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1. Introduction

Let A be a finite set of integers and k be any integer. The k-dilation, k · A of A is defined by
k · A = {ka : a ∈ A}. Classically, there are two types of problems of sumsets in additive number
theory, called direct and inverse problems. In direct problems, one starts with a set and tries to
describe the size of sumsets (of any type) associated with given set, called direct problems. In case
of inverse problems one starts with the cardinality of a sumsets obtained from direct problem and
tries to find the structure of set. More generally, in extended inverse problems one tries to find
the structure of a sumset by assuming some arbitrary cardinality of a sumset. The main aim is
to find the lower bound for the cardinality of sets of type λ1 · A1 +λ2 · A2 + ·· · +λh · Ah , where
λ1 · A1 +λ2 · A2 + ·· · +λh · Ah = {λ1a1 +λ2a2 + ·· · +λh ah | ai ∈ Ai and λi ∈ Z, i = 1,2, . . . ,h}. In
2007, Bukh [3] gave an asymptotically sharp lower bound on the size of sumsets of the form
λ1 · A + λ2 · A + ·· · + λk · A, for arbitrary large integers λ1,λ2, . . . ,λk and integer set A. Bukh
derived the lower bound for λ1 · A +λ2 · A + ·· · +λk · A with some error term o(|A|). He proved
that for every vector λ = (λ1,λ2, . . . ,λk ) ∈ Zk of coprime k-tuple, |λ1 · A +λ2 · A + ·· · +λk · A| ≥
(|λ1|+ |λ2|+ · · ·+ |λk |)|A|−o(|A|) for a finite set A ⊂ Z with the error term o(|A|) depending on λ

only.
Confining ourselves to the sum of only two dilates, it is enough to consider only the sums

m · A + k ·B , where A and B are non empty subsets of integers. When both m and k are equal
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to 1, the sum A +B is called the Minkowski sum of the sets A and B . In a remarkable result by
Nathanson [12], it was proven that for non-empty subsets A and B of integers, |A+B | ≥ |A|+|B |−1,
and equality holds if and only if A and B are arithmetic progressions with the same common
difference. Also, studying the dilated sumset m · A + k ·B , when A = B presents an interesting
problem. Researchers have dedicated considerable effort to investigate these sumset problems
and have made significant advancements in this field of study. In 2010, Cilleruelo et al. [6]
proved |A + 3 · A| ≥ 4|A| − 4 and the equality holds only for A = {0,1,3} or A = {0,1,4} or A =
3{0,1, . . .n}∪ (3{0,1, . . . ,n}+1) and all the affine transforms of these sets. In the same paper, they
proposed the conjecture that |A +k · A| ≥ (k + 1)|A| − ⌈ k2+2k

4

⌉
, where A is any set of sufficiently

large cardinality. This conjecture has been well studied in the past and is being studied presently.
In 2009, Cilleruelo et al. [5] confirmed the conjecture for a prime number k such that |A| ≥
3(k −1)2(k −1)!. In 2014, Du et al. [7] verified the conjecture for k to be prime power and product
of two distinct primes such that |A| ≥ (k −1)2k !. Motivated by the work done on the cardinality
of A + k · A, several authors proved various results on the cardinality of m · A + k · A. In 2011,
Hamidoune and Rue [9] investigated the scenario, where m is equal to 2 and k is an odd prime
number. Consequently, they proved that for an odd prime k and a finite set A of integers with
|A| > 8kk , |2 · A+k · A| ≥ (k +2)|A|−k2−k +2. In 2013, Ljujic [11] expanded upon this finding and
derived the same limit for cases, where k is a power of an odd prime or a product of two distinct
odd primes. In 2013, Balog et al. [1] proved that |p · A + q · A| ≥ (p + q)|A| − (pq)(p+q−3)(p+q)+1,
where p < q are relatively primes and A ⊆ Z. In 2020, Chahal and Pandey [4] handled the case
for the cardinality of 3 · A+k · A, under some conditions on A and also generalized this result for
q · A +k · A, where q < k is an odd prime. In 2017, Freiman et al. [8] proved that if r ≥ 3, then
|A + r · A| ≥ 4|A| −4. For r = 2, they also obtained an extended inverse result, which states that
if |A +2 · A| < 4|A| −4, then A is a subset of arithmetic progression of length at most 2|A| −3. In
2019, Bhanja et al. [2] presented an alternative proof of the inequality |A+r ·A| ≥ 4|A|−4 for r ≥ 3.
Additionally, they extended the inverse theorem to the cardinality of the sum of dilates A +2 ·B ,
where A and B are subsets of the integers.

