

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Marco D'Addezio

Some remarks on the companions conjecture for normal varieties

Volume 362 (2024), p. 63-69

Online since: 2 February 2024

https://doi.org/10.5802/crmath.527

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

The Comptes Rendus. Mathématique are a member of the Mersenne Center for open scientific publishing www.centre-mersenne.org — e-ISSN : 1778-3569

ACADÉMIE DES SCIENCES Institut de france

Research article / *Article de recherche* Algebraic geometry, Number theory / *Géométrie algébrique, Théorie des nombres*

Some remarks on the companions conjecture for normal varieties

Marco D'Addezio^a

^{*a*} Institut de Mathématiques de Jussieu-Paris Rive Gauche, SU - 4 place Jussieu, Case 247, 75005 Paris *E-mail:* daddezio@imj-prg.fr

Abstract. Drinfeld in 2010 proved the companions conjecture for smooth varieties over a finite field, generalizing L. Lafforgue's result for smooth curves. We study the obstruction to prove the conjecture for arbitrary normal varieties. To do this, we introduce a new property of morphisms. We verify this property in some cases, showing thereby the companions conjecture for some singular normal varieties.

Keywords. ℓ -adic representation, independence of ℓ , étale fundamental group.

2020 Mathematics Subject Classification. 14G15.

Manuscript received 27 June 2022, revised 16 April 2023, accepted 15 June 2023.

1. Introduction

1.1. The companions conjecture

Let \mathbb{F}_q be a finite field of characteristic p and let X_0 be a connected normal variety over \mathbb{F}_q . For a prime ℓ different from p, the category of Weil lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaves over X_0 carries much information on the arithmetic and the geometry of X_0 . An invariant that is associated to any Weil lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf is the trace field $E \subseteq \overline{\mathbb{Q}}_{\ell}$ generated by the coefficients of the Frobenius polynomials at closed points. Deligne proved in [3] that if \mathcal{V}_0 is an irreducible Weil lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf over X_0 with finite order determinant, then E is a finite extension of \mathbb{Q} . He showed this finiteness by reduction to the case of curves, where it was proven by L. Lafforgue in [6, Thm. VII.6] as a consequence of the Langlands correspondence. This property of the trace field was one of the conjectures proposed by Deligne in [2, Conj. 1.2.10]. In the same list, he also formulated the following conjecture.

Conjecture 1 (Companions conjecture). After possibly replacing E with a finite field extension, for every finite place λ not dividing p, there exists a Weil lisse E_{λ} -sheaf E-compatible¹ with V_0 .

When the dimension of X_0 is 1, the conjecture is again a consequence of the Langlands correspondence. For higher dimensional varieties, Drinfeld in [4] proved Conjecture 1 when X_0 is smooth. As noticed in [4, §6], his method cannot be applied directly to prove the full conjecture.

¹Cf. [1, Def. 3.1.15].

1.2. The obstruction

Suppose for simplicity that the singular locus of X_0 consists of one closed point and that we can solve that singularity. In other words, suppose that there exists a smooth variety Y_0 and a proper morphism $h_0: Y_0 \to X_0$ which sends a closed subscheme $i_0: Z_0 \hookrightarrow Y_0$ to a closed point $x_0 \in |X_0|$ and such that h_0 is an isomorphism outside Z_0 . Write \mathbb{F} for an algebraic closure of \mathbb{F}_q and suppose that $Z := Z_0 \otimes_{\mathbb{F}_q} \mathbb{F}$ is connected.

Lemma 2 ([5, Cor. IX.6.11]). For every geometric point z of Z_0 there exists an exact sequence

$$\pi_1^{\text{\'et}}(Z,z) \xrightarrow{\iota_*} \pi_1^{\text{\'et}}(Y_0,z) \xrightarrow{h_{0*}} \pi_1^{\text{\'et}}(X_0,h(z)) \to 1$$

in the sense that the smallest normal closed subgroup containing the image of i_* is equal to the kernel of h_{0*} .

By the lemma, every étale Weil lisse sheaf V_0 over Y_0 which is trivial over Z is the inverse image of an étale Weil lisse sheaf defined over X_0 . Since we know the companions conjecture for Y_0 , in order to deduce it for X_0 we have to verify the following property.

