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Abstract. The strata of the moduli spaces of Abelian differentials are non-homogenous spaces carrying
natural bi-algebraic structures. Partly inspired by the case of homogenous spaces carrying bi-algebraic
structures (such as torii, Abelian varieties and Shimura varieties), Klingler and Lerer recently showed that
any bi-algebraic curve in a stratum of the moduli space of Abelian differentials is linear provided that the
so-called condition (⋆) is fulfilled.

In this note, we construct a non-linear bi-algebraic curve, resp. surface, of Abelian differentials of genus 7,
resp. 10.

Résumé. Les strates des espaces de modules de différentielles abéliennes sont des espaces non-homogènes
possédant des structures bi-algébriques naturelles. Partiellement inspirés par le cas des espaces homogènes
bi-algébriques (comme les tores, les variétés abéliennes et les variétés de Shimura), Klingler et Lerer ont
récemment montré qu’une courbe bi-algébrique dans un strate d’un espace de modules de différentielles
abéliennes est linéaire pourvu que la soi-disant condition (⋆) est satisfaite.

Dans cette note, on construit une courbe, resp. surface, bi-algébrique non-linéaire de différentielles
abéliennes de genre 7, resp. 10.

Manuscript received 6 March 2023, revised 31 May 2023, accepted 24 June 2023.

1. Introduction

The study of transcendence properties and unlikely intersections in Diophantine geometry is
a fascinating topic possessing a vast literature developing in many directions including those
related to the interplay between Hodge theory and the geometry of homogenous spaces such
as Abelian varieties and their moduli spaces (that is, Shimura varieties). In this context, an
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impressive number of heuristic principles and rigorous results1 was discovered by many authors,
and, as a way to unify these statements and also suggest new ones, the point of view of bi-
algebraic structures became increasingly popular: see, for instance, the survey [10] and the
articles [2] and [3].

In their recent work [9], Klingler and Lerer proposed2 to extend the bi-algebraic point of view
to the non-homogenous setting of moduli spaces of Abelian differentials. More concretely, the
moduli space of Abelian differentials of genus g is stratified into complex quasi-projective alge-
braic orbifolds H(κ) parametrising non-trivial Abelian differentials whose zeroes have multiplic-
ities prescribed by a list κ= (k1, . . . ,kσ) such that k1 +·· ·+kσ = 2g −2. As it was proved by Veech
and Masur, the relative periods of the elements of H(κ) can be used to define the so-called pe-
riod charts inducing a linear integral structure on the analytification of H(κ). In particular, af-
ter projectivising the stratum H(κ), κ = (k1, . . . ,kσ), we obtain a quasi-projective orbifold H (κ)
of dimension 2g −2+σ whose analytification possesses a linear projective structure. In this set-
ting, a closed, irreducible, algebraic subvariety W of H (κ) is bi-algebraic if its analytification W an

is algebraic in period charts3, cf. [9, Def. 1.1], and Klingler and Lerer proved that all bi-algebraic
curves in the strata H (2) and H (1,1) of Abelian differentials of genus two are (projectively) linear
(in period charts), and, in general, any bi-algebraic curve in H (κ) is linear provided their condi-
tion (⋆) is satisfied (cf. [9, Thm. 2.8 & 2.10]). Furthermore, they asked whether the bi-algebraicity
of a subvariety of H (κ) is already enough to automatically ensure its linearity without extra con-
ditions (cf. [9, Conj. 2.7]). The main results of this paper say that some bi-algebraic subvarieties
can be non-linear:

Theorem 1. The projectivisation of the family {(Cu ,ωu)}u∈C\{0,±1} of Abelian differentials de-
fined by

Cu := {y6 = x(x −1)(x +1)(x −u)} and ωu := x2dx/y5, (1)

is a bi-algebraic curve in H (12) which is not linear.

Remark 2. Note that Cu is a branched cover of {z2 = x(x −1)(x +1)(x −u)}. In particular, the
family of Abelian differentials {(Cu , [dx/y3])}u∈C\{0,±1} corresponds to an arithmetic Teichmüller
curve (in the sense of [8, §5]).

Theorem 3. Given a generic algebraic curve C ⊂ C3, the projectivisation of the family
{(Ca,b,c ,ωa,b,c )} (a,b,c)∈C ,

a,b,c∈C\{0,1}
distinct

of Abelian differentials defined by

Ca,b,c := {y6 = x(x −1)(x −a)(x −b)(x − c)} and ωa,b,c := dx/y5, (2)

is a bi-algebraic curve in H (18) which is not linear.