Let A = {a0, a1, . . . , ar−1} be a finite subset of integers such that a0 < a1 < ·· · < ar−1. Suppose
ℓ∗(ai ) = ai − ai−1 for all i = 1,2, . . . ,r −1. In Section 2, we prove the following direct and inverse
problem:

Theorem 1. Let k ≥ 3 be a positive integer and let A and B be nonempty finite subsets of integers
with the properties such that |A| ≤ |B |, ℓ∗(ai ) ≤ k, for all 1 ≤ i ≤ r − 1 and 3 ≤ ℓ∗(b j ) ≤ k for all
1 ≤ j ≤ l −1. Then |A+k ·B | ≥ 3|A|+ |B |−4.

(Inverse Problem) Furthermore, if |A+k·B | = 3|A|+|B |−4, then A and B are arithmetic progressions.

For any set A, we define cm(A) as the count of distinct classes of A modulo m. In Section 3, we
obtain extended inverse problem for |A+3 ·B |. More precisely, we prove the following theorem:

Theorem 2. Let A, B ⊆Z be finite subsets such that c3(A) = t and 0 ∈ A, B with properties

(1) d(A) = d(B) = 1
(2) ℓ(A) ≤ ℓ(B)
(3) hA ≤ hB .

If |A+3 ·B | = |A|+ t (|B |−1)+h ≤ 2|A|+ t (|B |−2) for some integer h, then both A and B are subsets
of arithmetic progressions of length at most |B |+h = |A+3 ·B |− |A|− (t −1)|B |+ t ≤ |A|+ |B |−3.
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By d(A) we denote the greatest common divisor of {a1 − a0, a2 − a0, . . . , ar−1 − a0}. Let a′
i =

(ai−a0)/d(A) for i = 1 to r−1 and ℓ(A) = max(A)−min(A) = ar−1−a0. The set B = (a′
0, a′

1, . . . , a′
r−1)

is called normal form of the set A. Clearly, a′
0 < a′

1 < ·· · < a′
r−1 and d(B) = 1. Define hA =

ℓ(A)+1−|A| the number of holes in set A.
The following well known results of Liv [10] and Stanchescu [13] are used frequently for proving

our results.

Theorem 3 ([10, 13]). Let A and B be finite subsets of N such that 0 ∈ A ∩ B. Define δA,B ={
1 if ℓ(A)=ℓ(B)
0 if ℓ(A)̸=ℓ(B) . Then the followings hold:

(1) If ℓ(A) = max(ℓ(A),ℓ(B)) ≥ |A|+ |B |−1−δA,B and d(A) = 1, then

|A+B | ≥ |A|+2|B |−2−δA,B

(2) If max(ℓ(A),ℓ(B)) ≤ |A|+ |B |−2−δA,B , then

|A+B | ≥ max(ℓ(A)+|B |,ℓ(B)+|A|).

2. Proof of Theorem 1

Direct problem for |A+k ·B |

Proof. Let A = {a0 < a1 < ·· · < ar−1} and B = {b0 < b1 < ·· · < bl−1} be two finite sets of integers
satisfying the given conditions. Consider the following sequence of distinct integers in the sumset
A+k ·B ,

a0 +kb0 < a1 +kb0 < a0 +kb1 < a1 +kb1 < a2 +kb1

< a1 +kb2 < a2 +kb2 < a3 +kb2 < a2 +kb3 < a3 +kb3

< a4 +kb3 < a3 +kb4 < ·· · < ai−1 +kbi−1 < ai +kbi−1

< ai−1 +kbi < ai +kbi < ai+1 +kbi

< ai +kbi+1 < ai+1 +kbi+1 < ai+2 +kbi+1

< ai+1 +kbi+2 < ·· · < ar−2 +kbr−1 < ar−1 +kbr−1

< ar−1 +kbr < ar−1 +kbr+1 < ·· · < ar−1 +kbl−1. (1)

