

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Rudy Rosas

Transversely product singularities of foliations in projective spaces

Volume 361 (2023), p. 1785-1787

Published online: 21 December 2023

https://doi.org/10.5802/crmath.528

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Functional analysis / Analyse fonctionnelle

Transversely product singularities of foliations in projective spaces

Rudy Rosas^a

^{*a*} Departamento de Ciencias, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Perú *E-mail:* rudy.rosas@pucp.pe

Abstract. We prove that a transversely product component of the singular set of a holomorphic foliation on \mathbb{P}^n is necessarily a Kupka component.

Funding. The author was supported by Vicerrectorado de Investigación de la Pontificia Universidad Católica del Perú.

Manuscript received 4 May 2023, revised and accepted 23 June 2023.

1. Introduction

Let *U* be an open set of a complex manifold *M* and let $k \in \mathbb{N}$. Let η be a holomorphic *k*-form on *U* and let Sing $\eta := \{p \in U : \eta(p) = 0\}$ denote the singular set of η . We say that η is integrable if each point $p \in U \setminus \text{Sing} \eta$ has a neighborhood *V* supporting holomorphic 1-forms $\xi_1, ..., \xi_k$ with $\eta|_V = \xi_1 \wedge \cdots \wedge \xi_k$, such that $d\xi_i \wedge \eta = 0$ for each j = 1, ..., k. In this case the distribution

$$\mathscr{D}_{\eta}: \mathscr{D}_{\eta}(p) = \{v \in T_p M : i_v \eta(p) = 0\}, p \in U \setminus \operatorname{Sing} \eta$$

defines a holomorphic foliation of codimension k on $U \setminus \text{Sing} \eta$. A singular holomorphic foliation \mathscr{F} of codimension k on M can be defined by an open covering $(U_j)_{j \in J}$ of M and a collection of integrable k-forms $\eta_j \in \Omega^k(U_j)$ such that $\eta_i = g_{ij}\eta_j$ for some $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$ whenever $U_i \cap U_j \neq \emptyset$. The singular set $\text{Sing} \mathscr{F}$ is the proper analytic subset of M given by the union of the sets $\text{Sing} \eta_j$. From now on we only consider foliations \mathscr{F} such that $\text{Sing} \mathscr{F}$ has no component of codimension one.

Given a singular holomorphic foliation \mathcal{F} of codimension k on M as above, the Kupka singular set of \mathcal{F} , denoted by $K(\mathcal{F})$, is the union of the sets

$$K(\eta_{i}) = \{ p \in U_{i} : \eta_{i}(p) = 0, d\eta_{i}(p) \neq 0 \}.$$

This set does not depend on the collection (η_j) of k-forms used to define \mathscr{F} . It is well known (see [7,9]) that, given $p \in K(\mathscr{F})$, the germ of \mathscr{F} at p is holomorphically equivalent to the product of a one-dimensional foliation with an isolated singularity by a regular foliation of dimension (dim $\mathscr{F} - 1$). More precisely, if dim M = k + m + 1, there exist a holomorphic vector field $X = X_1 \partial_{x_1} + \cdots + X_{k+1} \partial_{x_{k+1}}$ on \mathbb{D}^{k+1} with a unique singularity at the origin, a neighborhood V of p in M and a biholomorphism $\psi: V \to \mathbb{D}^{k+1} \times \mathbb{D}^m$, $\psi(p) = 0$, which conjugates \mathscr{F} with the foliation

 \mathscr{F}_X of $\mathbb{D}^{k+1} \times \mathbb{D}^m$ generated by the commuting vector fields $X, \partial_{y_1}, \dots, \partial_{y_m}$, where $y = (y_1, \dots, y_m)$ are the coordinates in \mathbb{D}^m . If $\mu = dx_1 \wedge \dots \wedge dx_{k+1}$, the foliation \mathscr{F}_X is also defined by the *k*-form $\omega = i_X \mu$ and the Kupka condition $d\omega(0) \neq 0$ is equivalent to the inequality div $X(0) \neq 0$.

