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Abstract. For integer h ≥ 2 and A ⊆ N, we define h A to be the set of all integers which can be written as a
sum of h, not necessarily distinct, elements of A. The set A is called an asymptotic basis of order h if n ∈ h A
for all sufficiently large integers n. An asymptotic basis A of order h is minimal if no proper subset of A
is an asymptotic basis of order h. For W ⊆ N, denote by F∗(W ) the set of all finite, nonempty subsets of
W . Let A(W ) be the set of all numbers of the form

∑
f ∈F 2 f , where F ∈ F∗(W ). In this paper, we give some

characterizations of the partitionsN=W1∪·· ·∪Wh with the property that A = A(W1)∪·· ·∪A(Wh ) is a minimal
asymptotic basis of order h. This generalizes a result of Chen and Chen, recent result of Ling and Tang, and
also recent result of Sun.
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1. Introduction

LetN be the set of all nonnegative integers. For an integer h ≥ 2 and A ⊆N, we define

h A = {n : n = a1 +·· ·+ah , ai ∈ A, i = 1,2, . . . ,h}.
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The set A is called an asymptotic basis of order h if n ∈ h A for all sufficiently large integers n. An
asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order
h. This means that for any a ∈ A, the set Ea = h A \ h(A \ {a}) is infinite.

Let W be a nonempty subset of N. Denote by F∗(W ) the set of all finite, nonempty subsets of
W . Let A(W ) be the set of all numbers of the form

∑
f ∈F 2 f , where F ∈F∗(W ).

In 1988, Nathanson [8] gave a construction of minimal asymptotic bases of order h.

Theorem A. Let h ≥ 2 and let Wi = {n ∈ N : n ≡ i (mod h)} for i = 0,1, . . . ,h − 1. Let A =
A(W0)∪ A(W1)∪·· ·∪ A(Wh−1). Then A is a minimal asymptotic basis of order h.

Let h ≥ 2 and N = W1 ∪ ·· · ∪Wh be a partition; that is, Wi ∩W j = ; if i ̸= j . Nathanson also
posed the following open problem:

Problem 1. Characterise the partitionsN=W1 ∪·· ·∪Wh with the property that A = A(W1)∪·· ·∪
A(Wh) is a minimal asymptotic basis of order h.

In 2011, Chen and Chen [1] solved Problem 1 for h = 2. They proved the next theorem.

Theorem B. Let N = W1 ∪W2 be a partition with 0 ∈ W1 such that W1 and W2 are infinite. Then
A = A(W1)∪ A(W2) is a minimal asymptotic basis of order 2 if and only if either W1 contains no
consecutive integers or W2 contains consecutive integers or both.

In 2020, Ling and Tang [7] focus on Problem 1 for h = 3; they proved the following result:

Theorem C. For any i ∈ {0,1,2,3,4,5}, if W0 = {n ∈ N : n ≡ i , i + 1 (mod 6)}, W1 = {n ∈ N : n ≡
i +2, i +4 (mod 6)} and W2 = {n ∈N : n ≡ i +3, i +5 (mod 6)}, then A = A(W0)∪ A(W1)∪ A(W2) is
a minimal asymptotic basis of order three.

In 2021, Sun [11] gave a generalization of Theorem A.

Theorem D. Let h and t be two positive integers with h ≥ 2. Let

W j =
∞⋃

i=0
[i ht + j t , i ht + j t + t −1]

for j = 0,1, . . . ,h − 1. Then A = A(W0)∪ A(W1)∪ ·· · ∪ A(Wh−1) is a minimal asymptotic basis of
order h.

In 2011, Chen and Chen [1] gave the following sufficient condition for Problem 1.

Theorem E. Let h ≥ 2 and r be the least integer with r > logh/log2. Let N = W1 ∪ ·· ·∪Wh be a
partition such that each set Wi is infinite and contains r consecutive integers for i = 1, . . . ,h. Then
A = A(W1)∪·· ·∪ A(Wh) is a minimal asymptotic basis of order h.

For other related results about minimal asymptotic bases, see [2–5, 10, 12].
In this paper, we continue to focus on Problem 1. First, we give a generalization of Theorem C

and Theorem D. For W ⊆N, set W (x) = |{n ∈W : n ≤ x}|.
Theorem 2. Let h ≥ 2 be an integer and N = W1 ∪ ·· · ∪Wh be a partition such that each set
W j (1 ≤ j ≤ h) satisfies |W j (ht −1)| = t for infinitely many integers t . Then A = A(W1)∪·· ·∪A(Wh)
is a minimal asymptotic basis of order h.

Our second theorem is a generalization of Theorem E.

