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Abstract. We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality
−∂t (∆u)−∆u + σ

|x|2 u ≥ |x|µ|u|p in (0,∞)×B , under the inhomogeneous Dirichlet-type boundary condition

u(t , x) = f (x) on (0,∞)×∂B , where B is the unit open ball of RN , N ≥ 2, σ > −( N−2
2

)2, µ ∈ R and p > 1. In
particular, when σ ̸= 0, we show that the dividing line with respect to existence and nonexistence is given by
a critical exponent that depends on N , σ and µ.
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1. Introduction

We are concerned with the study of existence and nonexistence of solutions to the Sobolev-type
inequality

−∂t (∆u)−∆u + σ

|x|2 u ≥ |x|µ|u|p in (0,∞)×B , (1)

where u = u(t , x), B is the unit open ball of RN , N ≥ 2, σ>−( N−2
2

)2
, µ ∈R and p > 1. Problem (1)

is considered under the Dirichlet-type boundary condition

u = f on (0,∞)×∂B , (2)

where f = f (x) ∈ L1(∂B). We mention below some motivations for investigating problems of
type (1)–(2).

The corresponding equation to (1) belongs to the class of Sobolev-type equations of the form

∂t Au +Bu =V (x)F (u), (3)

where A and B are linear elliptic operators and F (u) is a nonlinear term with respect to u.
In our case, we have Au = −∆u, Bu = −∆u + σ

|x|2 u, V (x) = |x|µ and F (u) = |u|p . Equations
of type (3) arise in many mathematical models. For instance, the Hoff equation [19] (Au =
−∂xx u + u, Bu = 0, V = 1, F (u) = αu + βu3), the Barenblatt–Zheltov–Kochina equation [10]
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(Au = −∆u + cu, Bu = −∆u, V = 1, F (u) = 0) that describes nonstationary filtering processes in
fissured-porous media, the semiconductor equation [24] (Au =−∆u +u, Bu =−∆u, V = 1, Fu =
αu3) that describes nonstationary processes in crystalline semiconductors, the one-dimensional
Boussinesq equation [15] (Au = −∂xx u + u, Bu = 0, V = 1, F (u) = α∂xx

(|u|p−2u
)
), and many

others.
Sobolev-type equations and inequalities have been studied in various contexts: numerical

solutions [6,11,18,31], asymptotic behaviour of solutions [7,8,12,14], inverse problems [17,28–30]
and blow-up of solutions [5, 9, 13, 20, 21, 23–25, 27]. In particular, the issue of nonexistence of
(weak) solutions to various differential inequalities of Sobolev-type has been investigated in [25].
For instance, the special case of (1) with σ = µ = 0 has been studied in the whole space RN .
Namely, it was shown that the Sobolev-type inequality

−∂t (∆u)−∆u ≥ |u|p in (0,∞)×RN (4)

subject to the initial condition
u(0, x) = u0(x) in RN ,

where p > 1 and u0 ∈ L1(RN ), admits no nontrivial solution, provided that N ∈ {1,2}; or

N ≥ 3, p < N

N −2
.

An extension of the above result to a time-space-fractional version of (4) has been obtained in [5].
The issue of existence and nonexistence of solutions to evolution equations and inequalities

with Hardy potential in unbounded domains has been considered in several papers. For instance,
Hamidi and Laptev [16] invetsigated the higher order evolution inequality

∂k
t u −∆u + λ

|x|2 u ≥ |u|p in (0,∞)×RN (5)

subject to the initial condition
∂k−1

t u(0, x) ≥ 0 in RN . (6)

where ∂i
t u = ∂i u

∂t i , N ≥ 3, k ≥ 1, p > 1 and λ ≥ −( N−2
2

)2
. Namely, it was proven that, if one of the

following assumptions is satisfied:

λ≥ 0, 1 < p ≤ 1+ 2
2
k + s∗

;

or

−
(

N −2

2

)2

≤λ< 0, 1 < p ≤ 1+ 2
2
k − s∗

,

where

s∗ = N −2

2
+

√
λ+

(
N −2

2

)2

, s∗ = s∗+2−N ,

then (5)–(6) admits no nontrivial (weak) solution. In the parabolic case, among other problems,
Abdellaoui et al. [1] (see also [3]) considered problems of the form

