

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Comptes Rendus Mathématique

Mohamed Jleli and Bessem Samet

On the critical behavior for a Sobolev-type inequality with Hardy potential

Volume 362 (2024), p. 87-97

Online since: 2 February 2024

https://doi.org/10.5802/crmath.534

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

The Comptes Rendus. Mathématique are a member of the Mersenne Center for open scientific publishing www.centre-mersenne.org — e-ISSN : 1778-3569

ACADÉMIE DES SCIENCES Institut de france

Research article / *Article de recherche* Partial differential equations / *Equations aux dérivées partielles*

On the critical behavior for a Sobolev-type inequality with Hardy potential

Mohamed Jleli^{*a*} and Bessem Samet^{*a*}

^{*a*} Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia *E-mails*: jleli@ksu.edu.sa, bsamet@ksu.edu.sa

Abstract. We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $-\partial_t(\Delta u) - \Delta u + \frac{\sigma}{|x|^2} u \ge |x|^{\mu} |u|^p$ in $(0,\infty) \times B$, under the inhomogeneous Dirichlet-type boundary condition u(t,x) = f(x) on $(0,\infty) \times \partial B$, where *B* is the unit open ball of \mathbb{R}^N , $N \ge 2$, $\sigma > -(\frac{N-2}{2})^2$, $\mu \in \mathbb{R}$ and p > 1. In particular, when $\sigma \ne 0$, we show that the dividing line with respect to existence and nonexistence is given by a critical exponent that depends on *N*, σ and μ .

Keywords. Sobolev-type inequality; Hardy potential; bounded domain; existence; nonexistence; critical exponent.

2020 Mathematics Subject Classification. 35R45, 35A01, 35B33.

Funding. The second author is supported by Researchers Supporting Project number (RSP2023R4), King Saud University, Riyadh, Saudi Arabia.

Manuscript received 16 February 2023, revised 29 June 2023 and 6 July 2023, accepted 6 July 2023.

1. Introduction

We are concerned with the study of existence and nonexistence of solutions to the Sobolev-type inequality

$$-\partial_t (\Delta u) - \Delta u + \frac{\sigma}{|x|^2} u \ge |x|^{\mu} |u|^p \quad \text{in } (0,\infty) \times B, \tag{1}$$

where u = u(t, x), *B* is the unit open ball of \mathbb{R}^N , $N \ge 2$, $\sigma > -\left(\frac{N-2}{2}\right)^2$, $\mu \in \mathbb{R}$ and p > 1. Problem (1) is considered under the Dirichlet-type boundary condition

$$u = f \quad \text{on } (0, \infty) \times \partial B, \tag{2}$$

where $f = f(x) \in L^1(\partial B)$. We mention below some motivations for investigating problems of type (1)–(2).

The corresponding equation to (1) belongs to the class of Sobolev-type equations of the form

$$\partial_t A u + B u = V(x) F(u), \tag{3}$$

where *A* and *B* are linear elliptic operators and F(u) is a nonlinear term with respect to *u*. In our case, we have $Au = -\Delta u$, $Bu = -\Delta u + \frac{\sigma}{|x|^2}u$, $V(x) = |x|^{\mu}$ and $F(u) = |u|^{p}$. Equations of type (3) arise in many mathematical models. For instance, the Hoff equation [19] ($Au = -\partial_{xx}u + u$, Bu = 0, V = 1, $F(u) = \alpha u + \beta u^{3}$), the Barenblatt–Zheltov–Kochina equation [10] $(Au = -\Delta u + cu, Bu = -\Delta u, V = 1, F(u) = 0)$ that describes nonstationary filtering processes in fissured-porous media, the semiconductor equation [24] $(Au = -\Delta u + u, Bu = -\Delta u, V = 1, Fu =$ αu^3) that describes nonstationary processes in crystalline semiconductors, the one-dimensional Boussinesq equation [15] $(Au = -\partial_{xx}u + u, Bu = 0, V = 1, F(u) = \alpha \partial_{xx}(|u|^{p-2}u))$, and many others.

Sobolev-type equations and inequalities have been studied in various contexts: numerical solutions [6,11,18,31], asymptotic behaviour of solutions [7,8,12,14], inverse problems [17,28–30] and blow-up of solutions [5, 9, 13, 20, 21, 23–25, 27]. In particular, the issue of nonexistence of (weak) solutions to various differential inequalities of Sobolev-type has been investigated in [25]. For instance, the special case of (1) with $\sigma = \mu = 0$ has been studied in the whole space \mathbb{R}^N . Namely, it was shown that the Sobolev-type inequality

$$-\partial_t (\Delta u) - \Delta u \ge |u|^p \quad \text{in } (0,\infty) \times \mathbb{R}^N \tag{4}$$

subject to the initial condition

$$u(0, x) = u_0(x) \quad \text{in } \mathbb{R}^N,$$

where p > 1 and $u_0 \in L^1(\mathbb{R}^N)$, admits no nontrivial solution, provided that $N \in \{1, 2\}$; or

$$N \ge 3, \quad p < \frac{N}{N-2}$$

An extension of the above result to a time-space-fractional version of (4) has been obtained in [5].