Theorem 3. Let h be an integer, h ≥ 2, andN=W1∪·· ·∪Wh be a partition such that each set Wi is
infinite for i = 1, . . . ,h, 0 ∈W1 and every Wi contains

⌈ log(h+1)
log2

⌉
consecutive integers for i = 2, . . . ,h.

Then A = A(W1)∪·· ·∪ A(Wh) is a minimal asymptotic basis of order h.

Remark 4. It is easy to see that
⌈ log(h+1)

log2

⌉
is the least integer greater than logh/log2.

There is a more limited variant of Problem 1, see [6, 9, 12]
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2. Lemmas

Lemma 5 (see [8, Lemma 1]). Let N = W1 ∪ ·· · ∪ Wh , where Wi ̸= ; for i = 1, . . . ,h. Then
A = A(W1)∪·· ·∪ A(Wh) is an asymptotic basis of order h.

Lemma 6. Let w1, . . . , ws be s distinct nonnegative integers. If
s∑

i=1
2wi ≡

t∑
j=1

2x j (mod 2ws+1),

where 0 ≤ x1, . . . , xt < ws +1 are integers not necessarily distinct, then there exist nonempty disjoint
sets J1, . . . , Js of {1,2, . . . , t } such that

2wi = ∑
j∈Ji

2x j

for i = 1, . . . , s.

Proof. By the proof of Lemma 2 from [8], there exist nonempty subsets J1, . . . , Js of {1,2, . . . , t }
such that

2wi = ∑
j∈Ji

2x j

for i = 1, . . . , s.
The result is trivial for s = 1. Now we assume that s ≥ 2. Since there exists a subset J1 of

{1,2, . . . , t } such that

2w1 = ∑
j∈J1

2x j ,

it follows that ∑
2≤i≤s

2wi ≡ ∑
j∈{1,...,t }\J1

2x j (mod 2ws+1),

which implies that there exists a subset J2 of {1,2, . . . , t } \ J1 such that

2w2 = ∑
j∈J2

2x j ,

and so J1 ∩ J2 =;. Continuing this process, it follows that there exist nonempty disjoint subsets
J1, . . . , Js of {1,2, . . . , t } such that

2wi = ∑
j∈Ji

2x j ,

for i = 1, . . . , s.
This completes the proof of Lemma 6. □

3. Proof of Theorem 2

By Lemma 5, it follows that A is an asymptotic basis of order h. For any a ∈ A, there exists
j ∈ {1,2, . . . ,h} such that a ∈ A(W j ). Without loss of generality, we may assume that a ∈ A(W1).
Then there exists a set K ⊆W1 such that a =∑

i∈K 2i . Since there exist infinitely many t such that

|W j (ht −1)| = t

for j = 1,2, . . . ,h, it follows that there exists an integer tn such that

tnh ≤ minK < tn+1h.

Let

nT = a +
h∑

j=2

∑
v∈W j ∩[0,tn+1h−1]

2v +
h∑

j=2

∑
v∈W j ∩[tn+1h,T ]

2v ,
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where T is an integer such that 2T > a. Next we shall prove that nT ∈ Ea . Note that K (tn+1h−1) ̸=
; and

nT = ∑
j∈K (tn+1h−1)

2 j +
h∑

j=2

∑
v∈W j ∩[0,tn+1h−1]

2v +2tn+1hm

for some m ≥ 0. Let nT = b1 +b2 +·· ·+bh be any representation of nT as a sum of h elements of
A and let

bi =
∑

i∈Si

2i

for i = 1,2. . . ,h. Let
ci =

∑
j∈Si (tn+1h−1)

2 j

for i = 1,2, . . . ,h. Then
ci ≡ bi (mod 2tn+1h)

and
|Si (tn+1h −1)| ≤ tn+1

for i = 1,2, . . . ,h, which implies that∑
k∈K (tn+1h−1)

2k +
h∑

j=2

∑
v∈W j ∩[0,tn+1h−1]

2v ≡ ∑
1≤i≤h

ci ≡
∑

1≤i≤h

∑
j∈Si (tn+1h−1)

2 j (mod 2tn+1h).

Let ∑
k∈K (tn+1h−1)

2k +
h∑

j=2

∑
v∈W j ∩[0,tn+1h−1]

2v ≡
s∑

j=1
2x j (mod 2tn+1h),

where s is an integer such that s ≤ tn+1h. By Lemma 6, there exist nonempty disjoint subsets
J0, J1, . . . , Jtn+1(h−1) of {1,2, . . . , s} such that

2minK +
h∑

j=2

∑
v∈W j ∩[0,tn+1h−1]

2v = ∑
j∈J0

2x j + ∑
j∈J1

2x j + ∑
j∈J2

2x j +·· ·+ ∑
j∈Jtn+1(h−1)

2x j .