∂t (up−1)−∆p u =λup−1

|x|p +uq (u > 0) in (0,∞)×RN , (7)

where 1 < p < N , q > 0 and 0 ≤ λ<
(

N−p
p

)p
. Namely, it was shown that there exist two exponents

q+(p,λ) and F (p,λ) such that,

(i) if p−1 < q < F (p,λ) < q+(p,λ) and u is a solution to (7) satisfying a certain behavior, then
u blows-up in a finite time;

(ii) if F (p,λ) < q < q+(p,λ), then under suitable condition on u(0, · ), (7) admits a global in
time positive solution.
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We refer also to [22], where (5) with k = 2 has been studied in an exterior domain of RN

under different types of inhomogeneous boundary conditions. Additional results related to
parabolic and elliptic equations involving Hardy potential in bounded domains of RN can be
found in [1–4, 26].

To the best of our knowledge, Sobolev-type equations/inequalities with Hardy potential have
not previously been studied.

Before presenting our obtained results, let us give the meaning of solutions to the considered
problem. Let

ω= (0,∞)×B\{0}, Γ= (0,∞)×∂B.

Observe that Γ⊂ω. We introduce the set

Φ= {
ϕ ∈C 3(ω) : supp(ϕ) ⊂⊂ω,ϕ≥ 0,ϕ|Γ = 0

}
.

Here, by supp(ϕ) ⊂⊂ω, we mean that supp(ϕ) is a compact subset of

(0,∞)×{
x ∈RN : 0 < |x| ≤ 1

}
.

Solutions to (1) under the boundary condition (2) are defined as follows.

Definition 1. Let N ≥ 2, σ>−( N−2
2

)2
, µ ∈R, p > 1 and f = f (x) ∈ L1(∂B). We say that u ∈ Lp

loc(ω)
is a weak solution to (1) under the boundary condition (2), if∫

ω
|x|µ|u|pϕdx dt +

∫
Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt ≤

∫
ω

u

(
∆∂tϕ−∆ϕ+ σ

|x|2ϕ
)

dx dt (8)

for all ϕ ∈ Φ, where ν is the outward unit normal to ∂B, relative to B, and ∂ν is the normal
derivative on ∂B.

By integration by parts, it can be easily seen that any smooth solution to (1)–(2) is a weak
solution in the sense of Definition 1.

For σ>−( N−2
2

)2
, we introduce the parameter

σN =−N −2

2
+

√
σ+

(
N −2

2

)2

. (9)

We introduce also the set

L1,+(∂B) =
{

w ∈ L1(∂B) :
∫
∂B

w(x)dSx > 0

}
.

Our main result is sated in the following theorem.

Theorem 2. Let N ≥ 2, σ>−( N−2
2

)2
, µ ∈R and p > 1.

(I) Let f ∈ L1,+(∂B). If
σN p <σN −µ−2, (10)

then problem (1) under the boundary condition (2) admits no weak solution.
(II) If

σN p >σN −µ−2, (11)

then problem (1) under the boundary condition (2) admits stationary solutions for some
f ∈ L1,+(∂B).

The proof of part (I) of Theorem 2 is based on nonlinear capacity estimates specifically
adapted to the operator−∆·+ σ

|x|2 ·, the domain (0,∞)×B , and the boundary condition (2). Part (II)
of Theorem 2 is proved by the construction of explicit solutions.

Now, let us consider the case σ= 0 and N ≥ 3. In this case, by (9), one has σN = 0. Hence, (10)
reduces to µ < −2, and (11) reduces to µ > −2. Thus, from Theorem 2, we deduce the following
result.
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Corollary 3. Let N ≥ 3, σ= 0, µ ∈R and p > 1.

(I) Let f ∈ L1,+(∂B). If µ<−2, then problem (1) under the boundary condition (2) admits no
weak solution.

(II) If µ>−2, then problem (1) under the boundary condition (2) admits stationary solutions
for some f ∈ L1,+(∂B).

Remark 4. From Corollary 3, we deduce that in the case σ = 0 and N ≥ 3, µ∗ = −2 is a critical
parameter for problem (1) under the boundary condition (2).

Next, let us consider the case −( N−2
2

)2 <σ< 0 and N ≥ 3. In this case, by (9), one has σN < 0.