 $\mathscr{P}(Z_0)$: For every pair $(\mathcal{V}_0, \mathcal{W}_0)$ of compatible absolutely irreducible Weil lisse sheaves with finite order determinant over Y_0 , the sheaf \mathcal{V}_0 is trivial over Z if and only if the same is true for \mathcal{W}_0 .

If $Z_0 \subseteq Y_0$ satisfies $\mathscr{P}(Z_0)$ we say that Z_0 is a λ -*uniform subvariety*. Thanks to Lemma 2 and the companions conjecture for smooth varieties, we have the following result.

Proposition 3. If $Z_0 \subseteq Y_0$ is λ -uniform, X_0 satisfies the companions conjecture.

1.3. Main results

The aim of this text is to shed some new lights on the companions conjecture for normal varieties. For this scope, we focus on λ -uniformity. We extend the notion of λ -uniform subvarieties in Section 1.2 to the one of λ -uniform morphisms of varieties (Definition 9) and we investigate the following conjecture.

Conjecture 4 (Conjecture 10). Let Y_0 and Z_0 be varieties over \mathbb{F}_q . If Y_0 is normal, every morphism $f_0: Z_0 \to Y_0$ is λ -uniform (cf. Definition 9).

We shall verify Conjecture 4 in some particular cases.

Theorem 5 (Theorem 14, Theorem 16). Let $f_0 : Z_0 \to Y_0$ be a morphism of geometrically connected varieties over \mathbb{F}_q with Y_0 normal and let z be a geometric point of Z_0 . The morphism f_0 is λ -uniform in the following cases.

- (i) If Z_0 has a simply connected dual complex and normal irreducible components.
- (ii) If the smallest closed normal subgroup of π^{ét}₁(Y₀, f(z)) containing the image of π^{ét}₁(Z, z) is open inside π^{ét}₁(Y, f(z)).
- (iii) If $\pi_1^{\text{ét}}(Y, f(z))$ contains an open solvable profinite subgroup.

Combining the previous results we get the following consequence.

Corollary 6. Let Y_0 be a smooth geometrically connected variety over \mathbb{F}_q . If X_0 is a normal variety that can be written as a contraction of a geometrically connected subvariety $Z_0 \subseteq Y_0$ satisfying one of the conditions of Theorem 5, then X_0 verifies Conjecture 1.

An independent property we prove in this text is a property of invariance of λ -uniformity "under deformations" (Theorem 12). This might be useful for further developments in the direction of Conjecture 4. Moreover, we present in Section 3.3 some variants of Conjecture 4 and we present a concrete example, proposed by de Jong, where these conjectures are not known.

For us, a *variety* over a field *k* is a separated scheme of finite type over *k*. We write $X_0, Y_0, Z_0, ...$ for varieties over \mathbb{F}_q and X, Y, Z, ... for the base change to \mathbb{F} . Further, we put a subscript $_0$ to indicate objects and morphisms defined over \mathbb{F}_q and the suppression of this subscript shall mean that we are extending the scalars to \mathbb{F} . If *E* is a number field we write $|E|_{\neq p}$ for the set of finite places of *E* which do not divide *p*. For every $\lambda \in |E|_{\neq p}$, we denote by E_{λ} the completion of *E* with respect to λ .

We use the notation for Weil lisse sheaves as in [1, §2.2]. We say that a Weil lisse E_{λ} -sheaf \mathcal{V}_0 is *split untwisted* if every irreducible subquotient of \mathcal{V}_0 is absolutely irreducible and has finite order determinant. We say instead that \mathcal{V}_0 is *untwisted* if it is split untwisted after possibly extending E_{λ} . Recall that if Y_0 is a normal variety over \mathbb{F}_q , every untwisted Weil lisse sheaf over Y_0 is pure of weight 0 and geometrically semi-simple by [2, Thm. 3.4.1] and [3, Thm. 1.6]. In addition, by [2, Prop. 1.3.14] and [1, Prop. 3.1.16], every untwisted Weil lisse sheaf is étale.

An *E*-compatible system over X_0 , denoted by $\underline{\mathcal{V}}_0$, is a family $\{\mathcal{V}_{\lambda,0}\}_{\lambda \in |E| \neq p}$ where each $\mathcal{V}_{\lambda,0}$ is an *E*-rational Weil lisse E_{λ} -sheaf and such that all sheaves are pairwise *E*-compatible. Each $\mathcal{V}_{\lambda,0}$ is called the λ -component of $\underline{\mathcal{V}}_0$. We say that a compatible system is *semi-simple*, *untwisted*, or *split untwisted* if each λ -component has the respective property.