The issue of existence and nonexistence of solutions to evolution equations and inequalities with Hardy potential in unbounded domains has been considered in several papers. For instance, Hamidi and Laptev [16] invetsigated the higher order evolution inequality

$$\partial_t^k u - \Delta u + \frac{\lambda}{|x|^2} u \ge |u|^p \quad \text{in } (0,\infty) \times \mathbb{R}^N$$
(5)

subject to the initial condition

$$\partial_t^{k-1} u(0, x) \ge 0 \quad \text{in } \mathbb{R}^N.$$
(6)

(6) where $\partial_t^i u = \frac{\partial^i u}{\partial t^i}$, $N \ge 3$, $k \ge 1$, p > 1 and $\lambda \ge -\left(\frac{N-2}{2}\right)^2$. Namely, it was proven that, if one of the following assumptions is satisfied:

$$\lambda \ge 0, \quad 1$$

or

$$-\left(\frac{N-2}{2}\right)^2 \le \lambda < 0, \quad 1 < p \le 1 + \frac{2}{\frac{2}{k} - s_*},$$

where

$$s^* = \frac{N-2}{2} + \sqrt{\lambda + \left(\frac{N-2}{2}\right)^2}, s_* = s^* + 2 - N,$$

then (5)–(6) admits no nontrivial (weak) solution. In the parabolic case, among other problems, Abdellaoui et al. [1] (see also [3]) considered problems of the form

$$\partial_t(u^{p-1}) - \Delta_p u = \lambda \frac{u^{p-1}}{|x|^p} + u^q (u > 0) \quad \text{in } (0, \infty) \times \mathbb{R}^N, \tag{7}$$

where 1 , <math>q > 0 and $0 \le \lambda < \left(\frac{N-p}{p}\right)^p$. Namely, it was shown that there exist two exponents $q^+(p,\lambda)$ and $F(p,\lambda)$ such that,

- (i) if $p-1 < q < F(p, \lambda) < q^+(p, \lambda)$ and u is a solution to (7) satisfying a certain behavior, then *u* blows-up in a finite time;
- (ii) if $F(p,\lambda) < q < q^+(p,\lambda)$, then under suitable condition on $u(0,\cdot)$, (7) admits a global in time positive solution.

We refer also to [22], where (5) with k = 2 has been studied in an exterior domain of \mathbb{R}^N under different types of inhomogeneous boundary conditions. Additional results related to parabolic and elliptic equations involving Hardy potential in bounded domains of \mathbb{R}^N can be found in [1–4, 26].

To the best of our knowledge, Sobolev-type equations/inequalities with Hardy potential have not previously been studied.

Before presenting our obtained results, let us give the meaning of solutions to the considered problem. Let

$$\omega = (0,\infty) \times \overline{B} \setminus \{0\}, \quad \Gamma = (0,\infty) \times \partial B.$$

Observe that $\Gamma \subset \omega$. We introduce the set

$$\Phi = \left\{ \varphi \in C^{3}(\omega) : \operatorname{supp}(\varphi) \subset \subset \omega, \, \varphi \geq 0, \, \varphi|_{\Gamma} = 0 \right\}.$$

Here, by supp(φ) $\subset \subset \omega$, we mean that supp(φ) is a compact subset of

$$(0,\infty) \times \left\{ x \in \mathbb{R}^N : 0 < |x| \le 1 \right\}.$$

Solutions to (1) under the boundary condition (2) are defined as follows.

Definition 1. Let $N \ge 2$, $\sigma > -\left(\frac{N-2}{2}\right)^2$, $\mu \in \mathbb{R}$, p > 1 and $f = f(x) \in L^1(\partial B)$. We say that $u \in L^p_{loc}(\omega)$ is a weak solution to (1) under the boundary condition (2), if

$$\int_{\omega} |x|^{\mu} |u|^{p} \varphi \, \mathrm{d}x \, \mathrm{d}t + \int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t \leq \int_{\omega} u \left(\Delta \partial_{t} \varphi - \Delta \varphi + \frac{\sigma}{|x|^{2}} \varphi \right) \, \mathrm{d}x \, \mathrm{d}t \tag{8}$$

for all $\varphi \in \Phi$, where v is the outward unit normal to ∂B , relative to B, and ∂_v is the normal derivative on ∂B .

By integration by parts, it can be easily seen that any smooth solution to (1)–(2) is a weak solution in the sense of Definition 1.

For $\sigma > -\left(\frac{N-2}{2}\right)^2$, we introduce the parameter

$$\sigma_N = -\frac{N-2}{2} + \sqrt{\sigma + \left(\frac{N-2}{2}\right)^2}.$$
(9)

We introduce also the set

$$L^{1,+}(\partial B) = \left\{ w \in L^1(\partial B) : \int_{\partial B} w(x) \, \mathrm{d}S_x > 0 \right\}.$$

Our main result is sated in the following theorem.

Theorem 2. Let $N \ge 2$, $\sigma > -\left(\frac{N-2}{2}\right)^2$, $\mu \in \mathbb{R}$ and p > 1.

(I) Let $f \in L^{1,+}(\partial B)$. If

$$\sigma_N p < \sigma_N - \mu - 2, \tag{10}$$

then problem (1) *under the boundary condition* (2) *admits no weak solution.* (II) *If*

$$\sigma_N p > \sigma_N - \mu - 2, \tag{11}$$

then problem (1) under the boundary condition (2) admits stationary solutions for some $f \in L^{1,+}(\partial B)$.

