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Abstract. It is well known that both the heat equation with Dirichlet or Neumann boundary conditions are
null controlable as soon as the control acts in a non trivial domain (i.e. a set of positive measure). In this
article, we show that for any couple of initial data (u0, v0) we can achieve the null control for both equations
(Dirichlet and Neumann boundary conditions respectively) simultaneously with the same control function
for both equations.

Résumé. Il est bien connu que l’équation de la chaleur avec aussi bien la condition au bord de Dirichlet que
la condition de Neumann est contrôlable à 0 dès que le contrôle agit sur un domain non trivial (i.e. de mesure
positive). Dans cet article, nous montrons que pour tout couple de données initiales (u0, v0) ∈ L2, le contrôle
à 0 peut être réalisé simultanément avec la même fonction de contrôle pour les deux équations.
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1. Introduction and main results

Let us consider a smooth bounded domainΩ⊂Rd and let ω⊂Ω be a subset of positive measure
|ω| > 0 and the following internal simultaneous controlability problem{

(∂t −∆)u = f 1(0,T )×ω, u |∂Ω= 0, u |t=0= u0,

(∂t −∆)v = f 1(0,T )×ω, ∂νv |∂Ω= 0, v |t=0= v0.
(1)
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Definition 1. We shall say that the heat equation in Ω is simultaneously null controlable with
Dirichlet and Neumann boundary conditions if for any (u0, v0)∈L2(Ω) there exists f ∈L2((0,T )×ω)
such that the solution of the system (1) satisfies

u |t>T = 0, v |t>T = 0.

The question of simultaneous controllability of various partial differential equations has been
raised in the literature (see for example [1, 3, 4, 6, 8] and the recent work [2] for more references
on the subject), especially when the system involves some transmission mechanisms between
the equations allowing to reduce the number of commands. The interest of our problem lies
on the fact that both heat equations in (1) exhibit relatively independent dynamics and yet they
can be steered to zero using exactly the same control. As no coupling exists between these two
equations, this simultaneous controlability is at first glance counter intuitive. Yet, by considering
the two new unknowns w1 = u + v, w2 = u − v , the simultaneous controlability reduces to the
controlability of (w1, w2), with a control acting only on the w1 component of the system. Notice
that the system (w1, w2) is now coupled at the boundary by the transmission conditions

∂νw1 |∂Ω= ∂νw2 |∂Ω, w1 |∂Ω=−w2 |∂Ω,

and we need to show that this coupling is sufficient. However, our strategy will follow a more
direct path (the double manifold) and will not study per se this transmission problem.

1.1. Simultaneous controllability

Our first result is the following

Theorem 2. Let T > 0, ω ⊂ Ω of positive measure |ω| > 0. Then the heat equation in Ω is
simultaneously null controlable with Dirichlet and Neumann boundary conditions.

Remark 3. It is classical that both the heat equation with Dirichlet or with Neumann conditions
are null controlable. The novelty in Theorem 2 lies precisely on the fact that the null controlability
can be achieved for any initial data (u0, v0) ∈ L2(Ω)×L2(Ω) with the same control for both.

Remark 4. The proof we give below relies on the doubling manifold approach from [5]. This
approach is very robust and allows rough domains (of class W 2,∞, for instance) and rough space-
dependent Laplace operators (Lipschitz coefficients).

∆= 1

κ(x)

∑
i , j
∂xi g i , j (x)κ(x)∂x j ,

where we assume that the coefficients κ, g are Lipschitz and that g is uniformly elliptic. As will
appear clearly, the proof (which is very simple once the results in [5] were established) shows
that all the control results from [5] are true with the same control functions for the Dirichlet and
Neumann heat equations.

Remark 5. It is an interesting question whether similar results might hold for the wave equation.
We plan to address this question in a forthcoming paper. However, in this case, the analysis is
much more involved and we do not expect to get such a general answer.