2. λ -uniform morphisms

2.1. General properties

Definition 7. Let Z_0 be a connected variety. A compatible system \underline{V}_0 over Z_0 is λ -uniform if one of the following disjoint conditions is verified.

- (i) For every $\lambda \nmid p$, the lisse sheaf $\mathcal{V}_{\lambda,0}$ is geometrically trivial.
- (ii) For every $\lambda \nmid p$, the lisse sheaf $V_{\lambda,0}$ is geometrically non-trivial.

We say that $\underline{V_0}$ is strongly λ -uniform if the dimension of $H^0(Z, V_{\lambda})$ does not depend on λ . Strongly λ -uniform compatible systems are clearly λ -uniform. If Z_0 is not connected we say that a compatible system is λ -uniform (resp. strongly λ -uniform) if it is λ -uniform (resp. strongly λ -uniform) over every connected component.

Proposition 8. Let Z_0 be a normal variety over \mathbb{F}_q . Every untwisted *E*-compatible system $\underline{\mathcal{V}_0}$ over Z_0 is strongly λ -uniform.

Proof. After extending the base field, we may assume that Z_0 is geometrically connected. Since Z_0 is a normal variety, each λ -component of $\underline{\gamma}_0$ is pure of weight 0 by [3, Thm. 1.6]. Also, if U_0 is the smooth locus of Z_0 , by [5, Prop. V.8.2], the étale fundamental group of U maps surjectively onto the étale fundamental group of Z. Therefore, we have a canonical isomorphism

$$H^0(Z, \mathcal{V}_{\lambda}) = H^0(U, \mathcal{V}_{\lambda}|_U)$$

for every λ . By [6, Cor. VI.3], we know that the dimension of $H^0(U, \mathcal{V}_{\lambda}|_U)$ can be recovered from the *L*-function of $\mathcal{V}_{\lambda,0}|_{U_0}$, thus we obtain the desired result.

If we do not assume Z_0 normal, Proposition 8 becomes false in general (Example 15). The issue is a different behaviour of weights for non-normal varieties. In what follows, we want to understand whether a weaker variant of Proposition 8 is still true for singular varieties.

Definition 9. Let $f_0 : Z_0 \to Y_0$ be a morphism of varieties over \mathbb{F}_q . We say that f_0 is a λ -uniform morphism if for every untwisted compatible system \underline{Y}_0 over Y_0 , the pullback $f_0^* \underline{Y}_0$ is λ -uniform. If f_0 is a closed immersion we say that Z_0 is a λ -uniform subvariety of Y_0 .

Conjecture 10. Let Y_0 and Z_0 be varieties over \mathbb{F}_q . If Y_0 is normal, every morphism $f_0 : Z_0 \to Y_0$ is λ -uniform.

2.2. Homotopic invariance

Let us look more closely at λ -uniform morphisms by analysing the relation with the induced morphism on fundamental groups.

Let $f_0 : Z_0 \to Y_0$ be a morphism of geometrically connected varieties over \mathbb{F}_q with Y_0 normal. If we choose a geometric point z of Z_0 we have a morphism

$$\pi_1^{\text{\'et}}(Z, z) \xrightarrow{f_*} \pi_1^{\text{\'et}}(Y_0, f(z)).$$

For every étale compatible system $\frac{\gamma_0}{\rho}$ over Y_0 we denote by $\{\rho_{\lambda,0}\}_{\lambda \in |E|\neq p}$ the associated family of ℓ -adic representations of $\pi_1^{\text{ét}}(Y_0, \overline{f(z)})$. Let $\overline{\text{Im}(f_*)}$ be the smallest normal closed subgroup of $\pi_1^{\text{ét}}(Y_0, f(z))$ containing the image of f_* . The following lemma is a direct consequence of the definition of a λ -uniform morphism.

Lemma 11. A morphism f_0 is λ -uniform if and only if for every untwisted compatible system $\underline{Y_0}$ over Y_0 , if $\overline{\text{Im}(f_*)} \subseteq \text{Ker}(\rho_{\lambda,0})$ for one λ then the same is true for every other $\lambda \in |E|$. In particular, the property of a morphism of being λ -uniform depends only on the inclusion $\overline{\text{Im}(f_*)} \subseteq \pi_1^{\text{ét}}(Y_0, y)$ as topological groups together with the assignment of the conjugacy classes of the Frobenii at closed points of $\pi_1^{\text{ét}}(Y_0, y)$ and their degrees.