The proof of part (I) of Theorem 2 is based on nonlinear capacity estimates specifically adapted to the operator $-\Delta \cdot + \frac{\sigma}{|x|^2}$, the domain $(0, \infty) \times B$, and the boundary condition (2). Part (II) of Theorem 2 is proved by the construction of explicit solutions.

Now, let us consider the case $\sigma = 0$ and $N \ge 3$. In this case, by (9), one has $\sigma_N = 0$. Hence, (10) reduces to $\mu < -2$, and (11) reduces to $\mu > -2$. Thus, from Theorem 2, we deduce the following result.

Corollary 3. Let $N \ge 3$, $\sigma = 0$, $\mu \in \mathbb{R}$ and p > 1.

- (I) Let $f \in L^{1,+}(\partial B)$. If $\mu < -2$, then problem (1) under the boundary condition (2) admits no weak solution.
- (II) If $\mu > -2$, then problem (1) under the boundary condition (2) admits stationary solutions for some $f \in L^{1,+}(\partial B)$.

Remark 4. From Corollary 3, we deduce that in the case $\sigma = 0$ and $N \ge 3$, $\mu^* = -2$ is a critical parameter for problem (1) under the boundary condition (2).

Next, let us consider the case $-\left(\frac{N-2}{2}\right)^2 < \sigma < 0$ and $N \ge 3$. In this case, by (9), one has $\sigma_N < 0$. Hence, (10) reduces to $p > 1 - \frac{\mu+2}{\sigma_N}$, and (11) reduces to $p < 1 - \frac{\mu+2}{\sigma_N}$. Then, by Theorem 2, we obtain the following result.

Corollary 5. Let $N \ge 3$, $-\left(\frac{N-2}{2}\right)^2 < \sigma < 0$ and $\mu \in \mathbb{R}$.

- (I) Let $f \in L^{1,+}(\partial B)$.
 - (a) If $\mu \le -2$, then for all p > 1, problem (1) under the boundary condition (2) admits no weak solution.
 - (b) If $\mu > -2$, then for all

$$p>1-\frac{\mu+2}{\sigma_N},$$

problem (1) under the boundary condition (2) admits no weak solution.

(II) If $\mu > -2$, then for all

$$1$$

problem (1) under the boundary condition (2) admits stationary solutions for some $f \in L^{1,+}(\partial B)$.

Remark 6. From Corollary 5, we deduce that in the case $-\left(\frac{N-2}{2}\right)^2 < \sigma < 0$ and $N \ge 3$, the dividing line with respect to existence and nonexistence is given by the critical exponent

$$p^* = p^*(N, \sigma, \mu) = \begin{cases} 1 & \text{if } \mu \le -2, \\ 1 - \frac{\mu + 2}{\sigma_N} & \text{if } \mu > -2. \end{cases}$$

Namely,

- (i) if $f \in L^{1,+}(\partial B)$ and $p > p^*$, then problem (1) under the boundary condition (2) admits no weak solution;
- (ii) if $1 , then problem (1) under the boundary condition (2) admits solutions for some <math>f \in L^{1,+}(\partial B)$.

Finally, let us consider the case $\sigma > 0$ and $N \ge 2$. In this case, by (9), one has $\sigma_N > 0$. Hence, (10) reduces to $p < 1 - \frac{\mu+2}{\sigma_N}$, and (11) reduces to $p > 1 - \frac{\mu+2}{\sigma_N}$. Thus, we deduce from Theorem 2 the following result.

Corollary 7. Let $N \ge 2$, $\sigma > 0$ and $\mu \in \mathbb{R}$.

(I) Let $f \in L^{1,+}(\partial B)$. If $\mu < -2$, then for all

$$1$$

problem (1) under the boundary condition (2) admits no weak solution.

(II) If $\mu \ge -2$, then for all p > 1, problem (1) under the boundary condition (2) admits stationary solutions for some $f \in L^{1,+}(\partial B)$.

(III) If $\mu < -2$, then for all

$$p > 1 - \frac{\mu + 2}{\sigma_N},$$

problem (1) under the boundary condition (2) admits stationary solutions for some $f \in L^{1,+}(\partial B)$.

Remark 8. Let $N \ge 2$ and $\sigma > 0$. From Corollary 7, we deduce that, if $\mu < -2$, the dividing line with respect to existence and nonexistence is given by the critical exponent

$$p_* = p_*(N, \sigma, \mu) = 1 - \frac{\mu + 2}{\sigma_N}.$$

Namely,

- (i) if $f \in L^{1,+}(\partial B)$ and 1 , then problem (1) under the boundary condition (2) admits no weak solution;
- (ii) if $p > p^*$, then problem (1) under the boundary condition (2) admits solutions for some $f \in L^{1,+}(\partial B)$.

However, if $\mu \ge -2$, the problem admits no critical behavior, that is, for all p > 1, stationary solutions exists for some $f \in L^{1,+}(\partial B)$.

The rest of the paper is organized as follows. In Section 2, we establish some useful preliminary estimates. In Section 3, we prove Theorem 2.

Throughout the paper, the symbols *C* or *C_i* denote always generic positive constants, which are independent of the scaling parameters *T* and *R*, and the solution *u*. Their values could be changed from one line to another. We will use frequently the notation *T*, *R*, $\ell \gg 1$, to indicate that the above parameters are sufficiently large.

