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1. Introduction

Let U be an open set of a complex manifold M and let k € N. Let 1 be a holomorphic k-form on
U and let Singn := {p € U : n(p) = 0} denote the singular set of . We say that 7 is integrable if
each point p € U\Singn has a neighborhood V supporting holomorphic 1-forms ¢3,..., ¢ with
nly =&§1 A+ Ak, such thatd¢; An=0foreach j=1,..., k. In this case the distribution

Dn: Dy(p)={veTpyM:iyn(p)=0}, peU\Singn

defines a holomorphic foliation of codimension k on U\ Singn. A singular holomorphic foliation
& of codimension k on M can be defined by an open covering (Uj;) je; of M and a collection
of integrable k-forms 7n; € Qk(Uj) such that n7; = g;jn; for some g;; € ¢*(U; n U;) whenever
U;nUj # . The singular set Sing % is the proper analytic subset of M given by the union of the
sets Singn ;. From now on we only consider foliations & such that Sing% has no component of
codimension one.

Given a singular holomorphic foliation & of codimension k on M as above, the Kupka singular
set of %, denoted by K (%), is the union of the sets

Kmnj)={peU;:n;(p)=0,dn;(p) #0}.

This set does not depend on the collection (1) of k-forms used to define &. It is well known
(see [7,9]) that, given p € K(&), the germ of & at p is holomorphically equivalent to the product
of a one-dimensional foliation with an isolated singularity by a regular foliation of dimension
(dim& —1). More precisely, if dimM = k + m + 1, there exist a holomorphic vector field X =

X10y, + -+ Xj410x,,, ON D**1 with a unique singularity at the origin, a neighborhood V of p
in M and a biholomorphism v : V — D¥*1 x D™, y(p) = 0, which conjugates % with the foliation
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Fx of D¥*1 x D generated by the commuting vector fields X, 0y,,...,0y,,, where y = (y1,..., ¥m)
are the coordinates in D" If g = dx; A --- A dx41, the foliation Fx is also defined by the k-form
o = ixp and the Kupka condition dw(0) # 0 is equivalent to the inequality div X (0) # 0.

Following [8], we say that & is a transversely product at p € Sing% if as above there exist
a holomorphic vector field X and a biholomorphism v : V — D¥*! x D conjugating # with
Zx, except that it is not assumed that div X (0) # 0. We say that I' is a local transversely product
component of Sing & if I is a compact irreducible component of Sing%# and & is a transversely
product at each p € IT'. In particular, if I' ¢ K(&) we say that I' is a Kupka component — for more
information about Kupka singularities and Kupka components we refer the reader to [1-7]. If I is
a transversely product component of Sing.%, we can cover I' by finitely many normal coordinates
like v, with the same vector field X: that is, there exist a holomorphic vector field X on D%+ with
a unique singularity at the origin and a covering of I" by open sets (Vg)4ea such that each V,
supports a biholomorphism v, : V, — D**! x D™ that maps I' N V, onto {0} x D" and conjugates
& with the foliation . The sets (V) can be chosen arbitrarily close to T'.

In [8], the author proves that a local transversely product component of a codimension one
foliation on P” is necessarily a Kupka component. The goal of the present paper is to generalize
this theorem to foliations of any codimension.

Theorem 1. Let % a holomorphic foliation of dimension = 2 and codimension=1 onP". LetT be
a transversely product component of Sing% . Then T is a Kupka component.

This theorem is a corollary of the following result.

Theorem 2. Let % a holomorphic foliation of dimension = 2 and codimension k = 1 on a complex
manifold M. Suppose that & is defined by an open covering (U;) jej of M and a collection of k-
formsn; € Qk(Uj). Let L be the line bundle defined by the cocycle (g;;) such thatn; = gijn;j,
gij € 0*(U;nUj). Let T be a transversely product component of Sing% that is not a Kupka
component. Then ¢, (LIr) =0.

2. Proof of the results

Proof of Theorem 2. Let dimM = k+ m + 1. As explained in the introduction, there exist a
holomorphic vector field X on D¥*! with a unique singularity at the origin and a covering of
I' by open sets (V,)qea such that each V, is contained in V' and supports a biholomorphism
W : Vo — D¥1 x D™ that maps I' NV, onto {0} x D™ and conjugates & with the foliation Fy
generated by the commuting vector fields X,dy,,...,d,,,. Notice that div(X)(0) = 0, because I' is
not a Kupka component. Since %y is defined by the k-form w = ixy, where y=dx; A--- Adxg1,
we have that |y, is defined by the k-form y}, (w). If V, N Vp# @, there exists Baﬁ €EO0*(Vyn Vp)
such that

Vo) =0apypw). ey

Therefore the cocycle (6, ) define the line bundle L restricted to some neighborhood of I'. Thus,
in order to prove that c¢i(Lir) = 0 it is enough to show that each 044lr is locally constant. Fix
some a, f € A such that V, n Vg # @. If we set ¢ =y °V/Bl and 0 = O,p OWEI» from (1) we have
that ¥* (w) = 6w, which means that ¥ preserves the foliation . It suffices to prove that the
derivatives 6y, (p),...,0y,, (p) vanish if p € {0} x D™, Since dy, is tangent to &y, then the vector
field . (0y,) is tangent to Fx and so we can express

W (0y,) = AX + 410y, +-+-+ 110y,
where A, 14,...,A,, are holomorphic. Then

Ly, 0,0 = Lixw =ALxw+dANixw = ALxw = Adiv(X)w,
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where the last equality follows from the identity w = ixu. Thus, since
vt (,%W*(gyl)w) =%, ¥ 0=%25, 0w)=0y0,
we obtain that
0y,0=y" (Adiv(X)w) = Ay) div(X) () 0w
and therefore 6, (p) = 0if p € {0} x D", because div(X) vanishes along {0} x D™. In the same way
we prove that 8y, (p) =---=0,,,(p) = 0if p € {0} x D", which finishes the proof. 0

Proof of Theorem 1. Suppose that I' is not a Kupka component. Let L be the line bundle associ-
ated to & as in the statement of Theorem 2. We notice that c; (L) # 0, otherwise & will be defined
by a global k-form on P, which is impossible. Then, if we take an algebraic curve € < T', we have
c1(L) -6 #0. Therefore, if Q is a 2-form on P in the class ¢; (L) and V is a tubular neighborhood
of T,

cl(ur)%:f erzf Q=a()-6#0,
€ €

which contradicts Theorem 2. O
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