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1. Introduction

The concept of coarse embeddability between metric spaces can be viewed as a large scale
analogue of uniform embeddability and may most easily be understood in terms of the moduli
associated with a map. However, as we are exclusively concerned with Banach spaces, these
moduli can further be reduced to a couple of numerical invariants.

Definition 1. For a (generally discontinuous and nonlinear) map X
φ−→E between two Banach

spaces we define the exact compression coefficient κ(φ), the compression coefficient κ(φ) and the
expansion coefficient ω(φ) by

κ(φ) = sup
t<∞

inf
∥x−y∥=t

∥∥φ(x)−φ(y)
∥∥,

κ(φ) = sup
t<∞

inf
∥x−y∥⩾t

∥∥φ(x)−φ(y)
∥∥,

and

ω(φ) = inf
t>0

sup
∥x−y∥⩽t

∥∥φ(x)−φ(y)
∥∥.
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To avoid certain trivialities, we shall tacitly assume that all Banach spaces have dimension at
least 2 and hence, in particular, that the infima and suprema above are taken over non-empty
sets. Let us first note the obvious fact that ω(φ) = 0 if and only if φ is uniformly continuous. On
the other hand, ω(φ) <∞ if and only if φ is Lipschitz for large distances, that is,∥∥φ(x)−φ(y)

∥∥⩽K ∥x − y∥+K

for some constant K and all x, y ∈ X . Similarly, assumptions on κ(φ) correspond to known
conditions on the map φ. We summarise these as follows.

(1) ω(φ) = 0, that is, φ is uniformly continuous,
(2) ω(φ) <∞, that is, φ is Lipschitz for large distances,
(3) κ(φ) =∞, that is, φ is expanding,
(4) κ(φ) > 0, that is, φ is uncollapsed.

Note that the three coefficients above are all positive homogenous, in the sense that

κ(λφ) =λ ·κ(φ)

for all λ> 0 and similarly for κ(φ) and ω(φ). In particular, this means that the following quantity
is invariant under rescaling φ.

Definition 2. The separation ratio of a map X
φ−→E is the quantity

R(φ) = κ(φ)

ω(φ)
,

where we set a
∞ = 0

a = 0 for all a ∈ [0,∞] and a
0 = ∞

a = ∞
0 =∞ for all 0 < a <∞.

Whereasφ being a uniform embedding cannot be directly expressed via the coefficients above,
we note thatφ is a coarse embedding provided thatω(φ) <∞ andκ(φ) =∞, that is, ifφ is Lipschitz
for large distances and is expanding. We thus see that

R(φ) =∞
if and only if φ is either uniformly continuous and uncollapsed (e.g., a uniform embedding) or if
φ is a coarse embedding.

Motivated in part by the still open problem of deciding whether a Banach space X coarsely
embeds into a Banach space E if and only it uniformly embeds, the papers [3, 4, 8–11] contain
various constructions for producing uniform and coarse embeddings or obstructions to the
same. In particular, in [10] (see Theorem 1.16 therein) we showed that, provided that E ⊕ E

isomorphically embeds into E , then a uniformly continuous and uncollapsed map X
φ−→E gives

rise to a simultaneously uniform and coarse embedding of X into E . However, as shown by
A. Naor [8], there are Lipschitz for large distance maps that are not even close to any uniformly
continuous map. For the exclusive purpose of coarse embeddability, our main result, Theorem 3,
removes the problematic assumption of uniform continuity of φ.

Theorem 3. Suppose X and E are Banach spaces so that E⊕E isomorphically embeds into E. Then
X coarsely embeds into E if and only if

sup
φ

R(φ) =∞,

where the supremum is taken over all maps X
φ−→E.

The proof of Theorem 3 also allows us to address another issue, namely, the preservation of
cotype under different forms of embeddability. For this, consider the following conditions on a

map X
φ−→E .

(5) κ(φ) =∞, that is, φ is almost expanding,
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(6) κ(φ) > 0, that is, φ is almost uncollapsed.