2. Preliminaries

Let
$$N \ge 2$$
, $\sigma > -\left(\frac{N-2}{2}\right)^2$, $\mu \in \mathbb{R}$ and $p > 1$. We introduce the function

$$K(x) = |x|^{2-N-\sigma_N} \left(1 - |x|^{2\sigma_N + N - 2}\right), \quad x \in \overline{B} \setminus \{0\}$$

where σ_N is given by (9). It can be easily seen that the function K satisfies the following properties.

Lemma 9. The following properties hold:

(i)
$$K \ge 0;$$

(ii) $-\Delta K + \frac{\sigma}{|x|^2}K = 0$ in $B \setminus \{0\};$
(iii) $K|_{\partial B} = 0;$

(iv) $\partial_{\nu}K = 2 - N - 2\sigma_N$.

Next, we introduce two cut-off functions α and β satisfying:

$$\alpha \in C^{\infty}([0,\infty)), \quad \alpha \ge 0, \quad \operatorname{supp}(\alpha) \subset \subset (0,1)$$
(12)

and

$$\beta \in C^{\infty}([0,\infty)), \quad 0 \le \beta \le 1, \quad \beta(s) = 0 \text{ if } 0 \le s \le \frac{1}{2}, \quad \beta(s) = 1 \text{ if } s \ge 1.$$
 (13)

For $T, R, \ell \gg 1$, let

$$\alpha_T(t) = \alpha^\ell \left(\frac{t}{T}\right), \quad t \ge 0 \tag{14}$$

and

$$\beta_R(x) = K(x)\beta^{\ell}(R|x|), \quad x \in B \setminus \{0\}.$$
(15)

We consider the family of functions $\{\varphi_{T,R,\ell}\}_{T,R,\ell\gg1}$, where

$$\varphi_{T,R,\ell}(t,x) = \varphi(t,x) = \alpha_T(t)\beta_R(x), \quad (t,x) \in \omega.$$
(16)

Lemma 10. For $T, R, \ell \gg 1$, the function φ defined by (16) belongs to Φ . Moreover, we have

$$\partial_{\nu}\varphi(t,x) = (2 - N - 2\sigma_N)\alpha_T(t), \quad (t,x) \in \Gamma$$
(17)

and

$$\partial_{\nu}\partial_{t}\varphi(t,x) = (2 - N - 2\sigma_{N})\alpha_{T}'(t), \quad (t,x) \in \Gamma.$$
(18)

Proof. By the definition of φ , it can be easily seen that for *T*, *R*, $\ell \gg 1$, we have

$$\varphi \in C^3(\omega)$$
, $\operatorname{supp}(\varphi) \subset \subset \omega$.

Furthermore, by (12), (13), (14), (15), (16) and Lemma 9 (i), (iii), we have

$$\varphi \ge 0, \quad \varphi|_{\Gamma} = 0.$$

Consequently, we have $\varphi \in \Phi$. On the other hand, by (13) and (15), we have

$$\beta_R(x) = K(x), \quad \frac{1}{R} \le |x| < 1.$$
 (19)
(19) and Lemma 9 (iv).

Then (17) and (18) follow from (16), (19) and Lemma 9 (iv).

For *T*, *R*, $\ell \gg 1$, let φ be the function defined by (16).

Lemma 11. The following estimate holds:

$$\int_{\text{supp}(\Delta\partial_t \varphi)} |x|^{\frac{-\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| \Delta\partial_t \varphi \right|^{\frac{p}{p-1}} dx dt \le C T^{1-\frac{p}{p-1}} \left(\ln R + R^{\sigma_N - 2 + \frac{\mu + 2p}{p-1}} \right).$$
(20)

Proof. By the definition of φ , we obtain

$$\int_{\operatorname{supp}(\Delta\partial_{t}\varphi)} |x|^{\frac{-\mu}{p-1}} \varphi^{\frac{-1}{p-1}} |\Delta\partial_{t}\varphi|^{\frac{p}{p-1}} dx dt = \left(\int_{0}^{T} \alpha_{T}^{\frac{-1}{p-1}}(t) |\alpha_{T}'(t)|^{\frac{p}{p-1}} dt \right) \left(\int_{\operatorname{supp}(\Delta\beta_{R})} |x|^{\frac{-\mu}{p-1}} \beta_{R}^{\frac{-1}{p-1}}(x) |\Delta\beta_{R}(x)|^{\frac{p}{p-1}} dx \right).$$
(21)

On the other hand, by (14), we have

$$\alpha_T'(t) = \ell T^{-1} \alpha^{\ell-1} \left(\frac{t}{T}\right) \alpha' \left(\frac{t}{T}\right),$$

which implies by (12) and (14) that

$$\alpha_T^{\frac{-1}{p-1}}(t)|\alpha_T'(t)|^{\frac{p}{p-1}} \le CT^{-\frac{p}{p-1}}\alpha^{\ell-\frac{p}{p-1}}\left(\frac{t}{T}\right), \quad 0 < t < T.$$

Integrating, we get

$$\int_0^T \alpha_T^{\frac{-1}{p-1}}(t) |\alpha_T'(t)|^{\frac{p}{p-1}} dt \le CT^{-\frac{p}{p-1}} \int_0^T \alpha^{\ell - \frac{p}{p-1}} \left(\frac{t}{T}\right) dt = CT^{1 - \frac{p}{p-1}} \int_0^1 \alpha^{\ell - \frac{p}{p-1}}(s) ds,$$

that is,

$$\int_{0}^{T} \alpha_{T}^{\frac{-1}{p-1}}(t) |\alpha_{T}'(t)|^{\frac{p}{p-1}} dt \le CT^{1-\frac{p}{p-1}}.$$
(22)

