 Académie des sciences

## Comptes Rendus

## Mathématique

Hussain Al-Qassem, Leslie Cheng and Yibiao Pan
On the boundedness of a family of oscillatory singular integrals
Volume 361 (2023), p. 1673-1681
https://doi.org/10.5802/crmath. 523

## (c) BY

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/


MERSENNE

# On the boundedness of a family of oscillatory singular integrals 

Hussain Al-Qassem ${ }^{*, a}$, Leslie Cheng ${ }^{b}$ and Yibiao Pan ${ }^{c}$<br>${ }^{a}$ Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar<br>${ }^{b}$ Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, U.S.A.<br>${ }^{c}$ Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.<br>E-mails: husseink@qu.edu.qa, lcheng@brynmawr.edu, yibiao@pitt.edu

Abstract. Let $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$ with mean value zero, $P$ and $Q$ be polynomials in $n$ variables with real coefficients and $Q(0)=0$. We prove that

$$
\mid \text { p.v. } \left.\int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} \frac{\Omega(x /|x|)}{|x|^{n}} \mathrm{~d} x \right\rvert\, \leq A\|\Omega\|_{H^{1}\left(\mathbb{S}^{n-1}\right)}
$$

where $A$ may depend on $n, \operatorname{deg}(P)$ and $\operatorname{deg}(Q)$, but not otherwise on the coefficients of $P$ and $Q$.
The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.
Keywords. oscillatory integrals, singular integrals, Calderón-Zygmund kernels, Hardy spaces.
2020 Mathematics Subject Classification. 42B20, 42B30, 42B35.
Manuscript received 21 January 2023, accepted 9 June 2023.

## 1. Introduction

The study of oscillatory singular integrals has a long-standing history ([1, 4, 7-9, 11, 12]). For the specific topic considered in this paper, we shall begin with a well-known result of Stein and Wainger in [12] and its extension by Stein in [10].

Let $n \geq 2, K(x)$ be a Calderón-Zygmund kernel given by

$$
\begin{equation*}
K(x)=\frac{\Omega(x /|x|)}{|x|^{n}} \tag{1}
\end{equation*}
$$

where $\Omega: \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ is integrable over the unit sphere $\mathbb{S}^{n-1}$ with respect to the induced Lebesgue measure $\sigma$ and satisfies

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(x) \mathrm{d} \sigma(x)=0 \tag{2}
\end{equation*}
$$

[^0]For $d \in \mathbb{N}$, let $\mathscr{P}_{n, d}$ denote the space of real-valued polynomials in $n$ variables whose degrees do not exceed $d$. It was proves in [10] that, if $\Omega \in L^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $P \in \mathscr{P}_{n, d}$, then

$$
\mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i P(x)} K(x) \mathrm{d} x \mid \leq C_{n, d}\|\Omega\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)}
$$

where $C_{n, d}$ is independent of the coefficients of $P$.
In the recent paper [13] the authors obtained an extension of the above result in which the phase functions belong to a certain class of rational functions while $\Omega$ is allowed to be in a block space $B_{q}^{0,0}\left(\mathbb{S}^{n-1}\right)$. Their result can be described as follows.

Theorem 1 ([13]). Let $q>1$ and $K(x)$ be a Calderón-Zygmund kernel given by (1)-(2). Let $P(x), Q(x) \in \mathscr{P}_{n, d}$ such that $Q(0)=0$ and $\Omega \in B_{q}^{0,0}\left(\mathbb{S}^{n-1}\right)$. Then

$$
\begin{equation*}
\mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) \mathrm{d} x \mid \leq A \tag{3}
\end{equation*}
$$

where $A$ may depend on $\|\Omega\|_{B_{q}^{0,0}\left(\mathbb{S}^{n-1}\right)}, n$ and d but not otherwise on the coefficients of $P$ and $Q$.
The definition of $B_{q}^{0, v}\left(\mathbb{S}^{n-1}\right)$ for $v>-1$ and $q>1$ can be found in [13]. It had been known that the bound (3) also holds for all $\Omega \in L \log L\left(\mathbb{S}^{n-1}\right.$ ), which was proved by Folch-Gabayet and Wright in [5].

Let $H^{1}\left(\mathbb{S}^{n-1}\right)$ denote the Hardy space over the unit sphere. An important question, posed by the authors of [13], is whether the bound (3) continues to hold under the condition $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$ (with the same phase functions $P(x)+1 / Q(x)$ ). This is a very natural question because both $B_{q}^{0,0}\left(\mathbb{S}^{n-1}\right)$ and $L \log L\left(\mathbb{S}^{n-1}\right)$ are proper subspaces of $H^{1}\left(\mathbb{S}^{n-1}\right)$.

