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Abstract. Let G be an algebraic group and Γ a finite subgroup of automorphisms of G . Fix also a possibly
ramified Γ-covering X̃ → X . In this setting one may define the notion of (Γ,G)-bundles over X̃ and, in this
paper, we give a description of these objects in terms of H -bundles on X , for an appropriate group H over
X which depends on the local type of the (Γ,G)-bundles we intend to parametrize. This extends, and along
the way clarifies, an earlier work of Balaji and Seshadri.

Résumé. Soit G un groupe algébrique et Γ un sous-groupe fini d’automorphismes de G . Nous fixons égale-
ment un Γ-revêtement éventuellement ramifié X̃ → X . Dans ce cadre, on peut définir la notion de (Γ,G)-fibré
sur X̃ et, dans cet article, nous donnons une description de ces objets en termes de H -fibrés sur X , pour un
groupe H sur X qui dépend du type local des (Γ,G)-fibrés que nous avons l’intention de paramétrer. Ceci
étend, et en même temps clarifie, un travail antérieur de Balaji et Seshadri.

Manuscript received 19 December 2021, revised 4 February 2023, accepted 14 June 2023.

1. Introduction

The moduli space BunSLr (X ) parametrizing vector bundles of rank r and trivial determinant
over a smooth curve X is a central object in algebraic geometry, with deep connections to
representation theory and conformal field theory [2, 3, 17, 18]. One can extend this notion by
replacing SLr with another simple algebraic group G over the base field or, if there are marked
points on the curve, by considering parabolic G-bundles [12, 14]. In all these cases there
are connections to conformal field theory through generalized theta functions and conformal
blocks [13,16]. An effective way to describe all the previous instances is to use parahoric bundles,
that is principal bundles on X with respect to a parahoric Bruhat–Tits group H defined over the
curve X itself [5, 10]. A natural way to produce such groups, and which gives rise to every split
parahoric Bruhat–Tits group, is from Galois coverings of curves [1]. In this circumstance as well,
links to conformal field theory through twisted conformal blocks have been established [6,11,19].

We explain how groups can be constructed from coverings. Let Γ be a finite group and let
π : X̃ → X be a possibly ramified Γ-covering of smooth curves. Assume that G is an algebraic
group which is equipped with a group homomorphism ρ : Γ→ Aut(G). Then the group π∗(X̃ ×G)
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has a natural action of Γ, and so one may construct the subgroup of Γ-invariant elements H :=
(π∗(X̃ ×G))Γ, which is a parahoric Bruhat–Tits group over X . The construction of a group starting
with a covering as above still holds without assuming that X̃ and X are curves. In this paper we
aim to characterize H -bundles in terms of certain G-bundles on X̃ . A particular instance of our
main result (Theorem 11) can be stated as follows:

Theorem. The functor π∗( · )Γ induces an equivalence between Buntriv
(Γ,G)(X̃ ) and BunH (X ).

Here Bun(Γ,G)(X̃ ) is the groupoid whose objects are (Γ,G)-bundles on X̃ , that is G-bundles on
X̃ which are equipped with an induced action of Γ which lifts the action of Γ on X̃ and is com-
patible with the action of Γ on G (see Definition 3). Given every (Γ,G)-bundle P , the groupoid
BunP

(Γ,G)(X̃ ) is given by those (Γ,G)-bundles which have the same local type as P . When P is the
trivial (Γ,G)-bundle, then we use the notation Buntriv

(Γ,G)(X̃ ) instead. A fundamental ingredient to
understand our main result is the concept of local types of (Γ,G)-bundles (Definition 6). Essen-
tially two (Γ,G)-bundles have the same local type exactly when they are locally isomorphic not
only as G-bundles, but as (Γ,G)-bundles, i.e. taking into account also the action of Γ.

From another point of view, Buntriv
(Γ,G)(X̃ ) can be also interpreted as the biggest subcategory of

Bun(Γ,G)(X̃ ) where we can apply the functor π∗( · )Γ and land in BunH . In Example 4 we show
that Buntriv

(Γ,G)(X̃ ) does not coincide with Bun(Γ,G)(X̃ ), emphasizing in this way the fact that not
all (Γ,G)-bundles are locally trivial, and that fixing local types is a necessary condition for our
theorem to hold.