Furthermore, by (15), we have

$$\begin{split} \Delta(\beta_R(x)) &= \Delta\Big(K(x)\beta^\ell(R|x|)\Big) \\ &= \beta^\ell(R|x|)\Delta K(x) + K(x)\Delta\beta^\ell(R|x|) + 2\nabla K(x)\cdot\nabla\beta^\ell(R|x|) \end{split}$$

where \cdot denotes the inner product in \mathbb{R}^N , which implies by Lemma 9(ii) that

$$\Delta(\beta_R(x)) = \sigma |x|^{-2} K(x) \beta^{\ell}(R|x|) + K(x) \Delta \beta^{\ell}(R|x|) + 2\nabla K(x) \cdot \nabla \beta^{\ell}(R|x|).$$

Hence, from (13), we deduce that

$$\int_{\text{supp}(\Delta\beta_R)} |x|^{\frac{-\mu}{p-1}} \beta_R^{\frac{-1}{p-1}}(x) |\Delta\beta_R(x)|^{\frac{p}{p-1}} \, \mathrm{d}x \le C(I_1 + I_2 + I_3),\tag{23}$$

where

$$\begin{split} I_{1} &= \int_{\frac{1}{2R} < |x| < 1} |x|^{-\frac{\mu+2p}{p-1}} K(x) \beta^{\ell}(R|x|) \, \mathrm{d}x, \\ I_{2} &= \int_{\frac{1}{2R} < |x| < \frac{1}{R}} |x|^{\frac{-\mu}{p-1}} K(x) \left| \Delta \beta^{\ell}(R|x|) \right|^{\frac{p}{p-1}} \beta^{\frac{-\ell}{p-1}}(R|x|) \, \mathrm{d}x, \\ I_{3} &= \int_{\frac{1}{2R} < |x| < \frac{1}{R}} |x|^{\frac{-\mu}{p-1}} K^{\frac{-1}{p-1}}(x) |\nabla K(x)|^{\frac{p}{p-1}} \beta^{\frac{-\ell}{p-1}}(R|x|) \left| \nabla \beta^{\ell}(R|x|) \right|^{\frac{p}{p-1}} \, \mathrm{d}x. \end{split}$$

Let us estimate the terms I_i , i = 1, 2, 3. Since $0 \le \beta \le 1$, by the definition of *K*, we obtain

$$\begin{split} I_{1} &\leq \int_{\frac{1}{2R} < |x| < 1} |x|^{-\frac{\mu + 2p}{p - 1}} K(x) \, \mathrm{d}x \\ &\leq \int_{\frac{1}{2R} < |x| < 1} |x|^{-\frac{\mu + 2p}{p - 1} + 2 - N - \sigma_{N}} \, \mathrm{d}x \\ &= C \int_{r = \frac{1}{2R}}^{1} r^{-\frac{\mu + 2p}{p - 1} + 1 - \sigma_{N}} \, \mathrm{d}r \\ &= C \begin{cases} 1 & \text{if } -\frac{\mu + 2p}{p - 1} + 2 - \sigma_{N} > 0, \\ R^{\sigma_{N} - 2 + \frac{\mu + 2p}{p - 1}} & \text{if } -\frac{\mu + 2p}{p - 1} + 2 - \sigma_{N} < 0, \\ \ln R & \text{if } -\frac{\mu + 2p}{p - 1} + 2 - \sigma_{N} = 0, \end{cases}$$

which yields

$$I_1 \le C \left(\ln R + R^{\sigma_N - 2 + \frac{\mu + 2p}{p - 1}} \right).$$
(24)

On the other hand, by (9), (15) and the definition of *K*, for $\frac{1}{2R} < |x| < \frac{1}{R}$, we have

$$\left|\Delta\beta^{\ell}(R|x|)\right| \le CR^{2}\beta^{\ell-2}(R|x|), \quad \left|\nabla\beta^{\ell}(R|x|)\right| \le CR\beta^{\ell-2}(R|x|) \tag{25}$$

and

$$C_1 R^{\sigma_N + N - 2} \le K(x) \le C_2 R^{\sigma_N + N - 2}, \quad |\nabla K(x)| \le C R^{\sigma_N + N - 1}.$$
 (26)

Thus, due to $0 \le \beta \le 1$, and using (25) and (26), we obtain

$$I_2 \le CR^{\sigma_N - 2 + \frac{\mu + 2p}{p - 1}}$$
(27)

and

$$I_3 \le CR^{\sigma_N - 2 + \frac{\mu + 2p}{p-1}}.$$
(28)

Finally, in view of (21), (22), (23), (24), (27) and (28), we obtain (20).