Also, the map φ is said to be solvent provided that there are constants R1,R2, . . . so that

Rn ⩽ ∥x − y∥⩽Rn +n ⇒ ∥∥φ(x)−φ(y)
∥∥⩾ n.

Provided that φ is Lipschitz for large distances, φ is solvent if and only if it is almost expanding
(see [9, Lemma 8]). In analogy with Definition 2, we then define the exact separation ratio of φ
to be

R(φ) = κ(φ)

ω(φ)
.

As κ(φ) ⩽ κ(φ), we then have R(φ) ⩽ R(φ). Also, R(φ) =∞ exactly when φ is either uniformly
continuous and almost uncollapsed or is Lipschitz for large distances and solvent.

In connection with this, B. Braga [4] strengthened work by M. Mendel and A. Naor [7] to show
that, if X maps into a Banach space E with non-trivial type by a map that is either uniformly
continuous and almost uncollapsed or is Lipschitz for large distances and solvent, then

cotype(X )⩽ cotype(E).

The following statement therefore covers both cases of Braga’s result and seemingly provides the
ultimate extension in this direction.

Theorem 4. Suppose X and E are Banach spaces so that

sup
φ

R(φ) =∞

and that E has non-trivial type. Then

cotype(X )⩽ cotype(E).

Problem 7.4 in Braga’s paper [4] asks what can be deduced about a space X that admits a map

X
φ−→E that is just Lipschitz for large distances and almost uncollapsed, i.e. so that R(φ) > 0.

That is, will restrictions on the geometry of E also lead to information about the geometry of
X ? In Example 10, we show that this is not always so. Indeed, if X is separable and E is infinite-

dimensional, one can always find a map X
φ−→E that is both Lipschitz for large distances and

uncollapsed, i.e., so that R(φ) > 0, and after renorming E one can even obtain R(φ) ⩾ 1. On
the other hand, Theorem 4 provides a positive answer to Braga’s question under the alternative
assumption supφR(φ) =∞.

2. Proofs

Before proving our main results, let us introduce four functional moduli that lie behind the
definitions of the (exact) compression and expansion coefficients.

Definition 5 (Compression moduli). For a (generally discontinuous and nonlinear) map X
φ−→E

between two Banach spaces we define the exact compression modulus κφ : [0,∞[→ [0,∞[

κφ(t ) = inf
{∥φ(x)−φ(y)∥ ∣∣ ∥x − y∥ = t

}
and the compression modulus by κφ : [0,∞[→ [0,∞[ by

κφ(t ) = inf
{∥φ(x)−φ(y)∥ ∣∣ ∥x − y∥⩾ t

}
.

Thus, κφ is the pointwise largest map so that κφ
(∥x −x∥)⩽ ∥∥φ(x)−φ(y)

∥∥ for all x, y ∈ X , while
κφ(t ) = infr⩾t κφ(r ) is the pointwise largest monotone map satisfying the same inequality.
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Definition 6 (Expansion moduli). For a map X
φ−→E between Banach spaces, the exact expan-

sion modulus ωφ : [0,∞[→ [0,∞] is defined by

ωφ(t ) = sup
{∥φ(x)−φ(y)∥ ∣∣ ∥x − y∥ = t

}
,

and the expansion modulus ωφ : [0,∞[→ [0,∞] by

ωφ(t ) = sup
{∥φ(x)−φ(y)∥ ∣∣ ∥x − y∥⩽ t

}
.

The following are evident.

κφ(t )⩽ κφ(t )⩽ωφ(t )⩽ωφ(t ).