1.2. Simultaneous controllability and spectral inequalities

Let (eD
λ

)λ be the spectral family associated to the Laplacian inΩwith Dirichlet conditions, i.e.,

−∆eD
λ =λ2eD

λ , eD
λ |∂Ω = 0 (2)
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and let (eN
µ )µ be the spectral family associated to the Laplacian inΩwith Neumann conditions,

−∆eN
µ =µ2eN

µ , ∂νeN
µ |∂Ω = 0. (3)

Letω⊂Ω be a non-empty subset. In the spirit of [7], one can show that the spectral families (eD
λ

)λ
and (eN

µ )µ enjoy a concentration property on the subsetsω as long as they are not too small. In [5]
the authors shows the following: given ω with |ω| > 0, there exist constants C ,D such that all the
spectral truncations

ΠD
Λu := ∑

λ≤Λ
uλeD

λ , u ∈ L2(Ω), Λ> 0,

satisfy the estimate (cf. [5, Theorem 1]):

∥ΠD
Λu∥L∞(Ω) ≤CeCΛ∥1ωΠD

Λu∥L1(Ω), ∀ u ∈ L2(Ω). (4)

The analogous estimate also holds for the spectral truncations of (eN
µ )µ, defined by

ΠN
Λu := ∑

µ≤Λ
uµeN

µ , u ∈ L2(Ω), Λ> 0.

In this note we show that these spectral inequalities also hold simultaneously (i.e. we can estimate
each spectral projector by the sum on arbitrary small set of positive measures).

Theorem 6. Let ω⊂Ωwith |ω| > 0. There exist C ,D > 0 such that for anyΛ> 0, we have

∥ΠD
Λu∥L∞(Ω) +∥ΠN

Λ v∥L∞(Ω) ≤CeCΛ∥1ω(ΠD
Λu +ΠN

Λ v)∥L1(ω), ∀ u, v ∈ L2(Ω). (5)

2. Double manifold and spectral estimates

In this section we recall a result from [5], which allows to glue any given manifold M with a copy
of itself along its boundary, in order to produce a double manifold without boundary. This will be
a crucial point in the analysis below.

2.1. The double manifold

Let (M , g ) be a compact Riemannian manifold of class C 1 ∩W 1,∞.
Let ∆ be the Laplace–Beltrami operator on M and let (ek ) be a family of eigenfunctions of −∆,

with eigenvalues λ2
k →+∞ forming a Hilbert basis of L2(M).

−∆eD ;N
k =λ2

k ek , eD
k |∂M= 0 (Dirichlet condition) or ∂νeN

k |∂M= 0 (Neumann condition).

Let be M̃ the double space made of two copies of M

M̃ = M × {−1,1}/∂M ,

where we identified the points on the boundary, (x,−1) and (x,1), x ∈ ∂M . In the double manifold
M̃ we have the following result.

Theorem 7 (The double manifold, [5, Theorem 7]). Let g be given. There exists a W 2,∞ structure
on the double manifold M̃, a metric g̃ of class W 1,∞ on M̃, and a density κ̃ of class W 1,∞ on M̃ such
that the following holds.

• The maps
i± : x ∈ M → (x,±1) ∈ M̃ = M × {1,−1}/∂M

are isometric embeddings.
• The density induced on each copy of M is the density κ,

κ̃ |M×{1,−1}= κ.
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• For any eigenfunction e with eigenvalue λ2 of the Laplace operator −∆ = − 1
κ div g−1κ∇

with Dirichlet boundary conditions on M, there exists an eigenfunction ẽ with the same
eigenvalue λ2 of the Laplace operator −∆=− 1

κ̃ div g̃−1κ̃∇ on M̃ such that

ẽ(x,1) = e(x), ẽ(x,−1) =−e(x) (6)

i.e. gluying e and −e along the boundary (notice that it makes sence since e |∂M= 0) gives
an eigenfunction of the Laplace operator on the double manifold