In particular, observe that if S ⊂ C3 is a generic algebraic surface, then the projectivisation
of the family {(Ca,b,c ,ωa,b,c )} (a,b,c)∈S,

a,b,c∈C\{0,1}
distinct

is a bi-algebraic surface in H (18) which is not linear. We

do not have any example of a non linear bi-algebraic subvariety of dimension at least 3 in some
stratum of abelian differentials.

The proofs of these statements occupy the rest of the paper. More precisely, after a brief
discussion of the variations of Hodge structures associated to the families of curves Cu and Ca,b,c

in Section 3, we establish Theorem 1, resp. 3, in Section 5, resp. 6.

1Such as Ax–Schanuel conjectures, Ax–Lindemann type theorems, André–Oort and Zilber–Pink conjectures.
2This is a natural goal because the moduli spaces of Abelian differentials seem to “behave” like homogenous spaces:

for example, the celebrated breakthroughs by Eskin, Mirzakhani and Mohammadi [5], [6] show that this is the case from
the point of view of Dynamical Systems.

3That is, the relative periods of Abelian differentials projectively lying in W an satisfy exactly codimH (κ)(W ) indepen-

dent algebraic relations (over C).
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2. Eigencohomology of cyclic covers

Let t = (t1, . . . , tn) ∈ Cn be a collection of distinct complex numbers. The plane algebraic curve
defined by the equation

yd = (x − t1) . . . (x − tn)

compactifies as a smooth compact Riemann surface Ct by adding a = gcd(d ,n) points at infinity.
The function X t : Ct → P1 defined by X t (x, y) = x is a ramified covering over the sphere having n
critical points of order d and a critical point(s) of order d/a. So by Riemann–Hurwitz, the genus
g of Ct is given by the formula:

g = (n −1)(d −1)− (a −1)

2
.

In particular, if (d ,n) = (6,4), g = 7, and if (d ,n) = (6,5), g = 10.
The covering X t is an abelian covering whose Galois group is generated by the transformation

πt (x, y) = (x,ζy) where ζ = exp(2iπ/d). We denote by H∗
ζ

(Ct ,C) the eigenspace Ker(π∗
t − ζ) ⊂

H∗(Ct ,C). Unless specified, a holomorphic/meromorphic eigenform on Ct is a form η such that
π∗

t η = ζη. The following result is well-known, see, e.g., [12, §3] for more details. We provide the
proof for completeness.

Lemma 4. In the regime n < d, we have

H 1,0
ζ

(Ct ,C) =
{

U (x)
dx

yd−1

∣∣∣∣U polynomial of degree ≤ n −2

}
.

Moreover, the eigenspace H 1
ζ

(Ct ,C) is made of cohomology classes of holomorphic eigenforms, i.e.

H 1
ζ (Ct ,C) ≃ H 1,0

ζ
(Ct ,C) and H 0,1

ζ
(Ct ,C) = H 1,0

ζd−1 (Ct ,C) = 0.

Proof. A form in H 1,0
ζ

(Ct ) can be expressed as η=U (x) dx
yd−1 where U is a meromorphic function

on P1, which is holomorphic except possibly at the points ti ’s and the point at infinity. In the
sequel assume that U does not vanish identically.

Around the point ti , we can write U (x) ∼ cst(x − ti )ki for some integer ki and a non zero
constant. We can also take y as a holomorphic coordinates and we have x − ti ∼ cst yd , so

η∼(ti ,0) cst ydki d y

We deduce for η to be holomorphic, ki must be non negative for every i = 1, . . . ,n, hence U is a
polynomial of x.