Our first result answers the above question in the affirmative.
Theorem 2. Let $K(x)$ be a Calderón-Zygmund kernel given by (1)-(2). Let $P(x), Q(x) \in \mathscr{P}_{n, d}$ such that $Q(0)=0$. Suppose that $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$. Then

$$
\begin{equation*}
\mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) \mathrm{d} x \mid \leq A\|\Omega\|_{H^{1}\left(\mathbb{S}^{n-1}\right)} \tag{4}
\end{equation*}
$$

where A may depend on $n$ and d but not otherwise on the coefficients of $P$ and $Q$.
As usual, Theorem 2 implies the uniform boundedness of oscillatory singular integral operators of the following type on $L^{2}\left(\mathbb{R}^{m}\right)$ :

$$
f \rightarrow \text { p.v. } \int_{\mathbb{R}^{n}} f\left(u_{1}-P_{1}(y), \ldots, u_{m}-P_{m}(y)\right) e^{i / Q(y)}|y|^{-n} \Omega(y /|y|) \mathrm{d} y
$$

where $P_{1}, \ldots, P_{m}, Q$ are polynomials and $\Omega$ is a function in $H^{1}\left(\mathbb{S}^{n-1}\right)$ with a zero mean-value. The proof of Theorem 2 will be given in Section 2 .

The general question about whether the condition $Q(0)=0$ can be removed is open. But for $\operatorname{deg}(Q) \leq 1$, this is known to be the case.

Theorem 3 ( $[5,13])$. Let $K(x)$ be a Calderón-Zygmund kernel given by (1)-(2). Let $P(x) \in \mathscr{P}_{n, d}$ and $Q(x)=a+v \cdot x$ where $a \in \mathbb{R}$ and $v \in \mathbb{R}^{n}$. Suppose that $\Omega \in L \log L\left(\mathbb{S}^{n-1}\right)$ or $\Omega \in B_{q}^{0,0}\left(\mathbb{S}^{n-1}\right)$ for some $q>1$. Then

$$
\begin{equation*}
\mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) \mathrm{d} x \mid \leq A \tag{5}
\end{equation*}
$$

where $A$ may depend on $n, d$ and the respective norm of $\Omega$, but not otherwise on $a, v$ and the coefficients of $P$.

We have the following extension of Theorem 3:

Theorem 4. Let $P(x) \in \mathscr{P}_{n, d}$. Let $l \in \mathbb{N}, h(x)$ be a nonzero real-valued homogeneous polynomial of degree $l$ and $Q(x)=a+h(x)$. Then for every Calderón-Zygmund kernel $K(x)$ given by (1)-(2) with an $\Omega(\cdot)$ in $H^{1}\left(\mathbb{S}^{n-1}\right)$,

$$
\begin{equation*}
\mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) \mathrm{d} x \mid \leq A \tag{6}
\end{equation*}
$$

where $A$ may depend on $\|\Omega\|_{H^{1}\left(\mathbb{S}^{n-1}\right)}, n$, $d$ and $l$ but not otherwise on the coefficients of $P(x)$ and $Q(x)$.

The proof of Theorem 4 will be given in Section 3.
The following is an important estimate due to E. M. Stein:
Theorem 5. Let $\Omega \in L \log L\left(\mathbb{S}^{n-1}\right)$ and $d \in \mathbb{N}$. For every homogeneous polynomial of degree $d$ on $\mathbb{R}^{n} P(x)=\sum_{|\alpha|=d} a_{\alpha} x^{\alpha}$, let $m_{P}=\sum_{|\alpha|=d}\left|a_{\alpha}\right|$. Then there exists a constant $C_{n, d, \Omega}>0$ which is independent of $\left\{a_{\alpha}\right\}$ such that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}}|\Omega(x)|\left|\log \left(\frac{|P(x)|}{m_{P}}\right)\right| \mathrm{d} \sigma(x) \leq C_{n, d, \Omega} \tag{7}
\end{equation*}
$$

holds whenever $m_{P} \neq 0$.
What happens if $P(x)$ is a general polynomial instead of a homogeneous polynomial? For $P(x)=\sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha}$, the direct analogue of (7), where $m_{P}$ is replaced by $\sum_{|\alpha| \leq d}\left|a_{\alpha}\right|$, is clearly false. This is due to the fact that, unlike $P \rightarrow m_{P}$ for homogeneous polynomials of a fixed degree,

$$
\sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha} \rightarrow \sum_{|\alpha| \leq d}\left|a_{\alpha}\right|
$$

is not a norm on $\left.\mathscr{P}_{n, d}\right|_{\mathbb{S}^{n-1}}$. To remedy this situation, we can simply replace the above with any norm on $\left.\mathscr{P}_{n, d}\right|_{\mathbb{S}^{n-1}}\left(\right.$ e.g. $\left.\|\cdot\|_{\infty}\right)$ to arrive at the following extension of Theorem 5:

Theorem 6. Let $\|\cdot\|$ be a norm on $\left.\mathscr{P}_{n, d}\right|_{\mathbb{S}^{n-1}}$. Then there exists a positive constant $C$ which depends on $n, d$ and $\|\cdot\|$ only such that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}}|\Omega(y)|\left|\log \left(\frac{|P(x)|}{\left\|\left.P\right|_{\mathbb{S}^{n-1}}\right\|}\right)\right| \mathrm{d} \sigma(x) \leq C\left(1+\|\Omega\|_{L \log L\left(\mathbb{S}^{n-1}\right)}\right) \tag{8}
\end{equation*}
$$

holds for all $\Omega \in L \log L\left(\mathbb{S}^{n-1}\right)$ and all $P \in \mathscr{P}_{n, d}$ not vanishing identically over $\mathbb{S}^{n-1}$.
Since any two norms on a finite dimensional space are equivalent, one recovers (7) when applying (8) to homogeneous polynomials.