This list contains 3|A|−2+ l −r = 2|A|+ l −2 integers. To prove the result it remains to find |A|−2
more integers of A+k ·B . Take the following list of six consecutive integers of A+k ·B from (1) for
every 1 ≤ i ≤ r −2,

ai−1 +kbi−1 < ai +kbi−1 < ai−1 +kbi < ai +kbi < ai+1 +kbi < ai +kbi+1. (2)

We claim that for each list of integers of type (2), there always exists an integer between ai−1 +
kbi−1 and ai +kbi+1 in the sumset A+k ·B , which is not in the list (1). Let us verify our claim for
every list of type (2). Consider

ai +kbi−1 < ai+1 +kbi−1 < ai−1 +kbi

and ai+1 +kbi < ai−1 +kbi+1 < ai +kbi+1.

Clearly, ai +kbi−1 < ai+1+kbi−1 and ai−1+kbi+1 < ai +kbi+1 holds for every i = 1,2, . . . ,r −2. We
need only to prove that ai+1 +kbi−1 < ai−1 +kbi and ai+1 +kbi < ai−1 +kbi+1.

On contrary suppose that ai+1+kbi−1 ≥ ai−1+kbi . It implies ai+1−ai−1 ≥ k(bi−bi−1), which is
a contradiction. As maximum value of ai+1−ai−1 can be 2k, and 3 ≤ ℓ∗(b j ) ≤ k for all 1 ≤ j ≤ l−1.
Hence ai+1 +kbi−1 < ai−1 +kbi and similarly ai+1 +kbi < ai−1 +kbi+1.
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Next our aim is to show that for any two consecutive lists of six integers of the form (2), we
always have two distinct integers of A+k ·B , that are not included in (1). Let us consider two lists
of six integers

ai−1 +kbi−1 < ai +kbi−1 < ai−1 +kbi < ai +kbi < ai+1 +kbi < ai +kbi+1 (3)

and ai +kbi < ai+1 +kbi < ai +kbi+1 < ai+1 +kbi+1 < ai+2 +kbi+1 < ai+1 +kbi+2. (4)

Observe that, x and y in A + k · B such that ai−1 + kbi−1 < x < ai + kbi+1 and ai + kbi < y <
ai+1+kbi+2, where x, y not in lists (3), (4). Our purpose is to show that either x ̸= y or there exists
integer z ̸= x(= y) such that z ∈ A+k ·B and lies between ai−1 +kbi−1 and ai+1 +kbi+2.

We claim that there exist two integers x = ai−1+kbi+1 and y = ai+2+kbi satisfying ai+1+kbi <
ai−1 +kbi+1 and ai+2 +kbi < ai−1 +kbi+1.

For first identity, assume that ai+1+kbi ≥ ai−1+kbi+1, which contradicts as 3 ≤ ℓ∗(b j ) ≤ k for
all 1 ≤ j ≤ l −1. Similarly, if possible, let ai+2 +kbi ≥ ai−1 +kbi+1, again a contradiction. Now, if
ai−1 +kbi+1 ̸= ai+2 +kbi , then we get two distinct integers x = ai−1 +kbi+1 and y = ai+2 +kbi ,
which are not in (3) and (4). If x = ai−1 +kbi+1 = ai+2 +kbi = y , we prove that in this case there
also exist a new integer z = ai +kbi+2 in (4), which is different from x = y . Clearly, z > y = x. We
have to check that ai +kbi+2 > ai+2 +kbi+1. If possible, let

ai +kbi+2 ≤ ai+2 +kbi+1

ai+2 −ai ≥ k(bi+2 −bi+1).