We recall that, to avoid trivialities, all Banach spaces are assumed to have dimension at least

2. Thus, suppose X
φ−→E is a map and that t > 0 and x, y ∈ X . Let n ⩾ 1 be minimal so that

∥x− y∥⩽ nt , whereby (n−1)t ⩽ ∥x− y∥ and pick z0 = x, z1, z2, . . . , zn = y so that ∥zi−1−zi∥ = t for
i = 1, . . . ,n. Then∥∥φ(x)−φ(y)

∥∥ ⩽
n∑

i=1

∥∥φ(zi−1)−φ(zi )
∥∥ ⩽ n ·ωφ(t )⩽

ωφ(t )

t
∥x − y∥+ωφ(t ).

In turn, this shows that

ωφ(s)⩽
ωφ(t )

t
s +ωφ(t )

for all s, t > 0 and so limsups→0+ωφ(s) ⩽ inft>0ωφ(t ). Because ωφ is non-decreasing, the limit
lims→0+ωφ(s) = infs>0ωφ(s) exists, whereby

inf
t>0

ωφ(t )⩽ liminf
t→0+

ωφ(t )⩽ limsup
t→0+

ωφ(t )⩽ lim
t→0+

ωφ(t )⩽ inf
t>0

ωφ(t ).

All in all, we find that

ω(φ) = inf
t>0

ωφ(t ) = lim
t→0+

ωφ(t ) = lim
t→0+

ωφ(t ) = inf
t>0

ωφ(t ).

In particular, we would obtain nothing new by introducing an exact expansion coefficient by
ω(φ) = inft>0ωφ(t ), since this is just the expansion coefficient itself. Furthermore, if ω(φ) < ∞,
then φ is Lipschitz for large distances, that is,∥∥φ(x)−φ(y)

∥∥⩽K ∥x − y∥+K

for some constant K and all x, y ∈ X .
Next, the definition of the separation ratio may initially be difficult to parse, so let us briefly

restate it more explicitly.

Lemma 7. For a map X
φ−→E and a constant K > 0, we have

R(φ) > K

if and only if there are constants ∆,δ,Λ,λ> 0 so that

∥x − y∥⩾∆ ⇒ ∥∥φ(x)−φ(y)
∥∥⩾ δ,

∥x − y∥⩽Λ ⇒ ∥∥φ(x)−φ(y)
∥∥⩽λ

and δ
λ > K .

Proof. Note that, if R(φ) > K , we may find ∆,Λ > 0 so that
κφ(∆)
ωφ(Λ) > K . Letting δ = κφ(∆) and

λ=ωφ(Λ), the two implications follow.
Conversely, if the two implications hold for some ∆,δ,Λ,λ> 0 so that δ

λ > K , then

R(φ) = supt<∞κφ(t )

inft>0ωφ(t )
⩾
κφ(∆)

ωφ(Λ)
⩾
δ

λ
> K ,

which verifies the lemma. □
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Proof of Theorem 3. As noted, if X
φ−→E is a coarse embedding between arbitrary Banach

spaces, then R(φ) = ∞, which proves one direction of implication. Also, under the stated as-
sumption on E , by Theorem 1.16 in [10], we have that X coarsely embeds into E if and only if

R(φ) =∞ for some map X
φ−→E . So suppose instead only that supφR(φ) =∞. We then construct

a coarse embedding X
ψ−→E as follows.

Because E ⊕E embeds isomorphically into E , we may inductively construct two sequences
En , Zn of closed linear subspaces of E all isomorphic to E so that

En+1 ⊕Zn+1 ⊆ Zn .

Concretely, we simply begin with an isomorphic copy E ⊕ E inside of E and let E1 and Z1 be
respectively the first and second summand. Again, pick an isomorphic copy of E ⊕E inside of Z1

with first and second summand denoted respectively E2 and Z2, etc. It thus follows that

E ⊇ E1 ⊕Z1 ⊇ E1 ⊕E2 ⊕Z2 ⊇ E1 ⊕E2 ⊕E3 ⊕Z3 ⊇ . . .

is a decreasing sequence of closed linear subspaces of E . Let

Vn = E1 ⊕E2 ⊕·· ·⊕En ⊕Zn

and set V =⋂∞
n=1 Vn . We note that V is a closed linear subspace of E in which each En is a closed

subspace complemented by a bounded projection V
Pn−→En so that Em ⊆ kerPn whenever n ̸= m.