Following [8], we say that \mathscr{F} is a transversely product at $p \in \operatorname{Sing}\mathscr{F}$ if as above there exist a holomorphic vector field X and a biholomorphism $\psi : V \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ conjugating \mathscr{F} with \mathscr{F}_X , except that it is not assumed that $\operatorname{div} X(0) \neq 0$. We say that Γ is a local transversely product component of $\operatorname{Sing}\mathscr{F}$ if Γ is a compact irreducible component of $\operatorname{Sing}\mathscr{F}$ and \mathscr{F} is a transversely product at each $p \in \Gamma$. In particular, if $\Gamma \subset K(\mathscr{F})$ we say that Γ is a Kupka component — for more information about Kupka singularities and Kupka components we refer the reader to [1–7]. If Γ is a transversely product component of $\operatorname{Sing}\mathscr{F}$, we can cover Γ by finitely many normal coordinates like ψ , with the same vector field X: that is, there exist a holomorphic vector field X on \mathbb{D}^{k+1} with a unique singularity at the origin and a covering of Γ by open sets $(V_\alpha)_{\alpha \in A}$ such that each V_α supports a biholomorphism $\psi_\alpha : V_\alpha \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ that maps $\Gamma \cap V_\alpha$ onto $\{0\} \times \mathbb{D}^m$ and conjugates \mathscr{F} with the foliation \mathscr{F}_X . The sets (V_α) can be chosen arbitrarily close to Γ .

In [8], the author proves that a local transversely product component of a codimension one foliation on \mathbb{P}^n is necessarily a Kupka component. The goal of the present paper is to generalize this theorem to foliations of any codimension.

Theorem 1. Let \mathscr{F} a holomorphic foliation of dimension ≥ 2 and codimension ≥ 1 on \mathbb{P}^n . Let Γ be a transversely product component of Sing \mathscr{F} . Then Γ is a Kupka component.

This theorem is a corollary of the following result.

Theorem 2. Let \mathscr{F} a holomorphic foliation of dimension ≥ 2 and codimension $k \ge 1$ on a complex manifold M. Suppose that \mathscr{F} is defined by an open covering $(U_j)_{j\in J}$ of M and a collection of k-forms $\eta_j \in \Omega^k(U_j)$. Let L be the line bundle defined by the cocycle (g_{ij}) such that $\eta_i = g_{ij}\eta_j$, $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$. Let Γ be a transversely product component of Sing \mathscr{F} that is not a Kupka component. Then $c_1(L|_{\Gamma}) = 0$.

2. Proof of the results

Proof of Theorem 2. Let dim M = k + m + 1. As explained in the introduction, there exist a holomorphic vector field X on \mathbb{D}^{k+1} with a unique singularity at the origin and a covering of Γ by open sets $(V_{\alpha})_{\alpha \in A}$ such that each V_{α} is contained in V and supports a biholomorphism $\psi_{\alpha} : V_{\alpha} \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ that maps $\Gamma \cap V_{\alpha}$ onto $\{0\} \times \mathbb{D}^m$ and conjugates \mathscr{F} with the foliation \mathscr{F}_X generated by the commuting vector fields $X, \partial_{y_1}, \ldots, \partial_{y_m}$. Notice that div(X)(0) = 0, because Γ is not a Kupka component. Since \mathscr{F}_X is defined by the k-form $\omega = i_X \mu$, where $\mu = dx_1 \wedge \cdots \wedge dx_{k+1}$, we have that $\mathscr{F}|_{V_{\alpha}}$ is defined by the k-form $\psi_{\alpha}^*(\omega)$. If $V_{\alpha} \cap V_{\beta} \neq \emptyset$, there exists $\theta_{\alpha\beta} \in \mathcal{O}^*(V_{\alpha} \cap V_{\beta})$ such that

$$\psi_{\alpha}^{*}(\omega) = \theta_{\alpha\beta}\psi_{\beta}^{*}(\omega). \tag{1}$$

Therefore the cocycle $(\theta_{\alpha\beta})$ define the line bundle *L* restricted to some neighborhood of Γ . Thus, in order to prove that $c_1(L|_{\Gamma}) = 0$ it is enough to show that each $\theta_{\alpha\beta}|_{\Gamma}$ is locally constant. Fix some $\alpha, \beta \in A$ such that $V_{\alpha} \cap V_{\beta} \neq \emptyset$. If we set $\psi = \psi_{\alpha} \circ \psi_{\beta}^{-1}$ and $\theta = \theta_{\alpha\beta} \circ \psi_{\beta}^{-1}$, from (1) we have that $\psi^*(\omega) = \theta\omega$, which means that ψ preserves the foliation \mathscr{F}_X . It suffices to prove that the derivatives $\theta_{y_1}(p), \dots, \theta_{y_m}(p)$ vanish if $p \in \{0\} \times \mathbb{D}^m$. Since ∂_{y_1} is tangent to \mathscr{F}_X , then the vector field $\psi_*(\partial_{y_1})$ is tangent to \mathscr{F}_X and so we can express