Comparison with [1]

The inspiration for working with bundles associated with groups arising from coverings, and to
give their description in terms of (Γ,G)-bundles comes from Balaji’s and Seshadri’s paper [1],
where the authors give a description of the moduli space of parahoric torsors over a smooth
curve. In particular, in [1, Theorem 4.1.6] a similar statement to our main result is asserted with
two main differences.

The first, and perhaps most important, concerns the concept of local type. More precisely
Theorem 4.1.6 states that π∗( · )Γ is an equivalence between Bun(Γ,G)(X̃ ) and BunH (X ). How-
ever, as illustrated by Example 4, this is not true in general. As shown in Proposition 9, in order to
address this problem, we need to introduce and use the concept of local types.

The second difference lies in how Γ acts on G : in [1] the authors let Γ act on G via inner
automorphisms only. Under this hypothesis, and assuming that X̃ and X are smooth curves,
H = π∗( · )Γ is a split parahoric Bruhat–Tits group. We do not impose any condition on how Γ

acts on G , obtaining in this case a wider class of groups H arising from coverings.
In conclusion, from the above considerations, it follows that our main result not only ex-

tends [1, Theorem 4.1.6] beyond the case of inner automorphisms, but can be seen also as a way
to clarify the need of fixing local types of (Γ,G)-bundles for that statement to hold true.

Further projects

As aforementioned, one of the main motivations of this work comes from the study of parahoric
Bruhat–Tits groups over a curve, so we will assume in this section that X̃ and X are smooth curves.
In this setting, [1, Theorem 5.2.7] states that all split parahoric Bruhat–Tits can be recovered from
coverings, provided that the Galois group Γ acts on G via inner automorphisms only. However
it is natural to include also automorphism which are not necessarily inner (see for instance [6,
Example 2.3]). It follows that the category of groups H which can be constructed through
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coverings, and to which we can apply our main result, is much larger than the one studied in [1].
We can then ask whether all parahoric Bruhat–Tits groups arise in this fashion. If the answer to
this question is affirmative, then Theorem 11 implies that the study of all parahoric bundles over
a curve X can be translated into the study of Γ-equivariant bundles over X̃ for an appropriate Γ-
covering X̃ → X . Observe that if this were true, then [6,11] would provide the notion of conformal
blocks associated to every parahoric Bruhat–Tits group.

Another element under investigation is the classification of the possible local types. In the
case of inner automorphisms, one can describe local types via conjugation classes in G .

New results

After the first version of this paper appeared, the author and other researchers have contributed
towards answering the questions above. In particular in two independent works, [7, 15], the
moduli stacks of bundles under Bruhat–Tits group scheme and equivariant torsors coming from
coverings are related. Furthermore, in [7] the present author and Hong have given an explicit
classification of local types for more general automorphisms. Independently, a cohomological
description of the local types introduced in this paper have been given by [15], where Pappas and
Rapoport also provide a counterexample to [1, Lemma 4.1.5] in the context of parahoric bundles.

Plan of the paper

We begin the paper by fixing some notation which will be used throughout. We then introduce the
main ingredients of the paper: we explain what we mean by (Γ,G)-bundles in Definition 3 and,
after Example 4, we introduce the notion of local type in Definition 6. This leads to Proposition 9
which identifies the correct subcategory of Bun(Γ,G) to which we can apply the functor π∗( · )Γ
and obtain H -bundles. Finally, in Section 3 we state and prove our main result, Theorem 11 by
explicitly constructing the map providing the inverse to π∗( · )Γ (Proposition 10).

2. (Γ,G)-bundles and local types

Throughout this paper, we will fix a finite group Γ. All the schemes will be over a field k whose
characteristic does not divide the order of Γ. We will further fix the following data:

• An affine and smooth algebraic group G over k which is endowed with a group homo-
morphism ρ : Γ→ Aut(G) sending γ to γG .