More broadly, results such as Theorem 6 can be framed in terms of functions of finite type and compactness, as is done in the theorem below.

Theorem 7. Let $M$ be a compact smooth submanifold of $\mathbb{R}^{n}, \sigma=\sigma_{M}$ be the induced Lebesgue measure on $M$ and $U$ be an open subset of $\mathbb{R}^{m}$. Let $f \in C^{\infty}(M \times U)$ such that, for every $u \in U$, $f(\cdot, u)$ does not vanish to infinite order at any point in $M$. Then, for every compact subset $W$ of $U$, there exists a positive constant $C=C(M, n, m, f, W)$ such that

$$
\begin{equation*}
\sup _{u \in W} \int_{M}|\Omega(y)| \log (|f(y, u)|) \mid \mathrm{d} \sigma(y) \leq C\left(1+\|\Omega\|_{L \log L(M)}\right) \tag{9}
\end{equation*}
$$

holds for all $\Omega \in L \log L(M)$.
The proof of Theorem 7 will be based on Malgrange preparation theorem. It will be given in Section 4 where one will also see how Theorem 6 follows as a simple consequence. As an application of Theorem 7, we have the following:

Theorem 8. Let $b \in \mathbb{R} \backslash\{0\}$ and $P(x) \in \mathscr{P}_{n, d}$. Let $\rho \in \mathbb{R}^{+}, U$ be an open subset of $\mathbb{R}^{m}$ and $W$ be $a$ compact subset of $U$. Let $\psi \in C^{\infty}\left(\mathbb{S}^{n-1} \times U\right)$ such that, for every $u \in U, \psi(\cdot, u)$ does not vanish to infinite order at any point in $\mathbb{S}^{n-1}$. For $(x, u) \in\left(\mathbb{R}^{n} \backslash\{0\}\right) \times U$, let

$$
\begin{equation*}
\Phi(x, u)=b|x|^{\rho} \psi(x /|x|, u) \tag{10}
\end{equation*}
$$

Then for every Calderón-Zygmund kernel $K(x)$ given by (1)-(2) with an $\Omega(\cdot)$ in $L \log L\left(\mathbb{S}^{n-1}\right)$,

$$
\begin{equation*}
\sup _{u \in W} \mid \text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / \Phi(x, u))} K(x) \mathrm{d} x \mid \leq A \tag{11}
\end{equation*}
$$

where $A$ may depend on $\|\Omega\|_{L \log L\left(\mathbb{S}^{n-1}\right)}, \psi, W, n, d$ and $\rho$ but not otherwise on $b$ and the coefficients of $P(x)$.

In the rest of the paper we shall use $A \lesssim B$ to mean that $A \leq c B$ for a certain constant $c$ which depends on some essential parameters only.

## 2. Proof of Theorem 2

We shall now prove (4) under the assumptions of Theorem 2. By (2) and the atomic decomposition of $H^{1}\left(\mathbb{S}^{n-1}\right)$ (see [2] and [3]), it suffices to prove that

$$
\begin{equation*}
\mid \text { p.v. } \left.\int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} \frac{\Omega(x /|x|)}{|x|^{n}} \mathrm{~d} x \right\rvert\, \leq A \tag{12}
\end{equation*}
$$

under the assumption that $\Omega(\cdot)$ is a regular atom on $\mathbb{S}^{n-1}$, i.e. $\Omega(\cdot)$ enjoys the following additional properties:
(a) $\operatorname{supp}(\Omega) \subseteq \mathbb{S}^{n-1} \cap B\left(\zeta_{0}, \delta\right)$ for some $\zeta_{0} \in \mathbb{S}^{n-1}$ and $\delta>0$ where $B\left(\zeta_{0}, \delta\right)=\left\{y \in \mathbb{R}^{n}:\left|y-\zeta_{0}\right|<\right.$ $\delta\}$; and
(b) $\|\Omega\|_{\infty} \leq \delta^{-n+1}$.