Hence, (10) reduces to p > 1− µ+2
σN

, and (11) reduces to p < 1− µ+2
σN

. Then, by Theorem 2, we obtain
the following result.

Corollary 5. Let N ≥ 3, −( N−2
2

)2 <σ< 0 and µ ∈R.

(I) Let f ∈ L1,+(∂B).
(a) If µ≤−2, then for all p > 1, problem (1) under the boundary condition (2) admits no

weak solution.
(b) If µ>−2, then for all

p > 1− µ+2

σN
,

problem (1) under the boundary condition (2) admits no weak solution.
(II) If µ>−2, then for all

1 < p < 1− µ+2

σN
,

problem (1) under the boundary condition (2) admits stationary solutions for some f ∈
L1,+(∂B).

Remark 6. From Corollary 5, we deduce that in the case−( N−2
2

)2 <σ< 0 and N ≥ 3, the dividing
line with respect to existence and nonexistence is given by the critical exponent

p∗ = p∗(N ,σ,µ) =
{

1 if µ≤−2,

1− µ+2
σN

if µ>−2.

Namely,

(i) if f ∈ L1,+(∂B) and p > p∗, then problem (1) under the boundary condition (2) admits no
weak solution;

(ii) if 1 < p < p∗, then problem (1) under the boundary condition (2) admits solutions for
some f ∈ L1,+(∂B).

Finally, let us consider the case σ > 0 and N ≥ 2. In this case, by (9), one has σN > 0. Hence,
(10) reduces to p < 1− µ+2

σN
, and (11) reduces to p > 1− µ+2

σN
. Thus, we deduce from Theorem 2 the

following result.

Corollary 7. Let N ≥ 2, σ> 0 and µ ∈R.

(I) Let f ∈ L1,+(∂B). If µ<−2, then for all

1 < p < 1− µ+2

σN
,

problem (1) under the boundary condition (2) admits no weak solution.
(II) If µ ≥ −2, then for all p > 1, problem (1) under the boundary condition (2) admits

stationary solutions for some f ∈ L1,+(∂B).
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(III) If µ<−2, then for all

p > 1− µ+2

σN
,

problem (1) under the boundary condition (2) admits stationary solutions for some f ∈
L1,+(∂B).

Remark 8. Let N ≥ 2 and σ > 0. From Corollary 7, we deduce that, if µ < −2, the dividing line
with respect to existence and nonexistence is given by the critical exponent

p∗ = p∗(N ,σ,µ) = 1− µ+2

σN
.

Namely,

(i) if f ∈ L1,+(∂B) and 1 < p < p∗, then problem (1) under the boundary condition (2) admits
no weak solution;

(ii) if p > p∗, then problem (1) under the boundary condition (2) admits solutions for some
f ∈ L1,+(∂B).

However, if µ ≥ −2, the problem admits no critical behavior, that is, for all p > 1, stationary
solutions exists for some f ∈ L1,+(∂B).

The rest of the paper is organized as follows. In Section 2, we establish some useful preliminary
estimates. In Section 3, we prove Theorem 2.

Throughout the paper, the symbols C or Ci denote always generic positive constants, which
are independent of the scaling parameters T and R, and the solution u. Their values could be
changed from one line to another. We will use frequently the notation T,R,ℓ≫ 1, to indicate that
the above parameters are sufficiently large.

2. Preliminaries

Let N ≥ 2, σ>−( N−2
2

)2
, µ ∈R and p > 1. We introduce the function

K (x) = |x|2−N−σN
(
1−|x|2σN+N−2) , x ∈ B\{0},

whereσN is given by (9). It can be easily seen that the function K satisfies the following properties.

Lemma 9. The following properties hold:

(i) K ≥ 0;
(ii) −∆K + σ

|x|2 K = 0 in B\{0};
(iii) K |∂B = 0;
(iv) ∂νK = 2−N −2σN .