• For any eigenfunction e with eigenvalue λ2 of the Laplace operator −∆ = − 1
κ div g−1κ∇

with Neumann boundary conditions on M, there exists an eigenfunction ẽ with the same
eigenvalue λ2 of the Laplace operator −∆=− 1

κ̃ div g̃−1κ̃∇ on M̃ such that

∀ x ∈ M , ẽ(x,1) = e(x), ẽ(x,−1) = e(x) (7)

i.e. gluying two copies of e along the boundary gives an eigenfunction of the Laplace
operator on the double manifold

• Conversely, there exists a Hilbert basis of L2(M̃) composed of eigenfunctions of the Laplace
operator ∆̃ which are either such extensions of Dirichlet Laplace eigenfunctions in M or
such extensions of Neumann Laplace eigenfunctions in M.

Remark 8. The last property was not stated explicitely in [5, Theorem 7], but it is straightforward
as the vector space generated by such eigenfunctions is clearly dense in L2(M̃).

2.2. Spectral projector on the double manifold and proof of Theorem 6

Let us denote by Π̃Λ the spectral projector on the manifold M̃ . Let u, v ∈ L2(M) and define the
function

ũ(x,1) = (u + v)(x), ũ(x,−1) = (−u + v)(x). (8)

Clearly if

u =∑
k

uk eD
k , v =∑

k
vk eN

k ,

we get

ũ =∑
k

uk ẽD
k + vk ẽN

k .

According to the reflection principle of the previous section, we can link the Dirichlet and
Neumann spectral projectors on M and the spectral projector on M̃ by the relation

Π̃Λ(ũ)( · ,1) =ΠD
Λ (u( · ))+ΠN

Λ (v( · )), Π̃Λ(ũ)( · ,−1) =−ΠD
Λ (u( · ))+ΠN

Λ (v( · )). (9)

Theorem 9 ([5, Theorem 1]). Let ω̃⊂ M̃ with positive Lebesgue measure. Then, there exists C > 0
such that for anyΛ> 0 and any ũ ∈ L2(M̃), we have

∥Π̃Λũ∥L∞(M̃) ≤CeCΛ∥1ω̃Π̃Λũ∥L1(ω̃). (10)

We can now prove Theorem 6. Indeed, letω⊂ M of positive Lebesgue measure. Let ω̃=ω×{1}.
According to Theorem 9 and (9), we get for any u, v ∈ L2(M),

∥ΠD
Λu∥2

L∞(M) +∥ΠN
Λ v∥2

L∞(M) ≤ ∥ΠD
Λu +ΠN

Λ v∥2
L∞(M) +∥ΠD

Λu −ΠN
Λ v∥2

L∞(M)

= ∥Π̃Λũ∥2
L∞(M̃)

≤CeCΛ∥1ω̃Π̃Λũ∥2
L1(ω̃)

=CeCΛ∥1ω×{1}Π̃Λũ∥2
L1(ω̃) =CeCΛ∥1ωΠ

D
Λu +ΠN

Λ v∥2
L1(ω). (11)
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2.3. Control and the double manifold

To prove our control result, we could just apply the spectral projector estimate we just proved and
some functional analysis. Here we prefered to prove the result directly on the double manifold.
We start with

Theorem 10 ([5, Theorem 2]). Let ω̃⊂ M̃ be a measurable set with |ω̃| > 0. Then, for every T > 0
and every ũ0 ∈ L2(M), there exists f̃ ∈ L2((0,T )× ω̃) such that the solution to the heat equation on
M̃ satisfies

ũ|t≥T = 0.