If $\delta \geq 1 / 4$, (12) follows from (b) and Theorem 1 . Thus, we may assume that $0<\delta<1 / 4$. By using a rotation if necessary, we may also assume that $\zeta_{0}=(0, \ldots, 0,1)$. For any $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n}$, we write $x=\left(\widetilde{x}, x_{n}\right)$ where $\tilde{x}=\left(x_{1}, \ldots, x_{n-1}\right)$. We also extend the definition of $\Omega(\cdot)$ from $\mathbb{S}^{n-1}$ to $\mathbb{R}^{n} \backslash\{0\}$ by using $\Omega(x)=\Omega(x /|x|)$. We define $\Omega_{\delta}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C}$ by

$$
\Omega_{\delta}(x)=\left(\delta^{n-1}|x|^{n}\right) \frac{\Omega\left(\delta \widetilde{x}, x_{n}\right)}{\left|\left(\delta \widetilde{x}, x_{n}\right)\right|^{n}}
$$

Then $\Omega_{\delta}(\cdot)$ is homogeneous of degree 0 . It is well-known that, by the theory of CalderonZygmund operators, (2) implies that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega_{\delta}(y) \mathrm{d} \sigma(y)=0 \tag{13}
\end{equation*}
$$

Next we will show that $\left\|\Omega_{\delta}\right\|_{\infty} \lesssim 1$. To see this, we assume that $\Omega_{\delta}(x) \neq 0$ for some $x \in \mathbb{R}^{n} \backslash\{0\}$. Then

$$
\eta:=\left|\frac{\left(\delta \widetilde{x}, x_{n}\right)}{\left|\left(\delta \widetilde{x}, x_{n}\right)\right|}-\zeta_{0}\right|<\delta
$$

By (b) and $x_{n}=\left|\left(\delta \widetilde{x}, x_{n}\right)\right|\left(1-\eta^{2} / 2\right)$,

$$
\begin{aligned}
\left|\Omega_{\delta}(x)\right| & \leq\left(\frac{|x|}{\left|\left(\delta \widetilde{x}, x_{n}\right)\right|}\right)^{n} \\
& =\left(\delta\left|\left(\delta \widetilde{x}, x_{n}\right)\right|\right)^{-n}\left(\left|\left(\delta \widetilde{x}, x_{n}\right)\right|^{2}+\left(\delta^{2}-1\right) x_{n}^{2}\right)^{n / 2} \\
& =\delta^{-n}\left(1+\left(\delta^{2}-1\right)\left(1-\eta^{2} / 2\right)^{2}\right)^{n / 2} \\
& =\delta^{-n}\left(\delta^{2}\left(1-\eta^{2} / 2\right)^{2}+\eta^{2}\left(1-\eta^{2} / 4\right)\right)^{n / 2} \lesssim 1
\end{aligned}
$$

Let $P_{\delta}(x)=P\left(\delta \widetilde{x}, x_{n}\right)$ and $Q_{\delta}(x)=Q\left(\delta \widetilde{x}, x_{n}\right)$. Then $P_{\delta}(\cdot), Q_{\delta}(\cdot) \in \mathscr{P}_{n, d}, \operatorname{deg}\left(P_{\delta}\right)=\operatorname{deg}(P)$, $\operatorname{deg}\left(Q_{\delta}\right)=\operatorname{deg}(Q)$ and $Q_{\delta}(0)=Q(0)=0$. It follows from Theorem 1 that

$$
\begin{aligned}
\mid \text { p.v. } \left.\int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} \frac{\Omega(x)}{|x|^{n}} \mathrm{~d} x \right\rvert\, & =\mid \text { p.v. } \left.\int_{\mathbb{R}^{n}} e^{i\left(P_{\delta}(x)+1 / Q_{\delta}(x)\right)} \frac{\Omega\left(\delta \widetilde{x}, x_{n}\right)}{\left|\left(\delta \widetilde{x}, x_{n}\right)\right|^{n}} \delta^{n-1} \mathrm{~d} x \right\rvert\, \\
& =\mid \text { p.v. } \left.\int_{\mathbb{R}^{n}} e^{i\left(P_{\delta}(x)+1 / Q_{\delta}(x)\right)} \frac{\Omega_{\delta}(x)}{|x|^{n}} \mathrm{~d} x \right\rvert\, \leq A
\end{aligned}
$$

where $A$ depends on $n$ and $d$ only. This proves Theorem 2 .

## 3. Proof of Theorem 4

First let us recall the following version of van der Corput's lemma.

## Lemma 9.

(i) Let $\phi$ be a real-valued $C^{k}$ function on $[a, b]$ satisfying $\left|\phi^{(k)}(x)\right| \geq 1$ for every $x \in[a, b]$. Suppose that $k \geq 2$, or that $k=1$ and $\phi^{\prime}$ is monotone on $[a, b]$. Then there exists a positive constant $c_{k}$ such that

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} \mathrm{d} x\right| \leq c_{k}|\lambda|^{-1 / k}
$$

for all $\lambda \in \mathbb{R}$. The constant $c_{k}$ is independent of $\lambda, a, b$ and $\phi$.
(ii) Let $\phi$ and $c_{k}$ be the same as in (i). If $\psi \in C^{1}([a, b])$, then

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} \psi(x) \mathrm{d} x\right| \leq c_{k}|\lambda|^{-1 / k}\left(\|\psi\|_{L^{\infty}([a, b])}+\left\|\psi^{\prime}\right\|_{L^{1}([a, b])}\right)
$$

holds for all $\lambda \in \mathbb{R}$.
We will now give the proof of Theorem 4 . Since the case $a=0$ is already covered by Theorem 5, we shall assume that $a \neq 0$. Initially we will assume that $\Omega \in L^{\infty}\left(\mathbb{S}^{n-1}\right)$.