It will be convenient to introduce the integers b,c such that n = ab and d = ac. Around a
point ∞ of Ct at infinity, we have a coordinate z so that x ∼ cst z−c and y ∼ cst z−b . We then have
(denoting deg(U ) the degree of U )

η∼∞ cst z−c deg(U )−c−1+b(d−1)

which shows that η is holomorphic iff deg(U ) ≤ b(d−1)−c−1
c = n −1− (b+1)

c , or equivalently, since
b < c, iff deg(U ) ≤ n −2. In particular dim H 1,0

ζ
(Ct ,C) = n −1 = dim H 1

ζ
(Ct ,C) so we are done. □

3. Finite monodromies

The condition (⋆) of Klingler and Lerer (cf. [9, Def. 6.5]) indicates that the families of curves
whose Jacobians possess non-trivial fixed parts are potential sources of non-linear bi-algebraic
subvarieties: see [9, §6.4] for more explanations. In this direction, we note that such families of
curves were previously studied by several authors in the context of Teichmüller dynamics (e.g.,
[1, 7, 11–13] among many others), and, in fact, the families of curves Cu and Ca,b,c are particular
instances of the families of curves described in [12, Thm. 8.3]. For later reference, we recall below
some of the remarkable properties of the families of Jacobians of Cu and Ca,b,c .
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Proposition 5. If (d ,n) = (6,4) or (d ,n) = (6,5), the monodromy of the Gauss–Manin connection
on the bundle H 1

ζ
is finite. In particular, the families of forms {(Cu , [ωu])}u ̸=0,±1, lying in H (12),

and {(Ca,b,c , [ωa,b,c ])}a,b,c ̸=0,1
di st i nct

, lying in H (18), are bi-algebraic.

Here [ω] is the projective class of ω in the projectivization of the Hodge bundle.

Proof. This statement is included in Theorem 8.3 of [12]. Let us provide the proof for complete-
ness. Lemma 4 ensures that the Gauss–Manin invariant hermitian form i

2

∫
ω∧ω on H 1

ζ
(resp.

H 1
ζ5 = H 1

ζ
) is positive definite, so its monodromy is unitary. Moreover, the bundle H 1(Ct ,C)ζ ⊕

H 1(Ct ,C)ζ5 is defined over Q (because ζ, ζ5 are the sole primitive sixth roots of unity). So the
monodromy is integral (it is the restriction of the symplectic integral representation to a ratio-
nal subspace) and preserves a unitary form; hence it is finite. In particular, as it is explained
in [12, pp. 929] for instance, since the periods of the corresponding families of forms are holo-
morphic (multivalued) functions of t which are algebraic when the monodromy is finite, one has
that the corresponding families of forms are bi-algebraic. □

4. Picard–Fuchs theory: computation of the Gauss–Manin connection

The vector bundle H 1
ζ

over the configuration space B of n distinct complex numbers is isomor-
phic, thanks to Lemma 4, to the product B ×Cn−2[x], where Cn−2[x] stands for the space of poly-
nomials of degree ≤ n −2. More precisely, for U ∈Cn−2[x], we denote

ωt ,U =U (x)
dx

yd−1
(3)

the corresponding holomorphic eigenform on Ct . The map (t ,U ) 7→ ωt ,U gives the desired
trivialization. In the following, we compute the Gauss–Manin connection on H 1

ζ
in this latter:

it is defined as follows
∇·(ωt ,U ) =ωt ,∇·U .

We denote
P (x) = (x − t1) . . . (x − tn). (4)

Proposition 6. In the trivialization H 1
ζ
≃ B × Cn−2[x] given by Lemma 4, the Gauss–Manin

connection is given by

∇∂tk
U =−U (tk )

P ′(tk )

P (x)−P (tk )−P ′(tk )(x − tk )

(x − tk )2 + 1

d

U (tk )

P ′(tk )

P ′(x)−P ′(tk )

x − tk
+ d −1

d

U (x)−U (tk )

x − tk

for any U ∈Cn−2[x].

Proof. Let Ni be simply connected neighborhoods of the ti ’s, chosen sufficiently small to be
disjoint. Denoting by N =∪Ni , and Y = C \ N , the Riemann surfaces X −1

t ′ (Y ) for t ′ = (t ′1, . . . , t ′n) ∈∏
i Ni , are naturally identified to X −1

t (Y ) via a holomorphic family of biholomorphisms Φt ′,t :
X −1

t (Y ) → X −1
t ′ (Y ) that satisfy X t ′ ◦Φt ′,t = X t and Φt ,t = id. Using this family it is possible to

derivate a holomorphic family of holomorphic 1-forms ωt on X −1
t (Y ) with respect to the tk -

variables, by the formula

∂tkωt :=
(
∂t ′k

Φ∗
t ′,tωt ′

)
|t ′=t

;

by shrinking N , this defines a meromorphic 1-form on Ct which is holomorphic apart from the
points (ti ,0) ∈ Ct but that might develop a pole at each (ti ,0) ∈ Ct . These poles have no residue
at the points (ti ,0), so the period of ∂tkωt is well-defined as an element of H 1(Ct ,C): for more
discussion about this construction (leading to the Kodaira–Spencer map and the Gauss–Manin
connection), see Clemens’ book [4, §2.10] and Voisin’s book [14, Ch. 9].
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Applied to the family of eigenforms {(Ct ,ωt ,U )}t∈Cn \∆, where U ∈Cn−2[x], the derivative ∂tkωt

is a meromorphic eigenform, which is cohomologous to a holomorphic eigenform ωt ,Vt with
Vt ∈Cn−2[x] by Lemma 4. By definition