• A (ramified) Γ-covering π : X̃ → X over k, that is
– π is a finite flat morphism;
– the group of automorphisms of X̃ over X is isomorphic to Γ. The automorphism of

X̃ associated with γ ∈ Γ is denoted γX̃ ;
– X̃ is a generically étale Γ-torsor over X via π.

The ramification locus ofπ is the subscheme of X̃ whereπ is not étale. Its image in X is denoted
by R and called the branch locus of π.

Definition 1. Given a G-bundle P on X̃ we denote by GP the automorphisms group scheme
IsoG (P ,P ). For any G-bundle P ′ on X̃ the scheme IP (P ′) :=IsoG (P ,P ′) is a GP -bundle.

Recall (see for instance [4, Section 7.6]) that the Weil restriction π∗IP (P ′) of IP (P ′) along π
is defined by the equality

π∗IP (P ′)(T ) := HomX̃ (T ×X X̃ ,IP (P ′))
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for every T over X . It follows from [4, Section 7.6] that π∗IP (P ′) is representable by a smooth
scheme over X and that π∗GP has the structure of an algebraic group.

The following statement is a version of [1, Lemma 4.1.4], which we add for completeness.

Lemma 2. Let P ′ be a G-bundle over X̃ , then π∗IP (P ′) is a π∗GP -bundle.

Proof. Since taking fibred products and Weil restrictions commute, π∗GP still acts on
π∗IP (P ′). Similarly we have that π∗IP (P ′) ×X π∗GP

∼= π∗IP (P ′) ×X π∗IP (P ′) via the
map ( f , g ) 7→ ( f , f g ), thus we are left to prove that for every point x ∈ X (k) there exists an
étale neighbourhood U of x such that (π∗IP (P ′))(U ) ̸= ;. Since π is finite we know that
π−1{x} is a finite scheme over Spec(k) over which both P and P ′ are trivial. It follows that
the map q : π∗IP (P ′) → X is surjective. We conclude that q is smooth and surjective. Apply-
ing [9, Corollaire 17.16.3] for every x ∈ X there exists an étale neighbourhood U of x such that
(π∗IP (P ′))(U ) ̸= ;. □

We will be interested in those G-bundles over X̃ which are equipped with an action of Γ,
compatible with the action of Γ on X̃ .

Definition 3. A (Γ,G)-bundle on X̃ is a right G-bundle P together with a left action of Γ on its
total space lifting the action of Γ on X̃ and which is compatible with the action of Γ on G. The
automorphism of P lifting γX̃ will be denoted γP . The compatibility with the action of Γ on G
means that the equality

γP (pg ) = γP (p)γG (g ) (1)

holds for all p ∈P and g ∈G. We say that a (Γ,G)-bundle P on X̃ is trivial if it is isomorphic to the
trivial G-bundle and γP = γG for every γ ∈ Γ.

The goal of this paper is to describe (Γ,G)-bundles over X̃ in terms of H bundles over X for
an appropriate group scheme H over X . We show how to attach to every (Γ,G) bundle P , a
group scheme HP on X . Define the action of Γ on GP lifting the action of Γ on X̃ via the map
Γ→ Aut(GP ) sending the element γ to the automorphism γGP

defined by

γGP
(φ) := γP ◦φ◦γ−1

P

for all γ ∈ Γ and φ ∈GP . Moreover, the left actions of Γ on GP and on X̃ induce a left action of Γ
on the Weil restriction π∗GP given by

(γ f )(t , x) := γGP
f (t ,γ−1

X̃
(x))

for every (t , x̃) ∈ T ×X X̃ and f ∈ Hom(T ×X X̃ ,GP ). We then define HP as the subgroup of Γ-
invariant elements of π∗(GP ), that is HP := (π∗(GP ))Γ. By [8, Proposition 3.4], HP is a smooth
group over X .

We now want to identify which (Γ,G)-bundles on X̃ can be described in terms of HP bundles
over X and, conversely, whether HP -bundles on X determine a (Γ,G)-bundle on X̃ .