For $\omega \in \mathbb{S}^{n-1}$, let

$$
\theta=\theta(\omega)=\left|\frac{a}{h(\omega)}\right|^{1 / l}
$$

Then

$$
\text { p.v. } \int_{\mathbb{R}^{n}} e^{i(P(x)+1 / Q(x))} K(x) \mathrm{d} x=\int_{\mathbb{S}^{n-1}} \Omega(\omega) I(\omega) \mathrm{d} \sigma(\omega)
$$

where

$$
I(\omega)=\int_{0}^{\infty} e^{i\left(P(r \omega)+1 /\left(a+h(\omega) r^{l}\right)\right)} \frac{\mathrm{d} r}{r}=I_{1}(\omega)+I_{2}(\omega)+I_{3}(\omega)
$$

where

$$
\begin{aligned}
& I_{1}(\omega)=\int_{0}^{\alpha \theta} e^{i\left(P(r \omega)+1 /\left(a+h(\omega) r^{l}\right)\right)} \frac{\mathrm{d} r}{r} \\
& I_{2}(\omega)=\int_{\alpha \theta}^{\beta \theta} e^{i\left(P(r \omega)+1 /\left(a+h(\omega) r^{l}\right)\right)} \frac{\mathrm{d} r}{r}
\end{aligned}
$$

and

$$
I_{3}(\omega)=\int_{\beta \theta}^{\infty} e^{i\left(P(r \omega)+1 /\left(a+h(\omega) r^{l}\right)\right)} \frac{\mathrm{d} r}{r}
$$

for some suitable constants $\alpha$ and $\beta$. Since $\left|I_{2}(\omega)\right| \leq \ln (\beta / \alpha)$, it suffices to show that there exist $0<\alpha<\beta$ such that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(\omega) I_{j}(\omega) \mathrm{d} \sigma(\omega)=O(1) \tag{14}
\end{equation*}
$$

for $j=1$ and $j=3$.

The estimate (14) for $j=3$ follows from a slight modification of the proof of Theorem 1 in [5]. Details will be omitted. Below we shall show how to obtain (14) for $j=1$ with an appropriate selection of $\alpha$.

Let

$$
\phi_{\omega}(r)=P(r \omega)+\frac{1}{a+h(\omega) r^{l}}
$$

In order to apply van der Corput's lemma, we shall need to obtain appropriate lower bounds for at least one of the derivatives of $\phi_{\omega}(\cdot)$ near 0 . When $l=1$, this can be done with any derivative of $\phi_{\omega}(\cdot)$ whose order exceeds the degree of $P(\cdot)$. When $l>1$, one needs to be more selective as demonstrated below.

Let $g(t)=\left(1 \pm t^{l}\right)^{-1}$. Then, for $k=0,1,2, \ldots$,

$$
\left|\frac{\mathrm{d}^{s} g(0)}{\mathrm{d} t^{s}}\right|= \begin{cases}s! & \text { if } l \mid s \\ 0 & \text { if } l \nmid s .\end{cases}
$$

Let $k_{0} \in \mathbb{N}$ such that $k_{0} l>\max \{\operatorname{deg}(P), 1\}$. $\operatorname{By}\left|g^{\left(k_{0} l\right)}(0)\right|=\left(k_{0} l\right)!\geq 1$, there exists an $\alpha \in(0,1)$ such that $\left|g^{\left(k_{0} l\right)}(0)\right| \geq 1 / 2$ for $|t| \leq \alpha$. By

$$
\phi_{\omega}(r)=P(r \omega)+a^{-1} g(r / \theta)
$$

we have

$$
\begin{aligned}
\left|\phi_{\omega}^{\left(k_{0} l\right)}(r)\right| & =\left(|a| \theta^{k_{0} l}\right)^{-1}\left|g^{\left(k_{0} l\right)}(r / \theta)\right| \\
& \geq\left(2|a| \theta^{k_{0} l}\right)^{-1}
\end{aligned}
$$

for $r \in(0, \alpha \theta]$.
Let $b=\min \{|a|, 1\}$. If $|a| \geq 1$, then

$$
\int_{\left(b^{1 /\left(k_{0} l\right)} \alpha \theta, \alpha \theta\right]} e^{i \phi_{\omega}(r)} \frac{\mathrm{d} r}{r}=0
$$

If $|a|<1$, then $b=|a|$ and by Lemma 9 ,

$$
\left|\int_{\left(b^{1 /\left(k_{0} l\right)} \alpha \theta, \alpha \theta\right]} e^{i \phi_{\omega}(r)} \frac{\mathrm{d} r}{r}\right| \lesssim \frac{1}{\left(\left(2|a| \theta^{k_{0} l}\right)^{-1}\right)^{1 /\left(k_{0} l\right)}} \cdot \frac{1}{|a|^{1 /\left(k_{0} l\right)} \alpha \theta} \lesssim 1
$$