$$\psi_*(\partial_{y_1}) = \lambda X + \lambda_1 \partial_{y_1} + \dots + \lambda_m \partial_{y_m},$$

where $\lambda, \lambda_1, \dots, \lambda_m$ are holomorphic. Then

$$\mathscr{L}_{\psi_*(\partial_{y_1})}\omega = \mathscr{L}_{\lambda X}\omega = \lambda \mathscr{L}_X\omega + d\lambda \wedge i_X\omega = \lambda \mathscr{L}_X\omega = \lambda \operatorname{div}(X)\omega,$$

where the last equality follows from the identity $\omega = i_X \mu$. Thus, since

$$\psi^*\left(\mathscr{L}_{\psi_*(\partial_{y_1})}\omega\right) = \mathscr{L}_{\partial_{y_1}}\psi^*\omega = \mathscr{L}_{\partial_{y_1}}(\theta\omega) = \theta_{y_1}\omega,$$

we obtain that

$$\theta_{y_1}\omega = \psi^* (\lambda \operatorname{div}(X)\omega) = \lambda(\psi) \operatorname{div}(X)(\psi)\theta\omega$$

and therefore $\theta_{y_1}(p) = 0$ if $p \in \{0\} \times \mathbb{D}^m$, because div(*X*) vanishes along $\{0\} \times \mathbb{D}^m$. In the same way we prove that $\theta_{y_2}(p) = \cdots = \theta_{y_m}(p) = 0$ if $p \in \{0\} \times \mathbb{D}^m$, which finishes the proof.

Proof of Theorem 1. Suppose that Γ is not a Kupka component. Let *L* be the line bundle associated to \mathscr{F} as in the statement of Theorem 2. We notice that $c_1(L) \neq 0$, otherwise \mathscr{F} will be defined by a global *k*-form on \mathbb{P}^n , which is impossible. Then, if we take an algebraic curve $\mathscr{C} \subset \Gamma$, we have $c_1(L) \cdot \mathscr{C} \neq 0$. Therefore, if Ω is a 2-form on \mathbb{P}^n in the class $c_1(L)$ and *V* is a tubular neighborhood of Γ ,

$$c_1(L|_{\Gamma}) \cdot \mathscr{C} = \int_{\mathscr{C}} \Omega|_{\Gamma} = \int_{\mathscr{C}} \Omega = c_1(L) \cdot \mathscr{C} \neq 0,$$

which contradicts Theorem 2.

References

- [1] M. Brunella, "Sur les feuilletages de l'espace projective ayant une composante de Kupka", *Enseign. Math.* **55** (2009), no. 3-4, p. 227-234.
- [2] O. Calvo-Andrade, "Foliations with a Kupka component on Algebraic Manifolds", Bol. Soc. Bras. Mat. 30 (1999), no. 2, p. 183-197.
- [3] _____, "Foliations of codimension greater than one with a Kupka component", *Qual. Theory Dyn. Syst.* 8 (2009), no. 2, p. 241-253.
- [4] _____, "Foliations with a radial Kupka set on projective spaces", Bull. Braz. Math. Soc. (N.S.) 47 (2016), no. 4, p. 1071-1083.
- [5] O. Calvo-Andrade, M. Corrêa, A. Fernández-Pérez, "Higher codimensional foliations with Kupka singularities", Int. J. Math. 28 (2017), no. 3, article no. 1750019 (29 pages).
- [6] D. Cerveau, A. Lins-Neto, "Codimension-one foliations in CPⁿ, n ≥ 3, with Kupka components", in *Complex analytic methods in dynamical systems*, Astérisque, vol. 222, Société Mathématique de France, 1994, p. 93-132.
- [7] I. Kupka, "The singularities of integrable structurally stable pfaffian forms", *Proc. Natl. Acad. Sci. USA* **52** (1964), p. 1431-1432.
- [8] A. Lins-Neto, "Local transversely product singularities", Ann. Henri Lebesgue 4 (2021), p. 485-502.
- [9] A. S. de Medeiros, "Structural stability of integrable differential forms", in *Geometry and Topology*, Lecture Notes in Mathematics, Springer, 1977, p. 395-428.