Next, we introduce two cut-off functions α and β satisfying:

α ∈C∞([0,∞)), α≥ 0, supp(α) ⊂⊂ (0,1) (12)

and

β ∈C∞([0,∞)), 0 ≤β≤ 1, β(s) = 0 if 0 ≤ s ≤ 1

2
, β(s) = 1 if s ≥ 1. (13)

For T,R,ℓ≫ 1, let

αT (t ) =αℓ
(

t

T

)
, t ≥ 0 (14)

and
βR (x) = K (x)βℓ(R|x|), x ∈ B\{0}. (15)

We consider the family of functions {ϕT,R,ℓ}T,R,ℓ≫1, where

ϕT,R,ℓ(t , x) =ϕ(t , x) =αT (t )βR (x), (t , x) ∈ω. (16)
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Lemma 10. For T,R,ℓ≫ 1, the function ϕ defined by (16) belongs toΦ. Moreover, we have

∂νϕ(t , x) = (2−N −2σN )αT (t ), (t , x) ∈ Γ (17)

and
∂ν∂tϕ(t , x) = (2−N −2σN )α′

T (t ), (t , x) ∈ Γ. (18)

Proof. By the definition of ϕ, it can be easily seen that for T,R,ℓ≫ 1, we have

ϕ ∈C 3(ω), supp(ϕ) ⊂⊂ω.

Furthermore, by (12), (13), (14), (15), (16) and Lemma 9(i), (iii), we have

ϕ≥ 0, ϕ|Γ = 0.

Consequently, we have ϕ ∈Φ. On the other hand, by (13) and (15), we have

βR (x) = K (x),
1

R
≤ |x| < 1. (19)

Then (17) and (18) follow from (16), (19) and Lemma 9(iv). □

For T,R,ℓ≫ 1, let ϕ be the function defined by (16).

Lemma 11. The following estimate holds:∫
supp(∆∂tϕ)

|x|
−µ

p−1ϕ
−1

p−1
∣∣∆∂tϕ

∣∣ p
p−1 dx dt ≤C T 1− p

p−1

(
lnR +RσN−2+ µ+2p

p−1

)
. (20)

Proof. By the definition of ϕ, we obtain∫
supp(∆∂tϕ)

|x|
−µ

p−1ϕ
−1

p−1
∣∣∆∂tϕ

∣∣ p
p−1 dx dt

=
(∫ T

0
α

−1
p−1

T (t )|α′
T (t )|

p
p−1 dt

)(∫
supp(∆βR )

|x|
−µ

p−1β
−1

p−1

R (x)|∆βR (x)|
p

p−1 dx

)
. (21)

On the other hand, by (14), we have

α′
T (t ) = ℓT −1αℓ−1

(
t

T

)
α′

(
t

T

)
,

which implies by (12) and (14) that

α
−1

p−1

T (t )|α′
T (t )|

p
p−1 ≤C T − p

p−1α
ℓ− p

p−1

(
t

T

)
, 0 < t < T.

Integrating, we get∫ T

0
α

−1
p−1

T (t )|α′
T (t )|

p
p−1 dt ≤C T − p

p−1

∫ T

0
α
ℓ− p

p−1

(
t

T

)
dt =C T 1− p

p−1

∫ 1

0
α
ℓ− p

p−1 (s)ds,

that is, ∫ T

0
α

−1
p−1

T (t )|α′
T (t )|

p
p−1 dt ≤C T 1− p

p−1 . (22)

Furthermore, by (15), we have

∆(βR (x)) =∆
(
K (x)βℓ(R|x|)

)
=βℓ(R|x|)∆K (x)+K (x)∆βℓ(R|x|)+2∇K (x) ·∇βℓ(R|x|),

where · denotes the inner product in RN , which implies by Lemma 9(ii) that

∆(βR (x)) =σ|x|−2K (x)βℓ(R|x|)+K (x)∆βℓ(R|x|)+2∇K (x) ·∇βℓ(R|x|).

Hence, from (13), we deduce that∫
supp(∆βR )

|x|
−µ

p−1β
−1

p−1

R (x)|∆βR (x)|
p

p−1 dx ≤C (I1 + I2 + I3), (23)
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where

I1 =
∫

1
2R <|x|<1

|x|−
µ+2p
p−1 K (x)βℓ(R|x|)dx,

I2 =
∫

1
2R <|x|< 1

R

|x|
−µ

p−1 K (x)
∣∣∣∆βℓ(R|x|)

∣∣∣ p
p−1

β
−ℓ

p−1 (R|x|)dx,

I3 =
∫

1
2R <|x|< 1

R

|x|
−µ

p−1 K
−1

p−1 (x)|∇K (x)|
p

p−1β
−ℓ

p−1 (R|x|)
∣∣∣∇βℓ(R|x|)

∣∣∣ p
p−1

dx.