Lemma 12. The following estimate holds:

$$\int_{\mathrm{supp}(\varphi)} |x|^{\frac{\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| -\Delta \varphi + \frac{\sigma}{|x|^2} \varphi \right|^{\frac{p}{p-1}} \mathrm{d}x \,\mathrm{d}t \le CTR^{\sigma_N - 2 + \frac{\mu+2p}{p-1}}.$$
(29)

Proof. By the definition of the function φ , we obtain

$$\int_{\mathrm{supp}(\varphi)} |x|^{\frac{\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| -\Delta \varphi + \frac{\sigma}{|x|^2} \varphi \right|^{\frac{p}{p-1}} \mathrm{d}x \,\mathrm{d}t \\ = \left(\int_0^T \alpha_T(t) \,\mathrm{d}t \right) \left(\int_{\mathrm{supp}(\beta_R)} |x|^{\frac{\mu}{p-1}} \beta_R^{\frac{-1}{p-1}}(x) \left| -\Delta \beta_R(x) + \frac{\sigma}{|x|^2} \beta_R(x) \right|^{\frac{p}{p-1}} \,\mathrm{d}x \right). \tag{30}$$

On the other hand, by (14), we have

$$\int_0^T \alpha_T(t) \, \mathrm{d}t = \int_0^T \alpha^\ell \left(\frac{t}{T}\right) \, \mathrm{d}t$$
$$= T \int_0^1 \alpha^\ell(s) \, \mathrm{d}s,$$

(31)

that is,

moreover, using similar calculations as that done in the proof of Lemma 11, we obtain

 $\int_0^T \alpha_T(t) \, \mathrm{d}t = CT.$

$$\int_{\mathrm{supp}(\beta_R)} |x|^{\frac{\mu}{p-1}} \beta_R^{\frac{-1}{p-1}}(x) \left| -\Delta\beta_R(x) + \frac{\sigma}{|x|^2} \beta_R(x) \right|^{\frac{\nu}{p-1}} \mathrm{d}x \le C R^{\sigma_N - 2 + \frac{\mu+2p}{p-1}}.$$
(32)

Hence, (20) follows from (30), (31) and (32).

3. Proof of the main result

Proof of Theorem 2.

(I). Suppose that $u \in L^p_{loc}(\omega)$ is a weak solution to (1) under the boundary condition (2). Then, by (8), for all $\varphi \in \Phi$, there holds

$$\begin{split} \int_{\omega} |x|^{\mu} |u|^{p} \varphi \, \mathrm{d}x \, \mathrm{d}t + \int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t \\ & \leq \int_{\omega} |u| \left| \Delta \partial_{t} \varphi \right| \, \mathrm{d}x \, \mathrm{d}t + \int_{\omega} |u| \left| -\Delta \varphi + \frac{\sigma}{|x|^{2}} \varphi \right| \, \mathrm{d}x \, \mathrm{d}t. \quad (33) \end{split}$$

On the other hand, by means of Young's inequality, we have

$$\int_{\omega} |u| \left| \Delta \partial_t \varphi \right| dx dt = \int_{\omega} |x|^{\frac{\mu}{p}} |u| \varphi^{\frac{1}{p}} |x|^{\frac{-\mu}{p}} \varphi^{\frac{-1}{p}} \left| \Delta \partial_t \varphi \right| dx dt$$

$$\leq \frac{1}{2} \int_{\omega} |x|^{\mu} |u|^p \varphi dx dt + C \int_{\operatorname{supp}(\Delta \partial_t \varphi)} |x|^{\frac{-\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| \Delta \partial_t \varphi \right|^{\frac{p}{p-1}} dx dt \qquad (34)$$

and

$$\begin{split} \int_{\omega} |u| \left| -\Delta \varphi + \frac{\sigma}{|x|^2} \varphi \right| \mathrm{d}x \, \mathrm{d}t \\ &\leq \frac{1}{2} \int_{\omega} |x|^{\mu} |u|^p \varphi \, \mathrm{d}x \, \mathrm{d}t + C \int_{\mathrm{supp}(\varphi)} |x|^{\frac{\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| -\Delta \varphi + \frac{\sigma}{|x|^2} \varphi \right|^{\frac{p}{p-1}} \mathrm{d}x \, \mathrm{d}t, \quad (35) \end{split}$$

provided that

$$\int_{\operatorname{supp}(\Delta\partial_{t}\varphi)} |x|^{\frac{-\mu}{p-1}} \varphi^{\frac{-1}{p-1}} |\Delta\partial_{t}\varphi|^{\frac{p}{p-1}} dx dt < \infty,$$

$$\int_{\operatorname{supp}(\varphi)} |x|^{\frac{\mu}{p-1}} \varphi^{\frac{-1}{p-1}} |-\Delta\varphi + \frac{\sigma}{|x|^{2}} \varphi|^{\frac{p}{p-1}} dx dt < \infty.$$
(36)

In view of (33), (34) and (35), we obtain

$$\int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t$$

$$\leq C \left(\int_{\mathrm{supp}(\Delta \partial_{t} \varphi)} |x|^{\frac{-\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| \Delta \partial_{t} \varphi \right|^{\frac{p}{p-1}} \, \mathrm{d}x \, \mathrm{d}t + \int_{\mathrm{supp}(\varphi)} |x|^{\frac{\mu}{p-1}} \varphi^{\frac{-1}{p-1}} \left| -\Delta \varphi + \frac{\sigma}{|x|^{2}} \varphi \right|^{\frac{p}{p-1}} \, \mathrm{d}x \, \mathrm{d}t \right). \quad (37)$$

Next, for $T, R, \ell \gg 1$, we consider the function φ defined by (16). By Lemma 10, we know that $\varphi \in \Phi$. Moreover, by Lemmas 11 and 12, (36) holds. Consequently, for $T, R, \ell \gg 1$, (37) holds for the function φ defined by (16). On the other hand, thanks to (17) and (18), we have

$$\int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t = (2 - N - 2\sigma_{N}) \int_{0}^{\infty} \int_{\partial B} \left(\alpha'_{T}(t) - \alpha_{T}(t) \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t.$$