∇tk U :=Vt . (5)

This equation is characterized by the existence of a (unique) meromorphic eigenfunction f : Ct →
P1 which is such that

∂tkωt ,U −ωt ,Vt = d f .

Here eigenfunction means f ◦πt = ζ f . Let us now make the computations and find the function f .
Derivating the multi-valued function y = ∏

j (x − t j )1/d with respect to the variables tk yields
∂tk y = −y

d(x−tk ) from which we get

∂tk

(
U (x)

dx

yd−1

)
= d −1

d

U (x)

x − tk

dx

yd−1
. (6)

This meromorphic eigenform has a pole at the point (tk ,0), which in the coordinates y of Ct at
(tk ,0) has the following local behaviour (assuming that U (tk ) ̸= 0)

∂tk

(
U (x)

dx

yd−1

)
∼(tk ,0) (d −1)

U (tk )

yd
dy. (7)

The meromorphic function f : Ct →P1 defined by

f (x, y) := y

x − tk
(8)

has a unique pole at the point (tk ,0) and it has the following local behaviour

f ∼(tk ,0)
P ′(tk )

yd−1
(9)

(it has no pole at infinity since d ≥ n). In particular, the eigenform

∂tk

(
U (x)

dx

yd−1

)
+ U (tk )

P ′(tk )
d f

is holomorphic on Ct , we thus have

∂tk

(
U (x)

dx

yd−1

)
+ U (tk )

P ′(tk )
d f =ωt ,Vt , (10)

with ∇tk U =Vt by (5), so it remains to compute (10). We have

d f = f
d f

f
= y

x − tk

(
d y

y
− dx

x − tk

)
= y

x − tk

(
1

d

∑
j ̸=k

dx

x − t j
+

(
1

d
−1

)
dx

x − tk

)

= P (x)

x − tk

(
1

d

∑
j ̸=k

1

x − t j
− d −1

d

1

x − tk

)
dx

yd−1
.

So using the identity
P (x)

x − tk

∑
j ̸=k

1

x − t j
=

(
P (x)

x − tk

)′
= P ′(x)

x − tk
− P (x)

(x − tk )2

we deduce

Vt (x) = d −1

d

(
U (x)

x − tk
− U (tk )

P ′(tk )

P (x)

(x − tk )2

)
+ 1

d

U (tk )

P ′(tk )

(
P ′(x)

x − tk
− P (x)

(x − tk )2

)
.

Rearranging terms and using P (tk ) = 0 we find the expression of the Gauss–Manin connection
given by Proposition 6. □
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5. Proof of Theorem 1

In view of Proposition 5, our task is reduced to check that the lines spanned by ωu , u ̸= 0,1, sit
“generically” on H 1

ζ
(Cu ,C). A direct application of Proposition 6 shows that the Gauss–Manin on

H 1
ζ

in the trivialization given by the sections pk = xk dx
y5 for k = 0,1,2 is

∇= d + dt

6t (1−u2)

5u2 −4 u u2

5u 5u2 5u
2 2u 2u2

 (11)

By Proposition 5, it suffices to prove that the family of periods {p2,u}u ̸=0,±1 does not lie in a
flat strict subbundle of H 1

ζ
, which will be achieved by proving that at a generic parameter u

the periods p2,u ,∇u p2,u ,∇2
u p2,u are linearly independent in H 1

ζ
(Cu ,C). We use the basis pk,u of

H 1
ζ

(Cu ,C) to perform the computations, together with the explicit expression of the Gauss–Manin
connection (11). We have in this basis

p2,u =
0

0
1

 , ∇u p2,u = 1

6u(1−u2)

 u2

5u
2u2


and

∇u
(
6(1−u2)∇u p2,u

)= 1

6(1−u2)

 7+u2

40u
24−8u2

 .