On the other hand, we have no uniform bound on the norms ∥Pn∥.

Fix now a sequence of isomorphisms E
Tn−→En and find maps X

θn−→E with R(θn) >
n 2n∥Pn∥∥Tn∥∥T −1

n ∥. Observe that, for all t > 0,

κTn◦θn (t )⩾
κθn (t )

∥T −1
n ∥ ,

whereas
ωTn◦θn (t )⩽ ∥Tn∥ ·ωθn (t ),

which shows that

R(Tn ◦θn)⩾
R(θn)

∥Tn∥∥T −1
n ∥ ⩾ n 2n∥Pn∥.

Setting φn = Tn ◦ θn , we find that limn
R(φn )
2n∥Pn∥ = ∞. The conclusion of the theorem therefore

follows directly from Lemma 8 below. □

Lemma 8. Suppose X and E are Banach spaces and E
Pn−→E is a sequence of bounded linear

projections onto subspaces En ⊆ E so that Em ⊆ kerPn for all m ̸= n. Assume also that there is a
sequence of maps

X
φn−→En

so that

lim
n

R(φn)

2n∥Pn∥
=∞.

Then X coarsely embeds into E.

Proof. By composing with a translation, we may suppose that φn(0) = 0 for each n. Because
limn

R(φn )
2n∥Pn∥ =∞, we may also find constants ∆n ,δn ,Λn ,λn > 0 so that

∥x − y∥⩾∆n ⇒ ∥∥φn(x)−φn(y)
∥∥⩾ δn

and
∥x − y∥⩽Λn ⇒ ∥∥φn(x)−φn(y)

∥∥⩽λn ,

while

lim
n

δn

λn2n∥Pn∥
=∞.
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For every n, we let

ψn(x) = 1

λn2n ·φn

(
Λn
n · x

)
.

Then

∥x − y∥⩽ n ⇒ ∥∥Λn
n · x − Λn

n · y
∥∥⩽Λn

⇒
∥∥∥φn

(Λn
n · x

)−φn
(Λn

n · y
)∥∥∥⩽λn

⇒ ∥ψn(x)−ψn(y)∥⩽ 2−n .

(1)

Similarly,

∥x − y∥⩾ n∆n

Λn
⇒ ∥∥Λn

n · x − Λn
n · y

∥∥⩾∆n

⇒
∥∥∥φn

(Λn
n · x

)−φn
(Λn

n · y
)∥∥∥⩾ δn

⇒ ∥∥ψn(x)−ψn(y)
∥∥⩾ δn

λn2n .

(2)

In particular, if ∥x − y∥⩽m, then ∥x − y∥⩽ n for all n ⩾m, whereby
∞∑

n=1

∥∥ψn(x)−ψn(y)
∥∥⩽ m−1∑

n=1

∥∥ψn(x)−ψn(y)
∥∥+ ∞∑

n=m
2−n <∞.

Also, ψn(0) = 0 for all n, which shows that, for all x ∈ X ,
∞∑

n=1

∥∥ψn(x)
∥∥<∞

and so the series
∑∞

n=1ψn(x) is absolutely convergent in E . We may therefore define a map X
ψ−→E

by letting

ψ(x) =
∞∑

n=1
ψn(x).

We now verify that ψ is a coarse embedding of X into E . First, let m ⩾ 1 be any given natural
number and suppose that x, y ∈ X satisfy ∥x − y∥⩽ m. Then we may find z0 = x, z1, z2, . . . , zm = y
so that ∥zi−1 − zi∥ ⩽ 1 for all i and so, in particular, ∥ψn(zi−1)−ψn(zi )∥ ⩽ 2−n for all n. It thus
follows that ∥∥ψ(x)−ψ(y)

∥∥=
∥∥∥∥ ∞∑

n=1
ψn(x)−

∞∑
n=1

ψn(y)