Notice that by (9), we have $2 - N - 2\sigma_N < 0$. Hence, by (12) and (14), we get

$$\int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t = C \left(\int_{0}^{T} \left(\alpha^{\ell} \left(\frac{t}{T} \right) - \ell T^{-1} \alpha^{\ell-1} \left(\frac{t}{T} \right) \alpha' \left(\frac{t}{T} \right) \right) \, \mathrm{d}t \right) \left(\int_{\partial B} f(x) \, \mathrm{d}S_{x} \right)$$

$$= CT \left(\int_{0}^{1} \left(\alpha^{\ell}(s) - \ell T^{-1} \alpha^{\ell-1}(s) \alpha'(s) \right) \, \mathrm{d}s \right) \left(\int_{\partial B} f(x) \, \mathrm{d}S_{x} \right).$$

$$(38)$$

Furthermore, by the dominated convergence theorem, we have

$$\lim_{T \to \infty} \int_0^1 \left(\alpha^{\ell}(s) - \ell T^{-1} \alpha^{\ell-1}(s) \alpha'(s) \right) \mathrm{d}s = \int_0^1 \alpha^{\ell}(s) \, \mathrm{d}s > 0.$$

Thus, for $T \gg 1$, one has

$$\int_0^1 \left(\alpha^\ell(s) - \ell T^{-1} \alpha^{\ell-1}(s) \alpha'(s) \right) \mathrm{d}s \ge C.$$

Since $f \in L^{1,+}(\partial B)$, we deduce from (38) that

$$\int_{\Gamma} \left(\partial_{\nu} \partial_{t} \varphi - \partial_{\nu} \varphi \right) f(x) \, \mathrm{d}S_{x} \, \mathrm{d}t \ge CT \int_{\partial B} f(x) \, \mathrm{d}S_{x}. \tag{39}$$

Then, using (37), (39), Lemmas 11 and 12, we obtain

$$T\int_{\partial B} f(x) \, \mathrm{d}S_x \le C \left[T^{1-\frac{p}{p-1}} \left(\ln R + R^{\sigma_N - 2 + \frac{\mu + 2p}{p-1}} \right) + T R^{\sigma_N - 2 + \frac{\mu + 2p}{p-1}} \right],$$

that is,

$$\int_{\partial B} f(x) \, \mathrm{d}S_x \le C \left(T^{\frac{-p}{p-1}} \ln R + T^{\frac{-p}{p-1}} R^t + R^t \right),\tag{40}$$

where

$$\iota = \sigma_N - 2 + \frac{\mu + 2p}{p - 1}.$$

Notice that due to (10), we have $\iota < 0$. Hence, taking T = R in (40), and passing to the limit as $R \to \infty$, we obtain $\int_{\partial B} f(x) dS_x \le 0$, which is a contradiction with $f \in L^{1,+}(\partial B)$. This completes the proof of part (I) of Theorem 2.

$$\max\left\{2-N-\sigma_N, \frac{-(\mu+2)}{p-1}\right\} < \delta < \sigma_N \tag{41}$$

and

$$0 < \varepsilon < \left(-\delta^2 + (2-N)\delta + \sigma\right)^{\frac{1}{p-1}}.$$
(42)

Notice that by (9), we have $2 - N - \sigma_N < \sigma_N$. Moreover, due to (11), there holds $\frac{-(\mu+2)}{p-1} < \sigma_N$. Hence, the set of δ satisfying (41) is nonempty. Notice also that $2 - N - \sigma_N$ and σ_N are the roots of the polynomial function

$$F(\delta) = -\delta^2 + (2 - N)\delta + \sigma.$$

Hence, for all δ satisfying (41), one has $F(\delta) > 0$. Thus, the set of ε satisfying (42) is nonempty. We consider functions of the form

$$u_{\delta,\varepsilon}(x) = \varepsilon |x|^{\delta}, \quad x \in B \setminus \{0\}$$

Elementary calculations show that

$$-\Delta u_{\delta,\varepsilon} + \frac{\sigma}{|x|^2} u_{\delta,\varepsilon} = \varepsilon F(\delta) |x|^{\delta-2}.$$
(43)

Then, thanks to (41), (42) and (43), we obtain

$$-\Delta u_{\delta,\varepsilon} + \frac{\sigma}{|x|^2} u_{\delta,\varepsilon} \ge \varepsilon^p |x|^{\delta p+\mu} = |x|^{\mu} u_{\delta,\varepsilon}^p.$$

Thus, $u_{\delta,\varepsilon}$ is a stationary solution to (1)–(2) with $f \equiv \varepsilon$. This completes the proof of part (II) of Theorem 2.