Since the maximum value of ai+2−ai is 2k. Therefore, our assumption is incorrect, leading to the
confirmation and proof of our claim.

Thus in each case, we get two distinct elements of A + k · B , which are not in (3) and (4).
Hence, we get |A| − 2 extra integers of A + k ·B , which are not included in (1). Consequently,
|A+k ·B | ≥ 3|A|+ |B |−4.

Inverse Problem for |A+k ·B |

Let us begin with the case |A| = |B | = r and assume that A = {a0 < a1 < ·· · < ar−1} and B = {b0 <
b1 < ·· · < br−1}. The sumset A+k ·B contains the following strictly increasing sequence of 3|A|−2
integers

a0 +kb0 < a1 +kb0 < a0 +kb1 < a1 +kb1 < a2 +kb1

< a1 +kb2 < a2 +kb2 < a3 +kb2 < a2 +kb3 < a3 +kb3

< a4 +kb3 < a3 +kb4 < ·· · < ai +kbi < ai+1 +kbi

< ai +kbi+1 < ai+1 +kbi+1 < ai+2 +kbi+1

< ai+1 +kbi+2 < ·· · < ar−2 +kbr−1 < ar−1 +kbr−1. (5)

Observe that the above sequence contains |A|−2 extra integers from the cardinality of |A+k ·B | =
4|A|−4.

Since ai−1 + kbi < ai + kbi < ai + kbi+1, ai−1 + kbi < ai−1 + kbi+1 < ai + kbi+1 and also the
cardinality of |A + k · B | = 4|A| − 4, it implies ai + kbi = ai−1 + kbi+1, which gives ai − ai−1 =
k(bi+1−bi ) for i = 1,2, . . . ,r −2. Similarly, from the inequalities ai−1+kbi−1 < ai−1+kbi < ai +kbi

and ai−1 + kbi−1 < ai + kbi−1 < ai + kbi , we have ai−1 + kbi = ai + kbi−1. Thus ai − ai−1 =
k(bi −bi−1) for i = 1,2, . . . ,r −2. This completes the proof for the case |A| = |B |.

Further assume that |A| < |B | and let A = {a0 < a1 < ·· · < ar−1} and B = {b0 < b1 < ·· · < bl−1}.
Suppose 0 ≤ m ≤ l − r . Let B = B (m)

0 ∪ B (m)
1 ∪ B (m)

2 , where B (m)
0 = {b0,b1, . . . ,bm−1},B (m)

1 =
{bm ,bm+1, . . . ,bm+r−1}, B (m)

2 = {bm+r ,bm+r+1, . . . ,bl−1}.
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Therefore, A+k·B ⊇ (a0+k·B (m)
0 )∪(A+k·B (m)

1 )∪(ar−1+k·B (m)
2 ). It implies that |a0+k·B (m)

0 | = m,
|A+k ·B (m)

1 | ≥ 4r −4, |ar−1 +k ·B (m)
2 | = l −m − r . Thus

3r + l −4 = |A+k ·B |
≥ |a0 +k ·B (m)

0 |+ |A+k ·B (m)
1 |+ |ar−1 +k ·B (m)

2 |
≥ m +4r −4+ l −m − r

= 3r + l −4.

Hence the proof of the result. □

3. Extended Inverse Problem for |A+3 ·B |

Proof. Let A = {a0, a1, . . . , ar−1} and B = {b0,b1, . . . ,bl−1}, where a0 < a1 < ·· · < ar−1 and b0 < b1 <
·· · < bl−1. Without loss of generality, we can assume that a0 = 0 and b0 = 0. Let A0, A1 and A2 be
three distinct congruence classes of A, such that A0 ⊆ 3Z, A1 ⊆ 3Z+1 and A2 ⊆ 3Z+2. We further
assume that |A0| = m ≥ 1, |A1| = n ≥ 0, |A2| = p ≥ 0, and thus we have r = m +n +p.

