variance of the output, orthogonality of the ψA is often desired (as de-
fined in Definition 5). The new viewpoint provided by this communication adopts an “input-
centric” approach: first define a suitable ϕA (as in (2)), such that it accurately represents the ef-
fect of X A , and then define a suitable decomposition using the reverse implication of the Möbius
inversion formula. This approach is analogous to the field of cooperative game theory [4], where
ϕ represents the value function of a cooperative game, and ψA are none other than its Harsanyi
dividends [9]. The understanding and possible combination of both approaches to find suitable
candidates for ϕ is the subject of ongoing research.
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