Let us estimate the terms Ii , i = 1,2,3. Since 0 ≤β≤ 1, by the definition of K , we obtain

I1 ≤
∫

1
2R <|x|<1

|x|−
µ+2p
p−1 K (x)dx

≤
∫

1
2R <|x|<1

|x|−
µ+2p
p−1 +2−N−σN dx

=C
∫ 1

r= 1
2R

r− µ+2p
p−1 +1−σN dr

=C


1 if − µ+2p

p−1 +2−σN > 0,

RσN−2+ µ+2p
p−1 if − µ+2p

p−1 +2−σN < 0,

lnR if − µ+2p
p−1 +2−σN = 0,

which yields

I1 ≤C

(
lnR +RσN−2+ µ+2p

p−1

)
. (24)

On the other hand, by (9), (15) and the definition of K , for 1
2R < |x| < 1

R , we have∣∣∣∆βℓ(R|x|)
∣∣∣≤C R2βℓ−2(R|x|),

∣∣∣∇βℓ(R|x|)
∣∣∣≤C Rβℓ−2(R|x|) (25)

and

C1RσN+N−2 ≤ K (x) ≤C2RσN+N−2, |∇K (x)| ≤C RσN+N−1. (26)

Thus, due to 0 ≤β≤ 1, and using (25) and (26), we obtain

I2 ≤C RσN−2+ µ+2p
p−1 (27)

and

I3 ≤C RσN−2+ µ+2p
p−1 . (28)

Finally, in view of (21), (22), (23), (24), (27) and (28), we obtain (20). □

Lemma 12. The following estimate holds:∫
supp(ϕ)

|x|
µ

p−1ϕ
−1

p−1

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣

p
p−1

dx dt ≤C T RσN−2+ µ+2p
p−1 . (29)

Proof. By the definition of the function ϕ, we obtain∫
supp(ϕ)

|x|
µ

p−1ϕ
−1

p−1

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣

p
p−1

dx dt

=
(∫ T

0
αT (t )dt

)(∫
supp(βR )

|x|
µ

p−1β
−1

p−1

R (x)

∣∣∣∣−∆βR (x)+ σ

|x|2βR (x)

∣∣∣∣
p

p−1

dx

)
. (30)
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On the other hand, by (14), we have∫ T

0
αT (t )dt =

∫ T

0
αℓ

(
t

T

)
dt

= T
∫ 1

0
αℓ(s)ds,

that is, ∫ T

0
αT (t )dt =C T. (31)

moreover, using similar calculations as that done in the proof of Lemma 11, we obtain∫
supp(βR )

|x|
µ

p−1β
−1

p−1

R (x)

∣∣∣∣−∆βR (x)+ σ

|x|2βR (x)

∣∣∣∣
p

p−1

dx ≤C RσN−2+ µ+2p
p−1 . (32)

Hence, (20) follows from (30), (31) and (32). □

3. Proof of the main result

Proof of Theorem 2.

(I). Suppose that u ∈ Lp
loc(ω) is a weak solution to (1) under the boundary condition (2). Then,

by (8), for all ϕ ∈Φ, there holds∫
ω
|x|µ|u|pϕdx dt +

∫
Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt

≤
∫
ω
|u| ∣∣∆∂tϕ

∣∣ dx dt +
∫
ω
|u|

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣ dx dt . (33)

On the other hand, by means of Young’s inequality, we have∫
ω
|u| ∣∣∆∂tϕ

∣∣ dx dt =
∫
ω
|x|

µ
p |u|ϕ 1

p |x|
−µ
p ϕ

−1
p

∣∣∆∂tϕ
∣∣ dx dt

≤ 1

2

∫
ω
|x|µ|u|pϕdx dt +C

∫
supp(∆∂tϕ)

|x|
−µ

p−1ϕ
−1

p−1
∣∣∆∂tϕ

∣∣ p
p−1 dx dt (34)

and∫
ω
|u|

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣ dx dt

≤ 1

2

∫
ω
|x|µ|u|pϕdx dt +C

∫
supp(ϕ)

|x|
µ

p−1ϕ
−1

p−1

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣

p
p−1

dx dt , (35)

provided that ∫
supp(∆∂tϕ)

|x|
−µ

p−1ϕ
−1

p−1
∣∣∆∂tϕ

∣∣ p
p−1 dx dt <∞,∫

supp(ϕ)
|x|

µ
p−1ϕ

−1
p−1

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣

p
p−1

dx dt <∞.