∥∥∥∥
⩽

m−1∑
n=1

∥∥ψn(x)−ψn(y)
∥∥+ ∞∑

n=m

∥∥ψn(x)−ψn(y)
∥∥

(1)
⩽

m−1∑
n=1

∥∥ψn(z0)−ψn(zm)
∥∥+ ∞∑

n=m
2−n

⩽
m−1∑
n=1

∥∥∥∥∥ m∑
i=1

(
ψn(zi−1)−ψn(zi )

)∥∥∥∥∥+2−m+1

⩽
m−1∑
n=1

m∑
i=1

∥∥ψn(zi−1)−ψn(zi )
∥∥+2−m+1

⩽
m−1∑
n=1

m∑
i=1

2−n +2−m+1

=
m−1∑
n=1

m2−n +2−m+1

< m +2−m+1.
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In other words, for all m and x, y ∈ X , we have

∥x − y∥⩽m ⇒ ∥∥ψ(x)−ψ(y)
∥∥< m +2−m+1.

Conversely, if m is any given number, find n large enough so that δn
λn 2n∥Pn∥ ⩾m. Then, if ∥x−y∥⩾

n∆n
Λn

, we have

∥ψ(x)−ψ(y)∥⩾ 1

∥Pn∥
∥∥Pnψ(x)−Pnψ(y)

∥∥
= 1

∥Pn∥
∥∥ψn(x)−ψn(y)

∥∥
(2)
⩾

δn

λn2n∥Pn∥
⩾m.

Taken together, these two conditions show that ψ is a coarse embedding. □

The gluing presented in Lemma 8 may be contrasted with the so-called barycentric gluing
technique discussed in detail in [1]. In our gluing above, the purpose is to improve the metric
qualities of maps X → E , whereas the barycentric gluing allows one to paste together a sequence
of maps nBX → E defined on larger and larger balls of X , but where, on the other hand, the
metric qualities of the maps are not improved. It is not clear whether the two techniques may be
combined.

Proof of Theorem 4. Suppose X and E are Banach spaces so that

sup
φ

R(φ) =∞,

and E have non-trivial type, i.e., type(E) > 1. We then note that also type
(
ℓ2(E)

) = type(E) > 1
and cotype

(
ℓ2(E)

) = cotype(E). Thus, if we can show that X maps into ℓ2(E) by a map that is
Lipschitz for large distances and solvent, then, by the previously mentioned result of Braga ( [4,
Theorem 1.3]), we will have that

cotype(X )⩽ cotype
(
ℓ2(E)

)= cotype(E).

So fix a sequence of maps X
φn−→E so that R(φn) > n2n for all n ⩾ 1. This means that there are

∆n ,δn ,Λn ,λn > 0 so that
∥x − y∥ =∆n ⇒ ∥∥φn(x)−φn(y)

∥∥⩾ δn

and
∥x − y∥⩽Λn ⇒ ∥∥φn(x)−φn(y)

∥∥⩽λn

and δn
λn

> n2n . We then define ψn by ψn(x) = 1
2nλn

φn
(Λn

n x
)

and note that, as in (1) and (2),

∥x − y∥⩽ n ⇒ ∥∥ψn(x)−ψn(y)
∥∥⩽ 2−n ,

whereas
∥x − y∥ = n∆n

Λn
⇒ ∥∥ψn(x)−ψn(y)

∥∥⩾ n.

We finally define X
ψ−→ℓ2(E) by ψ(x) = (

ψ1(x),ψ2(x), . . .
)

and note that ψ is well-defined by the
above and satisfies ω(ψ)⩽ωψ(1)⩽ 1 and κ(ψ)⩾ κψ

( n∆n
Λn

)
⩾ n for all n. So ψ is Lipschitz for large

distances and almost expanding, whence, by [9, Lemma 8], ψ is Lipschitz for large distances and
solvent. □

Another way to prove Theorem 4 is first to establish an analogue to Theorem 3 for the quantity
supφ R(φ) in place of supφ R(φ). This is done by observing that the proof of Theorem 3 above
can be changed to prove the following statement.
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Theorem 9. Suppose X and E are Banach spaces so that E ⊕E isomorphically embeds into E.
Assume also that

sup
φ

R(φ) =∞,

then there is a map X
φ−→E that is Lipschitz for large distances and solvent.