We can now prove Theorem 2. For any u, v ∈ L2(M), let us define ũ by (8), and for any ω ⊂ M
of positive measure, let ω̃ = ω× {1}. According to Theorem 10, for every T > 0, there exists
f̃ ∈ L2((0,T )× ω̃) such that

(∂t − ∆̃)Ũ = f̃ 1(0,T )×ω, Ũ |t=0= ũ, Ũ |t≥T = 0. (12)

Let us define next

u(t , x) = Ũ (t , x,1)−Ũ (t , x,−1), v(t , x) = Ũ (t , x,1)+Ũ (t , x,−1),

where Ũ is defined by (12). Notice that u clearly satisfies the Dirichlet boundary condition while
v satisfies the Neumann boundary condition. This second condition is not obvious but comes
from the construction of the double manifold in [5]. Indeed, in our construction, we defined
normal coordinate system near any point in the boundary of M such that M = {xn > 0}, and then
we glued the two copies defined by M × {1} = {xn > 0}, M × {−1} = {xn < 0} by the relation

(x,1) = (xn , x ′,1), (x,−1) = (−xn , x ′,−1),

which implies

∂νv = ∂xn (Ũ (t , x,1)+Ũ (t , x,−1)) |xn=0= ∂xn (Ũ )(t , x,1))−∂xn (Ũ )(t , x,−1)) = 0.

Now, by definition of u and v we have

(∂t −∆)u = f̃ (t , x,1)1(0,T )×ω− f̃ (t , x,−1)1(0,T )×ω̃ = f (t , x)1(0,T )×ω,

as f̃ (t , x,−1)1(0,T )×ω̃ = 0 by the choice of ω̃=ω× {1}. By the same token, we have

(∂t −∆)v = f̃ (t , x,1)1(0,T )×ω+ f̃ (t , x,−1)1(0,T )×Ω̃ = f (t , x)1(0,T )×ω.

As a consequence, u and v solve (1) with control f 1(0,T )×ω. Finally, using (12), we get

u|t≥T = 0, v |t≥T = 0,

which ends the proof.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.



942 N. Burq and I. Moyano

References

[1] F. Ammar Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, “Minimal time for
the null controllability of parabolic systems: the effect of the condensation index of complex
sequences”, J. Funct. Anal. 267 (2014), no. 7, pp. 2077–2151.

[2] F. D. Araruna, F. W. Chaves-Silva and L. de Teresa, Simultaneous Observability of Uncoupled
Parabolic Systems. Available at SSRN: https://ssrn.com/abstract=4081112 or http://dx.doi.
org/10.2139/ssrn.4081112.

[3] S. Avdonin and L. Pandolfi, “Simultaneous temperature and flux controllability for heat
equations with memory”, Q. Appl. Math. 71 (2013), no. 2, pp. 339–368.

[4] A. Benabdallah, F. Boyer and M. Morancey, “A block moment method to handle spectral
condensation phenomenon in parabolic control problems”, Ann. Henri Lebesgue 3 (2020),
pp. 717–793.

[5] N. Burq and I. Moyano, “Propagation of smallness and control for heat equations.”, J. Eur.
Math. Soc. 25 (2023), no. 4, pp. 1349–1377.

[6] E. Fernández-Cara, M. González-Burgos and L. de Teresa, “Boundary controllability of
parabolic coupled equations”, J. Funct. Anal. 259 (2010), no. 7, pp. 1720–1758.

[7] D. Jerison and G. Lebeau, “Nodal sets of sums of eigenfunctions”, in Harmonic analysis and
partial differential equations (Chicago, IL, 1996), University of Chicago Press, 1996, pp. 223–
239.

[8] M. Morancey and V. Nersesyan, “Simultaneous global exact controllability of an arbitrary
number of 1D bilinear Schrödinger equations”, J. Math. Pures Appl. 103 (2015), no. 1.

https://ssrn.com/abstract=4081112
http://dx.doi.org/10.2139/ssrn.4081112
http://dx.doi.org/10.2139/ssrn.4081112

	1. Introduction and main results
	1.1. Simultaneous controllability
	1.2. Simultaneous controllability and spectral inequalities

	2. Double manifold and spectral estimates
	2.1. The double manifold
	2.2. Spectral projector on the double manifold and proof of Theorem 6
	2.3. Control and the double manifold

	Declaration of interests
	References