(36)

In view of (33), (34) and (35), we obtain∫
Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt

≤C

(∫
supp(∆∂tϕ)

|x|
−µ

p−1ϕ
−1

p−1
∣∣∆∂tϕ

∣∣ p
p−1 dx dt +

∫
supp(ϕ)

|x|
µ

p−1ϕ
−1

p−1

∣∣∣∣−∆ϕ+ σ

|x|2ϕ
∣∣∣∣

p
p−1

dx dt

)
. (37)
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Next, for T,R,ℓ≫ 1, we consider the function ϕ defined by (16). By Lemma 10, we know that
ϕ ∈Φ. Moreover, by Lemmas 11 and 12, (36) holds. Consequently, for T,R,ℓ≫ 1, (37) holds for
the function ϕ defined by (16). On the other hand, thanks to (17) and (18), we have∫

Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt = (2−N −2σN )

∫ ∞

0

∫
∂B

(
α′

T (t )−αT (t )
)

f (x)dSx dt .

Notice that by (9), we have 2−N −2σN < 0. Hence, by (12) and (14), we get∫
Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt =C

(∫ T

0

(
αℓ

(
t

T

)
−ℓT −1αℓ−1

(
t

T

)
α′

(
t

T

))
dt

)(∫
∂B

f (x)dSx

)
=C T

(∫ 1

0

(
αℓ(s)−ℓT −1αℓ−1(s)α′(s)

)
ds

)(∫
∂B

f (x)dSx

)
.

(38)

Furthermore, by the dominated convergence theorem, we have

lim
T→∞

∫ 1

0

(
αℓ(s)−ℓT −1αℓ−1(s)α′(s)

)
ds =

∫ 1

0
αℓ(s)ds > 0.

Thus, for T ≫ 1, one has ∫ 1

0

(
αℓ(s)−ℓT −1αℓ−1(s)α′(s)

)
ds ≥C .

Since f ∈ L1,+(∂B), we deduce from (38) that∫
Γ

(
∂ν∂tϕ−∂νϕ

)
f (x)dSx dt ≥C T

∫
∂B

f (x)dSx . (39)

Then, using (37), (39), Lemmas 11 and 12, we obtain

T
∫
∂B

f (x)dSx ≤C

[
T 1− p

p−1

(
lnR +RσN−2+ µ+2p

p−1

)
+T RσN−2+ µ+2p

p−1

]
,

that is, ∫
∂B

f (x)dSx ≤C
(
T

−p
p−1 lnR +T

−p
p−1 R ι+R ι

)
, (40)

where

ι=σN −2+ µ+2p

p −1
.

Notice that due to (10), we have ι < 0. Hence, taking T = R in (40), and passing to the limit as
R → ∞, we obtain

∫
∂B f (x)dSx ≤ 0, which is a contradiction with f ∈ L1,+(∂B). This completes

the proof of part (I) of Theorem 2.

(II). Let

max

{
2−N −σN ,

−(µ+2)

p −1

}
< δ<σN (41)

and

0 < ε< (−δ2 + (2−N )δ+σ) 1
p−1 . (42)

Notice that by (9), we have 2− N −σN < σN . Moreover, due to (11), there holds −(µ+2)
p−1 < σN .

Hence, the set of δ satisfying (41) is nonempty. Notice also that 2−N −σN and σN are the roots
of the polynomial function

F (δ) =−δ2 + (2−N )δ+σ.

Hence, for all δ satisfying (41), one has F (δ) > 0. Thus, the set of ε satisfying (42) is nonempty. We
consider functions of the form

uδ,ε(x) = ε|x|δ, x ∈ B\{0}.

Elementary calculations show that

−∆uδ,ε+
σ

|x|2 uδ,ε = εF (δ)|x|δ−2. (43)
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Then, thanks to (41), (42) and (43), we obtain

−∆uδ,ε+
σ

|x|2 uδ,ε ≥ εp |x|δp+µ = |x|µup
δ,ε.

Thus, uδ,ε is a stationary solution to (1)–(2) with f ≡ ε. This completes the proof of part (II) of
Theorem 2. □
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