Thus, we always have

$$
\begin{equation*}
\left|\int_{\left(b^{1 /\left(k_{0} l\right)} \alpha \theta, \alpha \theta\right]} e^{i \phi_{\omega}(r)} \frac{\mathrm{d} r}{r}\right| \lesssim 1 \tag{15}
\end{equation*}
$$

Therefore, it suffices to show that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(\omega)\left(\int_{0}^{\alpha \theta b^{1 /\left(k_{0} l\right)}} e^{i \phi_{\omega}(r)} \frac{\mathrm{d} r}{r}\right) \mathrm{d} \sigma(\omega)=O(1) \tag{16}
\end{equation*}
$$

Let

$$
q(x)=\left(\frac{1}{a}\right)^{k_{0}-1}\left(-\frac{h(x)}{a}\right)^{j}
$$

For any $\omega \in \mathbb{S}^{n-1}$ and $0<r \leq \alpha \theta b^{1 /\left(k_{0} l\right)}$, by $0 \leq b \leq 1$,

$$
\left|\frac{h(\omega) r^{l}}{a}\right| \leq b^{1 / k_{0}} \alpha^{l}\left(\left|\frac{h(w)}{a}\right| \theta^{l}\right) \leq \alpha^{l}<1
$$

which implies that

$$
\begin{aligned}
\left|\phi_{\omega}(r)-(P(r \omega)+q(r w))\right| & =|a|^{-1}\left|\left(1+\frac{h(w) r^{l}}{a}\right)^{-1}-\sum_{j=0}^{k_{0}-1}\left(-\frac{h(w) r^{l}}{a}\right)^{j}\right| \\
& \lesssim|a|^{-1}\left|\frac{h(w) r^{l}}{a}\right|^{k_{0}}=|a|^{-1} \theta^{-k_{0} l} r^{k_{0} l}
\end{aligned}
$$

Thus,

$$
\left|\int_{0}^{\alpha \theta b^{1 /\left(k_{0} l\right)}}\left(e^{i \phi_{\omega}(r)}-e^{i(P(r \omega)+q(r \omega))}\right) \frac{\mathrm{d} r}{r}\right| \lesssim|a|^{-1} \theta^{-k_{0} l} \int_{0}^{\alpha \theta b^{1 /\left(k_{0} l\right)}} r^{k_{0} l-1} \mathrm{~d} r \lesssim \alpha^{k_{0} l}|a|^{-1} b \lesssim 1
$$

which immediately gives

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(\omega) \int_{0}^{\alpha \theta b^{1 /\left(k_{0} l\right)}}\left(e^{i \phi_{\omega}(r)}-e^{i(P(r \omega)+q(r \omega))}\right) \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma(\omega)=O(1) \tag{17}
\end{equation*}
$$

By an inequality on page 334 of [10],

$$
\mid \text { p.v. } \int_{|x| \leq \alpha|a|^{1 / l} b^{1 /\left(k_{0} l\right)} m_{h}^{-1 / l}} e^{i(P(x)+q(x))} K(x) \mathrm{d} x \mid \leq A
$$

i.e.

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(\omega) \int_{0}^{\alpha|a|^{1 / l} b^{1 /\left(k_{0} l\right)} m_{h}^{-1 / l}} e^{i(P(r \omega)+q(r \omega))} \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma(\omega)=O(1) \tag{18}
\end{equation*}
$$

Trivially, we have

$$
\left|\int_{\alpha|a|^{1 / l} b^{1 /\left(k_{0} l\right)} m_{h}^{-1 / l}}^{\alpha \theta b^{1 /\left(k_{0} l\right)}} e^{i(P(r \omega)+q(r \omega))} \frac{\mathrm{d} r}{r}\right| \lesssim\left|\ln \left(\frac{|h(\omega)|}{m_{h}}\right)\right| .
$$

It follows from Theorem 5 that

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \Omega(\omega) \int_{\alpha|a|^{1 / l} b^{1 /\left(k_{0} l\right)} m_{h}^{-1 / l}}^{\alpha \theta b^{1 /\left(k_{0} l\right)}} e^{i(P(r \omega)+q(r \omega))} \frac{\mathrm{d} r}{r} \mathrm{~d} \sigma(\omega)=O(1) \tag{19}
\end{equation*}
$$

By (17)-(19), we obtain (16). This proves (6) for $\Omega \in L^{\infty}\left(\mathbb{S}^{n-1}\right)$. By applying the argument used in the proof of Theorem 2, one then obtains (6) for $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$. Details are omitted.