For any (Γ,G)-bundle P ′, the scheme IP (P ′) is a (Γ,GP )-bundle where the action of Γ is
given by

(γ,φ) 7→ γP ′ ◦φ◦γ−1
P

for all γ ∈ Γ and φ ∈ IP (P ′). Moreover, as for π∗GP , also π∗IP (P ′) is equipped with a left
action of Γ, hence it makes sense to consider the subsheaf of Γ-invariant elements (π∗IP (P ′))Γ.

As suggested in [1, Lemma 4.1.5], the candidate HP -bundle corresponding to the (Γ,G)-
bundle P ′ should be (π∗IP (P ′))Γ. However, as we see in Example 4, this is not always the case.
In fact, the group schemes HP heavily depend on how Γ acts on P and not merely on the action
of Γ on G given by ρ.
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Example 4. Let Γ = Z/2Z = {1,γ} and G = S4, the symmetric group on four elements which
acts on G via γG (α) = (34)(12)α(12)(34). Consider the Γ-covering given by X̃ = Spec(k[t ]) →
Spec(k[t 2]) = X and let x ∈ X be the only ramification point of the covering. Let G̃ = G × X̃ be
the trivial (Γ,G)-bundle on X̃ . Let P ′ be the (Γ,G)-bundle on X̃ which is trivial as a G-bundle, but
with the action of Γ given by γP ′ (α) = (34)(α)(12)(34) for every α ∈S4. Observe that both P and
P ′ are (Γ,G)-bundles on X̃ since equation (1) is satisfied. It follows that

(π∗G̃)Γ(x) = {α ∈S4 |α= (34)(12)α(12)(34)} ̸= ;,

since for instance the identity is an element of that set. We can see that

(π∗P ′)Γ(x) = {α ∈S4 |α= (34)α(12)(34)} =;
for parity reasons (see also Lemma 7).

The example above shows that Equation (1) does not automatically imply that all (Γ,G)-
bundles are locally isomorphic to the trivial (Γ,G)-bundle.

Remark 5. Observe that from [1, Lemma 4.1.5] it should follow that π∗(P ′)Γ is a π∗(G̃)Γ-
bundle, but Example 4 provides a counterexample to that statement. To correct this problem
we introduce the concept of local type, generalizing the idea introduced in [1].

Definition 6. Let P1 and P2 be two (Γ,G)-bundles on X̃ . Then they have the same local type at
x ∈ X (k) if

IsoG
(
P1 ×π−1{x},P2 ×π−1{x}

)Γ ̸= ;.

We say that P1 and P2 have the same local type, and we write P1 ∼P2, if they have the same local
type at any geometric point of X .

Although the two following lemmas will not be used to show the main result, we report them
as a tool to the reader who wishes to compute local types of (Γ,G) bundles in explicit cases. A
more exhaustive treatment of local types can be found in [7, 15].

Lemma 7. Two (Γ,G)-bundles P1 and P2 have the same local type if and only if

IsoG
(
P1 × (π−1{x})r ed ,P2 × (π−1{x})r ed

)Γ ̸= ;
for all x ∈ X (k).

Proof. It is enough to prove that if IsoG
(
P1 × (π−1{x})r ed ,P2 × (π−1{x})r ed

)Γ
is not empty, then

P1 and P2 have the same local type at x. Let π−1{x} = Spec(A) where A is a finite Artin k-
algebra. Let m be its maximal nilpotent ideal, so that

(
π−1{x}

)
r ed = Spec(A/m). Let Spec(B) =

IsoG (P1,P2) and by assumption there exists ϕ0 : B → A/m which is Γ-invariant and makes the
diagram commute:

B
ϕ0

ww

A/m A .oo

OO

The aim is to lift ϕ0 to a Γ-equivariant morphism B → A and we can reduce to the case m2 = 0.
Since B is smooth over A we know that ϕ0 admits a lift ϕ : B → A. For any γ ∈ Γ the element
γ(ϕ) is another lift of ϕ0, so the association γ 7→ϕ−γ(ϕ) defines a map h : Γ→ DerA(B ,m). Since
h satisfies the cocyle condition, we have that h can be seen as an element of H1(Γ,DerA(B ,m)),
which however is zero because the characteristic of k does not divide the order of Γ. This means
that there exists a derivation ∂ ∈ DerA(B ,m) such that h(γ) = γ(∂)−∂ for every γ ∈ Γ. This implies
that the lift ϕ1 :=ϕ+∂ is a Γ-invariant lift of ϕ0 and concludes the proof. □

Lemma 8. Let P1 and P2 be two (Γ,G)-bundles on X̃ . Then P1 and P2 have the same local type
if and only if they have the same local type at any geometric point of the branch locus R ⊂ X .
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Proof. It is sufficient to show that any two (Γ,G) bundles have the same local type on X \ R. As
π is étale on U := X \ R we can chose an étale covering V → U such that π−1(V ) = Γ×V , i.e.
the covering becomes trivial over V . We are then left to demonstrate that any (Γ,G)-structure
defined on Γ×V ×G via automorphisms γP satisfying Equation (1) is isomorphic to the trivial
one induced by γG . Any isomorphism between these (Γ,G)-bundles is uniquely determined by
tuples (αγ)γ∈Γ of isomorphisms of V ×G satisfying

αγσ ◦γG = γP ◦ασ
for every γ,σ ∈ Γ. Since

• αγ is uniquely determined by the element αγ(1) ∈G(V ), and
• every automorphism γP on Γ×V ×G satisfying (1) is uniquely determined by the element
γP (1) ∈G(V ),

we deduce that defining αγ(1) := γP (1) gives rise to the wanted isomorphism. □

The following Proposition tells us that HP can only detect those (Γ,G)-bundles having the
same local type as P .

Proposition 9. Let P be a (Γ,G)-bundle over X̃ . Then the sheaf (π∗IP (P ′))Γ is an HP -bundle
if and only if P ′ has the same local type as P .

Proof. We have already proved in Lemma 2 that π∗IP (P ′) is a π∗GP -bundle, so that we have
the isomorphism

Ψ : π∗IP (P ′)×X π∗GP
∼= π∗IP (P ′)×X π∗IP (P ′)

induced from IP (P ′)×X̃ GP
∼= IP (P ′)×X̃ IP (P ′) which sends ( f , g ) to ( f , f g ). The group Γ

acts diagonally on both source and target ofΨ and with respect to this actionΨ is Γ-equivariant.
Thus it induces an isomorphism

ΨΓ :
(
π∗IP (P ′)

)Γ×X HP
∼= (

π∗IP (P ′)
)Γ×X

(
π∗IP (P ′)

)Γ .

In order to conclude we need to check that
(
π∗IP (P ′)

)Γ admits local sections if and only if
P ′ has the same local type as P . Suppose that for every point x ∈ X there exists an étale
neighbourhood (u,U ) → (x, X ) of x such that there exists φ ∈ (

π∗IP (P ′)
)Γ (U ). This implies

that the composition φu is an element in
(
π∗IP (P ′)

)Γ (x) which means that P and P ′ have
the same local type at x. Conversely, assume that P ′ and P have the same local type. By
definition this means that

(
π∗IP (P ′)

)Γ (x) ̸= ; for every geometric point x. It follows that the
map q :

(
π∗IP (P ′)

)Γ → X is surjective on geometric points and since it is smooth, then q is
surjective. Invoking [9, Corollaire 17.16.3] we can then conclude that for every x ∈ X , the map q
admits a section on an étale neighbourhood U of x, and so

(
π∗IP (P ′)

)Γ (U ) ̸= ;. □

3. The equivalence between BunHP
and BunP

(Γ,G)

In this section we state and prove our main result, Theorem 11. Let BunP
(Γ,G) be the groupoid

whose objects are (Γ,G)-bundles on X̃ which have the same local type as P and let BunHP

be the groupoid whose objects are HP -bundles over X . Using this terminology, Proposition 9
implies that

π∗IP ( · )Γ : BunP
(Γ,G) →BunHP

is a well defined map. We now construct the inverse following the proof of [1, Theorem 4.1.6].
Note that the inclusion of HP inside π∗GP induces, by adjunction, the map π∗HP → GP . It
follows that P , which is naturally a left GP -bundle, has an induced left action of π∗HP . This
enables us to associate to every HP -bundle F , the G-bundle π∗(F )×π∗HP P on X . We can say
more:
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Proposition 10. The assignment F 7→π∗(F )×π∗HP P defines the map

π∗( · )×π∗HP P : BunHP
→BunP

(Γ,G).