In order to obtain Theorem 4, one then notes that ℓ2(E)⊕ℓ2(E) ∼= ℓ2(E) and so, if supφ R(φ) =
∞, where the supremum is taken over all maps X

φ−→E , we have a map X
ψ−→ℓ2(E) that is both

Lipschitz for large distances and solvent.

3. Examples

For every pair of Banach spaces X and E , we define the coarse embeddability ratio of X in E to be
the numerical invariant

C R(X ,E) = sup
{
R(φ)

∣∣φ : X → E is a map
}
.

This is simply the quantity appearing in Theorem 3, which therefore states that, under very mild
assumptions on E , we have C R(X ,E) =∞ if and only if X coarsely embeds into E . As the next
example shows, the main interest lies in the case when C R(X ,E) > 1, whereas C R(X ,E) = 1 is
easily obtained.

Example 10. If X is separable and E is a Banach space that admits an infinite equilateral set, that
is, an infinite subset A ⊆ E so that, for some δ> 0,

∥x − y∥ = δ
for all distinct x, y ∈ A, then we have C R(X ,E) ⩾ 1. To see this, let (Yx )x∈A be a partition of X

indexed by the set A into subsets Yx ⊆ X of diameter at most 1 and let X
φ−→E be defined by

φ(y) = x ⇔ x ∈ A & y ∈ Yx .

Observe that, if ∥y − y ′∥ > 1, then y and y ′ must belong to different pieces of the partition and so
∥φ(y)−φ(y ′)∥ = δ. On the other hand, ∥φ(y)−φ(y ′)∥⩽ δ for all y, y ′ ∈ X , so we see that κφ(t ) = δ
for all t > 1, whereas ωφ(t )⩽ δ for all t > 0. So R(φ)⩾ 1.

In particular, this reasoning applies when E is one of the classical Banach spaces ℓp , c0, Lp or
even the Tsirelson space T . Indeed, in these spaces, the standard unit basis (en)∞n=1 is an infinite
equilateral set (or, in the case of Tsirelson’s space, (en)∞n=2 is equilateral). Here we remark that T ∗

is the reflexive space originally constructed and described by B. S. Tsirelson [12], while T is its
ℓ1-asymptotic dual whose explicit construction was given by T. Figiel and W. B. Johnson [6].

Let us also observe that, if E is infinite-dimensional, then E admits an equivalent renorming
with respect to which it has an infinite equilateral set. Indeed, since E is infinite-dimensional,
it contains a normalised basic sequence (en)∞n=1. We define a new equivalent norm ||| · ||| on the
closed linear space [en]∞n=1 by letting∣∣∣∣∣∣∣∣∣∣∣∣ ∞∑

n=1
anen

∣∣∣∣∣∣∣∣∣∣∣∣= sup

{∥∥∥∥∑
n∈I

anen

∥∥∥∥+∥∥∥∥∑
n∈J

anen

∥∥∥∥ ∣∣∣∣ I , J are intervals and i < j for all i ∈ I and j ∈ J

}
.

As ∥en∥ = 1 for all n, we find that |||ei − e j ||| = 2 for all i < j and so (en)∞n=1 is an equilateral set of
the norm ||| · |||. It now suffices to notice that ||| · ||| extends to an equivalent norm on all of E .

Example 10 illustrates that the embeddability ratio C R(X ,E) is sensitive to the specific norm
on E , but not to the choice of norm on X . On the other hand, the condition C R(X ,E) =∞ only
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depends on the isomorphism class of E . Note also that, if X , Y and Z are Banach spaces so that
C R(X ,Y ) =∞, then

C R(X , Z )⩾C R(Y , Z ).