As a consequence of the previous lemma, we prove an "homotopic invariance" of λ uniformity. Let T_0 and S_0 be geometrically connected varieties over \mathbb{F}_q and $h_0: T_0 \to S_0$ a proper and flat morphism with connected and reduced geometric fibres. Let s_0 and s'_0 be closed points of S_0 and write $\iota_0: Z_0 \hookrightarrow T_0$ and $\iota'_0: Z'_0 \hookrightarrow T_0$ for the closed immersions of the fibres of h_0 above s_0 and s'_0 respectively.

Theorem 12. For every morphism $\tilde{f}_0: T_0 \to Y_0$, the restriction $f_0 := \tilde{f}_0|_{Z_0}$ is λ -uniform if and only if $f'_0 := \tilde{f}_0|_{Z'_0}$ is λ -uniform.

Proof. Let *z* and *z'* be geometric points of Z_0 and Z'_0 respectively. By [10, Tag 0C0J], we have exact sequences

$$\pi_1^{\text{ét}}(Z, z) \xrightarrow{\iota_*} \pi_1^{\text{ét}}(T, z) \xrightarrow{h_*} \pi_1^{\text{ét}}(S, h(z)) \to 1$$

$$\pi_1^{\text{ét}}(Z', z') \xrightarrow{\iota'_*} \pi_1^{\text{ét}}(T, z') \xrightarrow{h_*} \pi_1^{\text{ét}}(S, h(z')) \to 1.$$

The choice of an étale path γ joining z with z' induces isomorphisms $\gamma : \pi_1^{\text{ét}}(T, z) \xrightarrow{\sim} \pi_1^{\text{ét}}(T', z')$ and $h_*(\gamma) : \pi_1^{\text{ét}}(S, h(z)) \xrightarrow{\sim} \pi_1^{\text{ét}}(S', h(z'))$. Thanks to the two exact sequences this implies that γ restricts to an isomorphism $\overline{\text{Im}}(\iota_*) \xrightarrow{\sim} \overline{\text{Im}}(\iota'_*)$. In turn, this implies that the induced isomorphism $f_*(\gamma) : \pi_1^{\text{ét}}(Y_0, f(z)) \xrightarrow{\sim} \pi_1^{\text{ét}}(Y_0, f'(z'))$ restricts to an isomorphism $\overline{\text{Im}}(f_*) \xrightarrow{\sim} \overline{\text{Im}}(f'_*)$. By construction, $f_*(\gamma)$ respects the conjugacy classes of Frobenii at closed points and their degrees. We conclude applying Lemma 11.

3. Some examples

In this section, we verify Conjecture 10 in some cases. Note that by virtue of Proposition 8 we already know the conjecture when Z_0 is normal.

3.1. Simply connected dual complex

Let Z_0 be a geometrically connected variety over \mathbb{F}_q . Write $Z^{(i)}$ where $1 \le i \le n$ for the irreducible components of Z. Suppose that for every i, the irreducible component $Z^{(i)}$ is normal. Let zbe a geometric point of Z_0 and for every $1 \le i \le n$, let $z^{(i)}$ be a generic geometric point of $Z^{(i)}$. We denote by Γ the dual complex of Z and by P the point of Γ associated to the irreducible component where z lies. Write Π for the free product $\pi_1^{\text{ét}}(Z^{(1)}, z^{(1)}) * \cdots * \pi_1^{\text{ét}}(Z^{(n)}, z^{(n)})$ and $\pi_1(\Gamma, P)^{\wedge}$ for the profinite completion of the topological fundamental group of Γ at P.

Theorem 13 (Stix). The choice of étale paths $\{\gamma^{(i)}\}_{1 \le i \le n}$ joining z to $z^{(i)}$ for every i determines an exact sequence

$$\Pi \xrightarrow{\alpha} \pi_1^{\text{ét}}(Z, z) \xrightarrow{\beta} \pi_1(\Gamma, P)^{\wedge} \to 1,$$

in the sense that the smallest normal closed subgroup containing the image of α is equal to the kernel of β .

Proof. The result follows from [11, Cor. 3.3].