Case 1. |A0| = m ≥ 1, |A1| = n ≥ 1, |A2| = p = 0 i.e. c3(A) = 2. Assume that

A0 = {0 = 3x0 < 3x1 < ·· · < 3xm−1},

A∗
0 = 1

3
· A0 = {0 = x0 < x1 < ·· · < xm−1},

A1 = {3y0 +1 < 3y1 +1 < ·· · < 3yn−1 +1},

A∗
1 = 1

3
· (A1 −1)− y0 = {0 < y1 − y0 < y2 − y0 < ·· · < yn−1 − y0},

Then ℓ(A∗
0 ) = xm−1 < ar−1 = ℓ(A) and ℓ(A∗

1 ) = yn−1 − y0 < ar−1 = ℓ(A). Now

|A+3 ·B | = |(A0 ∪ A1)+3 ·B |
= |A0 +3 ·B |+ |A1 +3 ·B |
= |3 · A∗

0 +3 ·B |+ |3 · (A∗
1 + y0)+1+3 ·B |

= |A∗
0 +B |+ |A∗

1 +B |.

Further, We prove two inequalities in Claim 4 and Claim 5.

Claim 4. ℓ(B) ≤ l +max(m,n)−2 ≤ l + r −3.

Proof of Claim 4. Since ℓ(B) ≥ ℓ(A) > ℓ(A∗
0 ) and ℓ(B) ≥ ℓ(A) > ℓ(A∗

1 ), therefore δB ,A∗
0
= δB ,A∗

1
= 0.

Let’s consider the case where m ≤ n. Assuming Claim 4 is false, then ℓ(B) ≥ l+n−1 = |B+|A∗
1 |−

1 ≥ l +m −1 = |B |+ |A∗
0 |−1 and d(B) = 1. Thus by Theorem 3, |A∗

0 +B | ≥ l +2|A∗
0 |−2 = l +2m −2

and |A∗
1 +B | ≥ l +2|A∗

1 |−2 = l +2n −2
Hence |A+3 ·B | ≥ 2l +2r −4, which contradicts to our hypothesis.
In the case where n ≤ m, we can obtain the result by following the same approach as described

earlier.
Thus ℓ(B) ≤ l + max(m,n) − 2. Since r = m + n and max(m,n) ≤ r − 1, therefore ℓ(B) ≤

l +max(m,n)−2 ≤ l + r −3. This completes the proof of Claim 4. □

Claim 5. |A+3 ·B | ≥ |A|+2(|B |−1)+hB .
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Proof of Claim 5. Assume the case m ≤ n. According to Claim 4, it is evident that ℓ(B) ≤ l +n−2.
Additionally, referring to Theorem 3, we have |A∗

1 +B | ≥ (n + l −1)+hB . Consequently,

|A+3 ·B | = |A∗
0 +B |+ |A∗

1 +B |
≥ (|A∗

0 |+ |B |−1)+ (n + l −1)+hB

≥ (m + l −1)+ (n + l −1)+hB

= 2l + r −2+hB .

Similarly for the remaining case (n ≤ m), |A+3·B | ≥ 2l+r−2+hB . Thus, we obtain that hB satisfies
0 ≤ hB ≤ |A+3·B |−(2l +r −2) = h ≤ r −3. Therefore, B ⊆ {b0,b0+1,b0+2, . . . ,bl−1} ⊆ {0,1, . . . ,bl−1}
and B is an arithmetic progression of length at most bl−1 + 1 = l + hB ≤ l + h ≤ r + l − 3. As
ℓ(A) ≤ ℓ(B), the set A is also contained in A.P. of length at most r + l −3. The result can be easily
verified for the case |A0| = m ≥ 1, |A1| = n = 0 and |A2| = p ≥ 1. □

Case 2. |A0| = m ≥ 1, |A1| = n ≥ 1, |A2| = p ≥ 1 i.e. c3(A) = 3. Assume that

A0 = {0 = 3x0 < 3x1 < ·· · < 3xm−1},

A∗
0 = 1

3
· A0 = {0 = x0 < x1 < ·· · < xm−1},

A1 = {3y0 +1 < 3y1 +1 < ·· · < 3yn−1 +1},

A∗
1 = 1

3
· (A1 −1)− y0 = {0 < y1 − y0 < y2 − y0 < ·· · < yn−1 − y0},

A2 = {3z0 +2 < 3z1 +2 < ·· · < 3zp−1 +2},

A∗
2 = 1

3
· (A2 −2)− z0 = {0 < z1 − z0 < z2 − z0 < ·· · < zp−1 − z0}.