An important non-embeddability result was recently established by F. Baudier, G. Lancien and
T. Schlumprecht [2], who showed that the separable Hilbert space ℓ2 does not coarsely embed
into Tsirelson’s space T ∗. It is known that T ∗ is minimal, that is, T ∗ embeds isomorphically into
all of its infinite-dimensional subspaces (see [5, Chapter VI]). Also, T ∗ has an unconditional basis
and can therefore be written as a direct sum of two infinite-dimensional subspaces. It therefore
follows that T ∗ ⊕T ∗ embeds isomorphically into T ∗ and thus E = T ∗ satisfies the assumption
of Theorem 3. It follows that the coarse embeddability ratio C R(ℓ2,T ∗) is finite and we now
proceed to give an upper bound.

Proposition 11. If T ∗ denotes Tsirelson’s space, then

C R(ℓ2,T ∗)⩽ 4.

Proof. We rely on the analysis of [2], which also contains additional details about the construc-

tion below. For the proof, assume towards a contradiction that ℓ2
φ−→E satisfies R(φ) > 4. Then

by pre and post-composing φ with dilations we can suppose that, for some constants ∆ > 0 and
δ> 4, we have

∥x − y∥⩾∆ ⇒ ∥∥φ(x)−φ(y)
∥∥⩾ δ

and

∥x − y∥⩽p
2 ⇒ ∥∥φ(x)−φ(y)

∥∥⩽ 1.

Let (en)∞n=1 be the standard unit vector basis for ℓ2 and set ϵ = δ−4
2 . Let also k be large enough

so that
p

2k ⩾ ∆ and let [N]k be the collection of all k-element subsets of N equipped with the
Johnson metric,

d J (A,B) = |A △B |
2

.

Observe that d J is simply the shortest-path metric on the graph whose vertices is [N]k and where
two vertices A and B are connected by an edge provided that |A △ B | = 2. Let then f : [N]k → T ∗

be defined by

f (A) =φ
( ∑

n∈A
en

)
.

Observe that, if d J (A,B) = 1, then∥∥∥∥∥ ∑
n∈A

en − ∑
n∈B

en

∥∥∥∥∥=
√
|A △B | =p

2

and so ∥ f (A)− f (B)∥⩽ 1. Thus, f is Lipschitz with constant 1.
By Proposition 4.1 of [2] there is an infinite subset M ⊆ N and some y ∈ T ∗ so that, for any

A ∈ [N]k with A ⊆M, there are vectors y A
1 , . . . , y A

k ∈ T ∗ with ∥y A
i ∥⩽ 1 so that y, y A

1 , . . . , y A
k form a

finite block basis of the standard unit vector basis for T ∗, k ⩽minsupp(y A
1 ) and∥∥ f (A)− (y + y A

1 +·· ·+ y A
k )

∥∥< ϵ.

In particular, for all A,B ∈ [N]k , A,B ⊆M, we have that

∥ f (A)− f (B)∥ < ∥∥y A
1 +·· ·+ y A

k

∥∥+∥∥yB
1 +·· ·+ yB

k

∥∥+2ϵ

⩽ 2+2+2ϵ

⩽ δ,
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where the second bound follows from (2.13) in [2]. On the other hand, for any two disjoint
A,B ∈ [N]k , we have ∥∥∥∥∥ ∑

n∈A
en − ∑

n∈B
en

∥∥∥∥∥=
p

2k ⩾∆,

which implies that ∥ f (A)− f (B)∥⩾ δ and thus contradicts the preceding upper bound. □

The following still unsolved problem provides the main theoretical motivation for our investi-
gations here.

Problem 12. Suppose X and E are Banach spaces. Is it true that X coarsely embeds into E if and
only if it uniformly embeds?

Problem 13. Suppose X and E are Banach spaces so that C R(X ,E) > 1. Does it follow that
C R(X ,E) =∞?
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