Theorem 14. If Γ is simply connected, every untwisted compatible system over Z_0 is λ -uniform.

Proof. Let $\underline{\mathcal{V}}_0$ be an untwisted compatible system over Z_0 . If $\mathcal{V}_{\lambda,0}$ is geometrically trivial for one λ , then it remains geometrically trivial when restricted to every irreducible component of Z_0 . By Proposition 8, for every other $\lambda' \in |E|_{\neq p}$, the restriction of $\mathcal{V}_{\lambda',0}$ to every irreducible component of Z_0 is geometrically trivial as well. By Theorem 13, since Γ is simply connected, the geometric étale fundamental group of Z_0 is the smallest normal subgroup containing the images of the étale fundamental groups of the irreducible components $Z^{(i)}$. This shows that for every λ' the Weil lisse sheaf $\mathcal{V}_{\lambda',0}$ is geometrically trivial over Z_0 and this yields the desired result.

Example 15. If Z_0 is an irreducible split nodal cubic curve over \mathbb{F}_q with nodal point z_0 , then $\pi_1^{\text{ét}}(Z, z)$ is isomorphic to $\widehat{\mathbb{Z}}$. In addition, the action of $\text{Gal}(\mathbb{F}/\mathbb{F}_q)$ on $\pi_1^{\text{ét}}(Z, z)$ is trivial. Therefore, $\pi_1^{\text{ét}}(Z_0, z)$ is isomorphic to $\widehat{\mathbb{Z}} \times \text{Gal}(\mathbb{F}/\mathbb{F}_q)$, where the embedding $\text{Gal}(\mathbb{F}/\mathbb{F}_q) \subseteq \pi_1^{\text{ét}}(Z_0, z)$ is induced by the closed immersion of $z_0 \hookrightarrow Z_0$. The Frobenius elements of $\pi_1^{\text{ét}}(Z_0, z)$ correspond via this isomorphism to elements of $\widehat{\mathbb{Z}} \times \text{Gal}(\mathbb{F}/\mathbb{F}_q)$ of the form $(0, F^d)$, where F is the geometric Frobenius of \mathbb{F}_q and d is some positive integer. This implies that every pair of étale lisse sheaves over Z_0 which are trivial at z_0 are \mathbb{Q} -compatible with all the eigenvalues at closed points equal to 1.

On the other hand, for every prime number $\ell \neq p$ and every continuous group automorphism α of $\mathbb{Z}_{\ell}^{\oplus r}$, where \mathbb{Z}_{ℓ} is the ring of integers of $\overline{\mathbb{Q}}_{\ell}$, there exists an étale lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf of this type such that the induced ℓ -adic representation sends (1, id) to α . In particular, we may take r = 1 and as α the multiplication by a root of unit. This construction produces lots of examples of untwisted compatible systems over Z_0 which are not λ -uniform.

3.2. Finite monodromy

As in Proposition 8, we may use the theory of weights in order to prove that certain morphisms are λ -uniform. This strategy needs strong finiteness conditions.

Theorem 16. Let $f_0 : Z_0 \to Y_0$ be a morphism of geometrically connected varieties over \mathbb{F}_q with Y_0 normal. Let z be a geometric point of Z_0 . The morphism f_0 is λ -uniform in the following cases.

- (i) If the smallest closed normal subgroup of $\pi_1^{\text{ét}}(Y_0, f(z))$ containing the image of $\pi_1^{\text{ét}}(Z, z)$ is an open subgroup of $\pi_1^{\text{ét}}(Y, f(z))$.
- (ii) If $\pi_1^{\text{ét}}(Y, f(z))$ contains an open solvable profinite subgroup.

Proof. Let $\underline{\mathcal{V}_0}$ be an untwisted compatible system over Y_0 . For every $\lambda \in |E|_{\neq p}$, write G_{λ} for the geometric monodromy group of $\mathcal{V}_{\lambda,0}$.