Those three vectors are generically linearly independent, and by Leibniz rule, so are the vectors
p2,u ,∇u p2,u ,∇2

u p2,u .

Remark 7. The family ({y10 = x(x − 1)(x − v)}, [dx/y9])v ̸=0,1 is a bi-algebraic curve in H (16)
because dx/y9 lies in a fixed part of dimension four (cf. [12, Thm. 8.3]). Nonetheless, a direct
calculation using Proposition 6 reveals that this bi-algebraic curve is linear.

6. Proof of Theorem 3

In view of Proposition 5, our task is reduced to check that the lines spanned byωa,b,c , a,b,c ̸= 0,1,
sit “generically” on the fibers of the vector bundle H 1

ζ
. As it turns out, this fact is a particular case

of Theorem 6.1 in [12], where a result of Veech and Masur (about the period charts) is cleverly
explored to derive that the (period) map taking the configuration of points {0,1, a,b,c} to [dx/y5]
is a holomorphic local diffeomorphism.4

In the sequel, we give an alternative proof of the non-linearity of the bi-algebraic surface
{(Ca,b,c ,ωa,b,c )}a,b,c∈C\{0,1}

distinct
via Proposition 6: in particular, we do not rely on the results of Veech

and Masur, but rather perform direct calculations (which might be of independent interest).
Proposition 6 shows that

∇∂u

dx

y5 = 1

P ′(u)

(
1

6

P ′(x)−P ′(u)

x −u
− P (x)−P ′(u)(x −u)

(x −u)2

)
dx

y5

(where u ∈ {a,b,c} and P (x) = x(x −1)(x −a)(x −b)(x − c)).
At this point, it remains to check that

dx

y5 , ∇∂a

dx

y5 , ∇∂b

dx

y5 , ∇∂c

dx

y5

4Furthermore, McMullen also gets in [12, Thm. 9.1] that the periods of dx/y5 are algebraic functions of (a,b,c).
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are linearly independent. For this sake, let us write them in terms of the basis {xk dx/y5 : k =
0,1,2,3}. If we denote {u, v, w} = {a,b,c}, then

P ′(x)−P ′(u)

x −u
= (u3 −u2 +uv −u2v +uw −u2w −2v w +uv w)

+ (u2 −u +3v −uv +3w −uw +3v w)x + (u −4−4v −4w)x2 +5x3,

P (x)−P ′(u)(x −u)

(x −u)2 = (u3 −u2 +uv −u2v +uw −u2w − v w +uv w)

+ (u2 −u + v −uv +w −uw + v w)x + (u −1− v −w)x2 +x3,

so that
1

6

P ′(x)−P ′(u)

x −u
− P (x)−P ′(u)(x −u)

(x −u)2 = 1

6
(5u2 −5u3 −5uv +5u2v −5uw +5u2w +4v w −5uv w)

+ 1

6
(5u −5u2 −3v +5uv −3w +5uw −3v w)x

+ 1

6
(2−5u +2v +2w)x2 − x3

6
.

In particular, the matrix M whose column vectors are dx
y5 , P ′(a)∇∂a

dx
y5 , P ′(b)∇∂b

dx
y5 , P ′(c)∇∂c

dx
y5

written in the basis dx/y5, xdx/y5, x2dx/y5, x3dx/y5 is

M =
 1 ∗ ∗ ∗

0 1
6 (5a −5a2 −3b +5ab −3c +5ac −3bc) 1

6 (5b −5b2 −3a +5ab −3c −3ac +5bc) 1
6 (5c −5c2 −3a +5ac −3b −3ab +5bc)

0 1
6 (2−5a +2b +2c) 1

6 (2+2a −5b +2c) 1
6 (2+2a +2b −5c)

0 − 1
6 − 1

6 − 1
6


Since the determinant of M is

det(M) =− 91

216
(a −b)(a − c)(b − c),

the proof of Theorem 3 is now complete.

Remark 8. The determinant of dx
y5 , ∇∂a

dx
y5 , ∇∂b

dx
y5 , ∇∂c

dx
y5 in the basis dx/y5, xdx/y5, x2dx/y5,

x3dx/y5, which is somehow more natural, is given by the expression

− 91

216

(a −b)(a − c)(b − c)

P ′(a)P ′(b)P ′(c)
= 91

216

1

abc(a −1)(b −1)(c −1)(a −b)(a − c)(b − c)
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