## 4. Nonvanishing of infinite order

Let $M$ be a smooth $k$-dimensional submanifold of $\mathbb{R}^{n}, f: M \rightarrow \mathbb{R}$ be a $C^{\infty}$ function and $p \in M$. We say that $f$ does not vanish to infinite order at $p$ if there is a chart $\left(U_{p}, \varphi\right)$ around $p$ such that $\varphi(p)=0$ and $D^{\alpha}\left(f \circ \varphi^{-1}\right)(0) \neq 0$ for some $\alpha \in(\mathbb{N} \cup\{0\})^{k}$. For $r>0$, let $B_{k}(r)$ denote the open ball in $\mathbb{R}^{k}$ which is centered at the origin and has radius $r$. We begin with the following:

Lemma 10. Let $k, m \in \mathbb{N}, x \in \mathbb{R}^{k}, y \in \mathbb{R}^{m}$ and $R>0$. Let $g(x, y) \in C^{\infty}\left(B_{k}(R) \times B_{m}(R)\right)$ such that

$$
\begin{equation*}
\frac{\partial^{\alpha} g(0,0)}{\partial x^{\alpha}} \neq 0 \tag{20}
\end{equation*}
$$

holds for some $\alpha \in(\mathbb{N} \cup\{0\})^{k}$. Then there exists an $r \in(0, R / 3)$ such that, for every $\delta \in$ $\left(0,(\max \{|\alpha|, 1\})^{-1}\right)$ and every $C^{\infty}$ function $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ which is supported in $B_{k}(r)$,

$$
\begin{equation*}
\sup _{y \in B_{m}(r)} \int_{B_{k}(r)}|g(x, y)|^{-\delta}|h(x)| \mathrm{d} x<\infty \tag{21}
\end{equation*}
$$

Proof. If (20) holds with $|\alpha|=0$, i.e. $g(0,0) \neq 0$, then (21) follows trivially by continuity.
Now suppose that $g(0,0)=0$ and let

$$
\begin{equation*}
l=\min \left\{|\alpha|: \alpha \in(\mathbb{N} \cup\{0\})^{k} \text { and } \frac{\partial^{\alpha} g(0,0)}{\partial x^{\alpha}} \neq 0\right\} . \tag{22}
\end{equation*}
$$

By an argument on p. 317 of [10], we may assume that

$$
\frac{\partial^{l} g(0,0)}{\partial x_{k}^{l}} \neq 0
$$

By (22) we also have

$$
\frac{\partial^{j} g(0,0)}{\partial x_{k}^{j}}=0
$$

for $j=0,1, \ldots, l-1$. Let $\tilde{x}=\left(x_{1}, \ldots, x_{k-1}\right)$. By Malgrange preparation theorem ([6]), there exist $r \in(0, R / 3), \eta_{0}>0, a_{0}(\widetilde{x}, y), \ldots, a_{l-1}(\widetilde{x}, y) \in C^{\infty}\left(B_{k-1}(r) \times B_{m}(r)\right)$ and $c(x, y) \in C^{\infty}\left(B_{k}(r) \times B_{m}(r)\right)$ such that, for all $(x, y) \in B_{k}(r) \times B_{m}(r)$,

$$
g(x, y)=c(x, y)\left(x_{k}^{l}+a_{l-1}(\widetilde{x}, y) x_{k}^{l-1}+\cdots+a_{0}(\widetilde{x}, y)\right)
$$

and $|c(x, y)| \geq \eta_{0}$. Thus, for any $\delta \in(0,1 / l)$ and any $C^{\infty}$ function $h(x)$ supported on $B_{k}(r)$,

$$
\begin{aligned}
\sup _{y \in B_{m}(r)} \int_{B_{k}(r)} & |g(x, y)|^{-\delta}|h(x)| \mathrm{d} x \\
& \lesssim \sup _{y \in B_{m}(r)} \int_{B_{k-1}(r)} \int_{\left|x_{k}\right|<r}\left(x_{k}^{l}+a_{l-1}(\widetilde{x}, y) x_{k}^{l-1}+\cdots+a_{0}(\widetilde{x}, y)\right)^{-\delta} \mathrm{d} x_{k} \mathrm{~d} \widetilde{x}<\infty .
\end{aligned}
$$

Proof of Theorem 7. Let $M$ be a compact smooth submanifold of $\mathbb{R}^{n}$ and $U$ be an open subset of $\mathbb{R}^{m}$. Let $f \in C^{\infty}(M \times U)$ such that, for every $u \in U, f(\cdot, u)$ does not vanish to infinite order at any point in $M$. Suppose that $W$ is a compact subset of $U$. By Lemma 10 and the compactness of $M$ and $W$, there exist $\delta=\delta_{f, W}>0$ and $C=C(M, n, m, f, W)$ such that

$$
\begin{equation*}
\sup _{u \in W} \int_{M}|f(y, u)|^{-\delta} \mathrm{d} \sigma(y) \leq C . \tag{23}
\end{equation*}
$$