References

- B. Abdellaoui, S. E. H. Miri, I. Peral, T. M. Touaoula, "Some remarks on quasilinear parabolic problems with singular potential and a reaction term", *NoDEA, Nonlinear Differ. Equ. Appl.* 21 (2014), no. 4, p. 453-490.
- [2] B. Abdellaoui, I. Peral, "Some results for semilinear elliptic equations with critical potential", *Proc. R. Soc. Edinb., Sect. A, Math.* **132** (2002), no. 1, p. 1-24.
- [3] B. Abdellaoui, I. Peral, A. Primo, "Influence of the Hardy potential in a semi-linear heat equation", *Proc. R. Soc. Edinb., Sect. A, Math.* **139** (2009), no. 5, p. 897-926.
- [4] ______, "Strong regularizing effect of a gradient term in the heat equation with the Hardy potential", *J. Funct. Anal.* **258** (2010), no. 4, p. 1247-1272.
- [5] A. Alsaedi, M. S. Alhothuali, B. Ahmad, S. Kerbal, M. Kirane, "Nonlinear fractional differential equations of Sobolev type", *Math. Methods Appl. Sci.* 37 (2014), no. 13, p. 2009-2016.
- [6] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, *Blow-up in nonlinear Sobolev type equations*, de Gruyter Series in Nonlinear Analysis and Applications, vol. 15, Walter de Gruyter, 2011, xii+648 pages.
- [7] A. I. Aristov, "Large-time asymptotics of the solution of the Cauchy problem for a Sobolev type equation with a cubic nonlinearity", *Differ. Uravn.* 46 (2010), no. 9, p. 1354-1358.
- [8] , "On the Cauchy problem for a Sobolev type equation with a quadratic nonlinearity", *Izv. Ross. Akad. Nauk, Ser. Mat.* **75** (2011), no. 5, p. 3-18.
- [9] —, "On the initial boundary-value problem for a nonlinear Sobolev-type equation with variable coefficient", Math. Notes 91 (2012), no. 5, p. 603-612.
- [10] G. I. Barenblatt, Y. P. Zheltov, I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks", *PMM, J. Appl. Math. Mech.* 24 (1960), p. 1286-1303.
- [11] M. K. Beshtokov, "Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative", *Comput. Math. Math. Phys.* **59** (2019), no. 2, p. 175-192.
- [12] H. Brill, "A semilinear Sobolev evolution equation in a Banach space", J. Differ. Equations 24 (1977), p. 412-425.
- [13] Y. Cao, Y. Nie, "Blow-up of solutions of the nonlinear Sobolev equation", Appl. Math. Lett. 28 (2014), p. 1-6.
- [14] D. Colton, J. Wimp, "Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures", J. Math. Anal. Appl. 69 (1979), p. 411-418.
- [15] E. S. Dzektser, "A generalization of the equations of motion of subterranean water with free surface", Dokl. Akad. Nauk SSSR 202 (1972), p. 1031-1033.
- [16] A. El Hamidi, G. G. Laptev, "Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential", J. Math. Anal. Appl. 304 (2005), no. 2, p. 451-463.
- [17] V. E. Fedorov, A. V. Urazaeva, "An inverse problem for linear Sobolev type equations", J. Inverse Ill-Posed Probl. 12 (2004), no. 4, p. 387-395.
- [18] A. Guezane-Lakoud, D. Belakroum, "Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions", *Appl. Math. Comput.* 218 (2012), no. 9, p. 4695-4702.
- [19] N. J. Hoff, "Creep buckling", Aeron. Quart. 7 (1956), no. 1, p. 1-20.
- [20] M. Jleli, B. Samet, "Instantaneous blow-up for a fractional in time equation of Sobolev type", Math. Methods Appl. Sci. 43 (2020), no. 8, p. 5645-5652.
- [21] ——, "Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds", *Commun. Pure Appl. Anal.* **21** (2022), no. 6, p. 2065-2078.
- [22] M. Jleli, B. Samet, C. Vetro, "On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain", *Adv. Nonlinear Anal.* **10** (2021), p. 1267-1283.
- [23] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, "Blow-up for one Sobolev problem: theoretical approach and numerical analysis", *J. Math. Anal. Appl.* **442** (2016), no. 2, p. 451-468.
- [24] M. O. Korpusov, A. G. Sveshnikov, "Blowup of solutions to initial value problems for nonlinear operator-differential equations", *Dokl. Math.* **71** (2005), no. 2, p. 168-171.
- [25] ______, "Application of the nonlinear capacity method to differential inequalities of Sobolev type", *Differ. Equ.* **45** (2009), no. 7, p. 951-959.
- [26] S. Merchán, L. Montoro, I. Peral, B. Sciunzi, "Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy-Leray potential", Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (2014), no. 1, p. 1-22.

- [27] Y. V. Mukhartova, A. A. Panin, "Blow-up of the solution of an inhomogeneous system of Sobolev-type equations", *Math. Notes* 91 (2012), no. 2, p. 217-230.
- [28] G. A. Sviridyuk, V. E. Fedorov, *Linear Sobolev Type Equations and Degenerate Semigroups of Operators*, Inverse and Ill-Posed Problems Series, VSP, 2003, viii+216 pages.
- [29] A. V. Urazaeva, "A mapping of a point spectrum and the uniqueness of a solution to the inverse problem for a Sobolevtype equation", *Russ. Math.* **54** (2010), no. 5, p. 47-55.
- [30] A. A. Zamyshlyaeva, A. Lut, "Inverse problem for the Sobolev type equation of higher order", *Mathematics* 9 (2021), no. 14, article no. 1647.
- [31] A. A. Zamyshlyaeva, S. V. Surovtsev, "Numerical investigation of one Sobolev type mathematical model", *J. Comput. Eng. Math.* **2** (2015), no. 3, p. 72-80.