(i). If $f_0^*(\mathcal{V}_{\lambda,0})$ is geometrically trivial over Z_0 for one λ , then ρ_{λ} is trivial when restricted to the image of $\pi_1^{\text{ét}}(Z, z)$ in $\pi_1^{\text{ét}}(Y, f(z))$. Thanks to the hypothesis, we deduce that ρ_{λ} factors through a finite quotient of $\pi_1^{\text{ét}}(Y, f(z))$. This implies that G_{λ} is a finite algebraic group. By [7, Prop. 2.2] and [1, Thm. 4.1.1], the subgroups

$$\operatorname{Ker}(\rho_{\lambda'}) \cap \pi_1^{\operatorname{\acute{e}t}}(Y, f(z)) \subseteq \pi_1^{\operatorname{\acute{e}t}}(Y, f(z))$$

are all equal when λ' varies in $|E|_{\neq p}$. Since the image of $\pi_1^{\text{ét}}(Z, z)$ in $\pi_1^{\text{ét}}(Y, f(z))$ is contained in Ker (ρ_{λ}) , it is also contained in Ker $(\rho_{\lambda'})$ for every $\lambda' \in |E|_{\neq p}$. Therefore, the lisse sheaf $f_0^*(\mathcal{V}_{\lambda',0})$ is geometrically trivial for every $\lambda' \nmid p$, as we wanted.

(ii). Since $\pi_1^{\text{ét}}(Y, f(z))$ contains an open solvable profinite subgroup, we know that for every λ the neutral component $G_{\lambda}^{\circ} \subseteq G_{\lambda}$ is solvable. Combining this with the fact that each $\mathcal{V}_{\lambda,0}$ is geometrically semi-simple, we deduce that G_{λ}° is a torus. By [2, Thm. 1.3.8], this implies that G_{λ}° is trivial so that G_{λ} is finite and we can proceed as in the previous case.

Corollary 17. A dominant morphism $f_0 : Z_0 \to Y_0$ is λ -uniform. In particular, if Y_0 is a smooth curve, every morphism with target Y_0 is λ -uniform.

Proof. Let $\eta \hookrightarrow Y$ be the generic point of *Y* and write Z_{η} the preimage of η via *f*. Since *f* is dominant, the scheme Z_{η} is a non-empty variety over the function field of *Y*. Fix a closed point η' of Z_{η} and choose a geometric point $\overline{\eta}$ over η' . We have the following commutative diagram

$$\begin{aligned} \pi_1^{\text{\acute{e}t}}(\eta',\overline{\eta}) & \longleftrightarrow & \pi_1^{\text{\acute{e}t}}(\eta,f(\overline{\eta})) \\ \downarrow & & \downarrow \\ \pi_1^{\text{\acute{e}t}}(Z,\overline{\eta}) & \longrightarrow & \pi_1^{\text{\acute{e}t}}(Y,f(\overline{\eta})). \end{aligned}$$

Note that $\pi_1^{\text{ét}}(\eta', \overline{\eta})$ maps to a finite index subgroup of $\pi_1^{\text{ét}}(\eta, f(\overline{\eta}))$. Therefore, the image of $\pi_1^{\text{ét}}(Z, \overline{\eta})$ in $\pi_1^{\text{ét}}(Y, f(\overline{\eta}))$ has finite index as well. Thanks to this, we may apply Theorem 16 (i) to conclude.

3.3. Final comments

For a Weil lisse sheaf, the property of being geometrically trivial can be thought as the combination of two properties: being geometrically unipotent² and geometrically semi-simple. For this reason, it seems pretty natural to split Conjecture 10 in two parts. Let $f_0 : Z_0 \to Y_0$ be a morphism of varieties over \mathbb{F}_q with Y_0 normal.

Conjecture 18 (Unipotency). For every pair $(\mathcal{V}_0, \mathcal{W}_0)$ of compatible Weil lisse sheaf over Y_0 , if $f_0^* \mathcal{V}_0$ is geometrically unipotent the same is true for $f_0^* \mathcal{W}_0$.

Conjecture 19 (Semi-simplicity). For every geometrically semi-simple Weil lisse sheaf V_0 over Y_0 , the inverse image $f_0^* V_0$ is geometrically semi-simple.

These two conjectures have different natures. The first one is a numerical property of the traces of the elements of the geometric étale fundamental group. The second one can not be read looking at the traces and it would be a generalisation of [1, Cor. 3.6.7]. Let us focus on this second conjecture. Suppose that Z_0 is a semi-stable curve with all the irreducible components isomorphic to $\mathbb{P}^1_{\mathbb{F}_q}$. In light of [8, Thm. 1.1], one might be tempted to hope that for every Weil lisse sheaf over Y_0 , the inverse image to Z_0 is geometrically finite, which would imply Conjecture 19 for this choice of Z_0 . Unluckily, this does not seem to be true as pointed out by de Jong.