Therefore,
1+ tn+1(h −1) ≤ 1+|J1|+ · · ·+ |Jtn+1(h−1)| ≤ s ≤ tn+1h,

and so
tn+1(h −1) ≤ |J1|+ · · ·+ |Jtn+1(h−1)| ≤ tn+1h −1. (1)

Since |W j (tn+1h−1)| = tn+1 for any j ≥ 2, it follows from (1) and Lemma 6 that for any j ≥ 2, there
exist w ∈W j , J ⊆ {1,2, . . . , s} and |J | = 1 such that

2w = ∑
j∈J

2x j ,

which implies that x j = w ∈W j , and so

{b1, . . . ,bh} ̸⊆
h⋃

j=1, j ̸=m
A(W j )

for any m ≥ 2. Renumbering the indexes, we always assume that

bi ∈ A(Wi ), i ≥ 2.

Then

b1 = a +
(

h∑
j=2

∑
v∈W j ∩[0,tn+1h−1]

2v +
h∑

j=2

∑
v∈W j ∩[tn+1h,T ]

2v − ∑
2≤i≤h

bi

)
.

Since the binary representation of b1 is unique, it follows that b1 = a, that is nT ∈ Ea . Noting that
T is infinite, we have that A is minimal.

This completes the proof of Theorem 2.
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4. Proof of Theorem 3

By Lemma 5, it follows that A is an asymptotic basis of order h. For a ∈ A, we assume that
a ∈ A(Wi ). Let Ea = h A \ h(A \ {a}). Now we prove that Ea is infinite.

Let

nT = a + ∑
w∈[0,T ]\Wi

2w ,

where T is an integer with T > a such that each [0,T ]∩W j contains
⌈ log(h+1)

log2

⌉
consecutive integers

for j = 2, . . . ,h. To prove that nT ∈ Ea , it suffices to prove that if nT = a1 +a2 +·· ·+ah with ai ∈ A
for 1 ≤ i ≤ h, then there exists at least one ak = a.

We distinguish two cases according to whether i = 1 or 2 ≤ i ≤ h.

Case 1. i = 1. Suppose that there exists an integer j ≥ 2 such that

{a1, a2, . . . , ah} ⊆ ⋃
1≤l≤h,l ̸= j

A(W j ).

Let
{
b +1,b +2, . . . ,b +⌈ log(h+1)

log2

⌉}⊆ [0,T ]∩W j . Then by Lemma 6 there exists

{a′
1, . . . , a′

h} ⊆ ⋃
1≤l≤h,l ̸= j

A(W j )∪ {0}

such that

2b+1 +·· ·+2b+
⌈

log(h+1)
log2

⌉
= a′

1 +·· ·+a′
h .

Since a′
i ∉ A(W j ) for i = 1, . . . ,h, we have

a′
i ≤ 20 +21 +·· ·+2b = 2b+1 −1

for i = 1, . . . ,h. It follows that

2b+1 +·· ·+2b+
⌈

log(h+1)
log2

⌉
≤ h(2b+1 −1) < h2b+1,

that is 2
⌈

log(h+1)
log2

⌉
−1 < h, a contradiction. Hence, for any integer j ≥ 2, we have

{a1, a2, . . . , ah}⊈
⋃

1≤l≤h,l ̸= j
A(Wl ).

Renumbering the indexes, we may assume that ai ∈ A(Wi ) for i = 2,3, . . . ,h. It follows that

a1 = a + ∑
2≤ j≤h

( ∑
w∈[0,T ]∩W j

2w −a j

)
.

Since a ∈ A(W1), W1, . . . ,Wh are disjoint, and the binary representation of a1 is unique, we have
a1 = a. Therefore nT ∈ Ea , and Ea is infinite.

Case 2. i ≥ 2. Since nT is odd, therefore we may assume that a1 ∈ A(W1). Let 2 ≤ j ≤ h, j ̸= i .
Similar to the Case 1, we get that

{a1, . . . , ah}⊈
⋃

1≤k≤h,k ̸= j
A(Wk ).

Renumbering the indexes, we may assume that a j ∈ A(W j ) for j = 2,3, . . . , i − 1, i + 1, . . . ,h. It
follows that

ai = a + ∑
1≤ j≤h, j ̸=i

( ∑
w∈[0,T ]∩W j

2w −a j

)
.

Since a ∈ A(Wi ), W1, . . . ,Wh are disjoint, and the binary representation of ai is unique, we have
ai = a. Therefore nT ∈ Ea , and Ea is infinite.

This completes the proof.
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