For any $\Omega \in L \log L(M)$ and $u \in W$, it follows from (23) that

$$
\int_{\left\{y \in M:|\Omega(y)|<|f(y, u)|^{-\delta / 2}\right\}}|\Omega(y)| \mid \log \left(|f(y, u)|| | \mathrm{d} \sigma(y) \lesssim \int_{M}|f(y, u)|^{-\delta} \mathrm{d} \sigma(y) \lesssim 1 .\right.
$$

On the other hand, we have trivially that

$$
\int_{\left\{y \in M:|\Omega(y)| \geq|f(y, u)|^{-\delta / 2\}}\right.}\left|\Omega(y)\|\log (|f(y, u)|) \mid \mathrm{d} \sigma(y) \lesssim\| \Omega \|_{L \log L(M)} .\right.
$$

Thus (9) holds and the proof of Theorem 7 is now complete.
Proof of Theorem 6. Let $m=\operatorname{dim}\left(\left.\mathscr{P}_{n, d}\right|_{S^{n-1}}\right)$ and $p_{1}(x), \ldots, p_{m}(x) \in \mathscr{P}_{n, d}$ such that $\left\{\left.p_{j}\right|_{\mathbb{S}^{n-1}}: 1 \leq\right.$ $j \leq m\}$ forms a basis for $\left.\mathscr{P}_{n, d}\right|_{\mathbb{S}^{n-1}}$. Define $f: \mathbb{S}^{n-1} \times\left(\mathbb{R}^{m} \backslash\{0\}\right) \rightarrow \mathbb{R}$ by

$$
f(x, u)=\sum_{j=1}^{m} u_{j} p_{j}(x)
$$

for $x \in \mathbb{S}^{n-1}$ and $u=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{R}^{m} \backslash\{0\}$. For each $u \in \mathbb{R}^{m} \backslash\{0\}, f(\cdot, u)$ is not identically zero on $\mathbb{S}^{n-1}$ which, by real-analyticity, implies that it does not vanish to infinite order at any point in $\mathbb{S}^{n-1}$. By Theorem 7,

$$
\begin{equation*}
\sup _{u \in \mathbb{S}^{m-1}} \int_{\mathbb{S}^{n-1}}|\Omega(x) \| \log (|f(x, u)|)| \mathrm{d} \sigma(x) \leq C\left(1+\|\Omega\|_{L \log L\left(\mathbb{S}^{n-1}\right)}\right), \tag{24}
\end{equation*}
$$

which implies that (8) holds when the norm is given by

$$
\left.\sum_{j=1}^{m} u_{j} p_{j}\right|_{\mathbb{S}^{n-1}} \rightarrow\left(\sum_{j=1}^{m} u_{j}^{2}\right)^{1 / 2}
$$

Since any two norms on $\left.\mathscr{P}_{n, d}\right|_{\mathbb{S}^{n-1}}$ are equivalent, Theorem 6 is proved.
Proof of Theorem 8. By assumption and Theorem 7,

$$
\begin{equation*}
\sup _{u \in W} \int_{\mathbb{S}^{n-1}}|\Omega(\omega)| \| \log (|\psi(\omega, u)|) \mid \mathrm{d} \sigma(\omega) \leq C\left(1+\|\Omega\|_{L \log L\left(\mathbb{S}^{n-1}\right)}\right) . \tag{25}
\end{equation*}
$$

One can then adopt the arguments in the proof of Theorem 1 in [5], at times using (25) instead of (7), to finish the proof. Details are omitted.

## References

[1] L. Carleson, "On convergence and growth of partial sums of Fourier series", Acta Math. 116 (1966), p. 135-157.
[2] R. R. Coifman, G. Weiss, "Extensions of Hardy spaces and their use in analysis", Bull. Am. Math. Soc. 83 (1977), p. 569645.
[3] L. Colzani, "Hardy spaces on spheres", PhD Thesis, Washington University, St. Louis, 1982.
[4] C. Fefferman, "Inequalities for strongly singular convolution operators", Acta Math. 124 (1970), p. 9-36.
[5] M. Folch-Gabayet, J. Wright, "An estimate for a family of oscillatory integrals", Stud. Math. 154 (2003), no. 1, p. 89-97.
[6] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer, 1973.
[7] L. Grafakos, Classical and Modern Fourier Analysis, Pearson/Prentice Hall, 2004.
[8] D. Phong, E. M. Stein, "Hilbert integrals, singular integrals, and Radon transforms I", Acta Math. 157 (1986), p. 99-157.
[9] F. Ricci, E. M. Stein, "Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals", J. Funct. Anal. 73 (1987), p. 179-194.
[10] E. M. Stein, Beijing Lectures in Harmonic Analysis, Annals of Mathematics Studies, vol. 112, Princeton University Press, 1986.
[11] , Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993.
[12] E. M. Stein, S. Wainger, "Problems in harmonic analysis related to curvature", Bull. Am. Math. Soc. 84 (1978), p. 12391295.
[13] C. Wang, H. Wu, "A note on singular oscillatory integrals with certain rational phases", C. R. Math. Acad. Sci. Paris 361 (2023), p. 363-370.


[^0]:    * Corresponding author.