 $^{^{2}}$ A geometrically unipotent Weil lisse sheaf is a Weil lisse sheaf \mathcal{V}_{0} such that \mathcal{V} is a successive extension of trivial lisse sheaves.

Example 20 (de Jong). For an integer $n \ge 3$ such that (n, p) = 1, we write $Y^{(n)}$ for the moduli scheme of principally polarized abelian surfaces over \mathbb{F} with a symplectic level-*n*-structure. Let $Z^{(n)} \subseteq Y^{(n)}$ be the supersingular locus of $Y^{(n)}$. Since we are working with abelian surfaces, this coincides with the Moret–Bailly locus of $Y^{(n)}$. Therefore, by [9, Prop. 7.3], the variety $Z^{(n)}$ is connected for every choice of *n*. Let *N* be a positive multiple of *n* prime to *p*. The preimage of the natural finite étale Galois cover $Y^{(N)} \rightarrow Y^{(n)}$ is $Z^{(N)}$. As $Z^{(N)}$ is connected, the restriction $Z^{(N)} \rightarrow Z^{(n)}$ is a finite étale Galois cover with the same Galois group as $\text{Gal}(Y^{(N)}/Y^{(n)})$. If *z* is a geometric point of $Z^{(n)}$, we have the following commutative diagram

When *N* goes to infinity, the cardinality of $\operatorname{Gal}(Y^{(N)}/Y^{(n)})$ goes to infinity as well. This implies that the image of $\pi_1^{\text{ét}}(Z^{(n)}, z) \to \pi_1^{\text{ét}}(Y^{(n)}, z)$ is infinite. The varieties $Z^{(n)}$ and $Y^{(n)}$ descend to geometrically connected varieties $Z_0^{(n)}$ and $Y_0^{(n)}$ over some finite field \mathbb{F}_q .

Example 20 might be a nice concrete example to analyse for further developments on Conjecture 10.

Acknowledgements

I am grateful to my advisor Hélène Esnault for introducing me to this topic and for all the time we spent talking about this problem. I thank Emiliano Ambrosi, Raju Krishnamoorthy, and Jacob Stix for discussions and suggestions and Piotr Achinger and Daniel Litt for sharing de Jong's example (Example 20). Finally, I thank the anonymous referees for some helpful comments which improved the exposition.

References

- [1] M. D'Addezio, "The monodromy groups of lisse sheaves and overconvergent *F*-isocrystals", *Sel. Math., New Ser.* **26** (2020), no. 3, article no. 45 (41 pages).
- [2] P. Deligne, "La Conjecture de Weil. II", Publ. Math., Inst. Hautes Étud. Sci. 52 (1980), p. 137-252.
- [3] ——, "Finitude de l'extension de Q engendrée par des traces de Frobenius, en caractéristique finie", Mosc. Math. J. 12 (2012), no. 3, p. 497-514.
- [4] V. Drinfeld, "On a conjecture of Deligne", Mosc. Math. J. 12 (2012), p. 515-542.
- [5] A. Grothendieck, M. Raynaud, *Revêtements étales et groupe fondamental (SGA 1)*, Lecture Notes in Mathematics, vol. 224, Springer, 1971.
- [6] L. Lafforgue, "Chtoucas de Drinfeld et correspondance de Langlands", Invent. Math. 147 (2002), no. 1, p. 1-241.
- [7] M. Larsen, R. Pink, "Abelian varieties, ℓ-adic representations, and ℓ-independence", Math. Ann. 302 (1995), no. 3, p. 561-580.
- [8] B. Lasell, M. Ramachandran, "Observations on harmonic maps and singular varieties", Ann. Sci. Éc. Norm. Supér. 29 (1996), no. 2, p. 135-148.
- [9] F. Oort, "A Stratification of a Moduli Space of Abelian Varieties", in *Moduli of Abelian varieties*, Progress in Mathematics, vol. 195, Birkhäuser, 2001, p. 345-416.
- [10] The Stacks Project Authors, "Stacks Project", http://stacks.math.columbia.edu.
- [11] J. Stix, "A general Seifert-Van Kampen theorem for algebraic fundamental groups", Publ. Res. Inst. Math. Sci. 42 (2006), no. 3, p. 763-786.