Proof. We first show that for any HP -bundle F over X , the scheme FP := π∗(F )×π∗HP P

is indeed a (Γ,G)-bundle. Observe that it has a natural right action of G and a left action of Γ
induced by the ones on P . Let γ ∈ Γ and g ∈G and consider ( f , p) ∈FP . The chain of equalities

γFP (( f , p)g )) = γFP ( f , pg ) = ( f ,γP (pg )) = ( f ,γP (p)γG (g )) = (
γFP ( f , p)

)
γG (g )

tell us that FP is a (Γ,G)-bundle on X̃ .
We now check that FP has the same local type as P . Let x be a geometric point of X . Then

there is an isomorphism

FP ×X̃ π
−1{x} = (

π∗F ×X̃ π
−1{x}

)×π∗HP ×π−1{x} (P ×X̃ π
−1{x}

)
=π∗ (F |x )×π∗(HP |x ) (P ×X̃ π

−1{x}
)

∼=π∗ (HP |x )×π∗(HP |x ) (P ×X̃ π
−1{x}

)
=P ×X̃ π

−1{x},

which is Γ-invariant because it is induced by the isomorphism between F |x and HP |x on which
Γ acts trivially. □

We have gathered all the ingredients to state and prove our main result.

Theorem 11. The maps π∗IP ( · )Γ and π∗( · ) ×π∗HP P are each other inverses, defining an
equivalence between BunP

(Γ,G) and BunHP
.

Proof. Let F be an HP -bundle. We first show that π∗IP (FP )Γ is naturally isomorphic to
F , where we have simplified our notation, as in the proof of Proposition 10, by writing FP in
place of π∗(F )×π∗HP P . The assignment f 7→ [φ f : p 7→ ( f , p)] defines a morphism from π∗F to
IP

(
FP

)
. By pushing it down to X and taking Γ invariants we obtain a map

F →π∗IP (FP )Γ =π∗IP

(
π∗F ×π∗HP P

)Γ
.

Locally we can check that this map is HP -equivariant, and hence it must be an isomorphism
since both source and target are HP -bundles.

Conversely, let P ′ be a (Γ,G)-bundle with the same local type as P . Applying (π∗IP ( · ))Γ and
then π∗( · )×π∗HP P to P ′ we obtain

π∗ (
π∗(IP (P ′))Γ

)×π∗HP P .

The inclusion
(
π∗(IP (P ′)

)Γ ⊆π∗(IP (P ′)) induces, by adjunction, the map of π∗HP -bundles

π∗ (
π∗(IP (P ′))Γ

)→IP (P ′), f 7→α f

which extends to a map of G-bundles

α : π∗ (
π∗(IP (P ′))Γ

)×π∗HP P →IP (P ′)×π∗HP P , ( f , p) 7→ (α f , p).

The evaluation map β : IP (P ′)×π∗HP P →P ′ allows us to obtain the morphism

βα : π∗ (
π∗(IP (P ′))Γ

)×π∗HP P →P ′

which we are left to show to be equivariant with respect to the actions of Γ and G . Since both α

andβ are G-equivariant, their composition is as well. The Γ-invariance translates to showing that
α f

(
γP (p)

)
and γP ′ (α f (p)) coincide, which holds because α f is Γ-equivariant. □
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3.1. Special case

When P is the trivial G-bundle on X̃ with the action of Γ given ρ, then we have that GP
∼= X̃ ×G .

If we apply Theorem 11 in this context, we obtain the theorem stated in the introduction.
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