Then ℓ(A∗
0 ) = xm−1 < ar−1 = ℓ(A), ℓ(A∗

1 ) = yn−1 − y0 < ar−1 = ℓ(A) and ℓ(A∗
2 ) = zp−1 − z0 < ar−1 =

ℓ(A). Now

|A+3 ·B | = |(A0 ∪ A1 ∪ A2)+3 ·B |
= |A0 +3 ·B |+ |A1 +3 ·B |+ |A2 +3 ·B |
= |3 · A∗

0 +3 ·B |+ |3 · (A∗
1 + y0)+1+3 ·B |+ |3 · (A∗

2 + z0)+2+3 ·B |
= |A∗

0 +B |+ |A∗
1 +B |+ |A∗

2 +B |.
Furthermore, we establish two inequalities in claim 1 and claim 2.

Claim 6. ℓ(B) ≤ l +max(m,n, p)−2 ≤ l + r −3.

Proof of Claim 6. Since ℓ(B) ≥ ℓ(A) > ℓ(A∗
0 ), ℓ(B) ≥ ℓ(A) > ℓ(A∗

1 ) and ℓ(B) ≥ ℓ(A) > ℓ(A∗
2 ),

therefore δB ,A∗
0
= δB ,A∗

1
= δB ,A∗

2
= 0.

Let’s start by considering the case where m ≤ n ≤ p. Assuming that Claim 6 is false, we can
deduce that ℓ(B) ≥ l +p −1 = |B | + |A2| −1 ≥ l +n −1 = |B | + |A1| −1 ≥ l +m −1 = |B | + |A∗

0 | −1,
while d(B) = 1. Thus by Theorem 3

|A∗
0 +B | ≥ l +2|A∗

0 |−2 = l +2m −2, |A∗
1 +B | ≥ l +2|A∗

1 |−2 = l +2n −2

and |A∗
2 +B | ≥ l +2|A∗

2 |−2 = l +2p −2. (6)

Hence |A+3 ·B | ≥ 3l +2r −6, which contradicts our hypothesis.
For all the remaining cases we obtain the result by proceeding like above. Thus ℓ(B) ≤

l + max(m,n, p) − 2. Since r = m + n + p and max(m,n, p) ≤ r − 1, therefore, ℓ(B) ≤ l +
max(m,n, p)−2 ≤ l + r −3. This completes the proof of Claim 6. □

Claim 7. |A+3 ·B | ≥ |A|+3(|B |−1)+hB .
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Proof of Claim 7. Assume the case m ≤ n ≤ p. By Claim 6, observe that ℓ(B) ≤ l +p −2.
Also the By Theorem 1.3, |A∗

2 +B | ≥ (p + l −1)+hB and thus

|A+3 ·B | = |A∗
0 +B |+ |A∗

1 +B |+ |A∗
2 +B |

≥ (|A∗
0 |+ |B |−1)+ (|A∗

1 |+ |B |−1)+|A∗
2 +B |

≥ (m + l −1)+ (n + l −1)+ (p + l −1)+hB

= 3l + r −3+hB .

Similarly for all the remaining cases |A+3 ·B | ≥ 3l + r −3+hB . Therefore, we can deduce that hB

satisfies the inequality 0 ≤ hB ≤ |A +3 ·B | − (3l + r −3) = h ≤ r −3. Consequently, it follows that
B ⊆ {b0,b0+1,b0+2, . . . ,bl−1} ⊆ {0,1, . . . ,bl−1} and B forms an arithmetic progression with a length
of at most bl−1 +1 = l +hB ≤ l +h ≤ r + l −3. Since ℓ(A) ≤ ℓ(B), the set A is also contained within
an arithmetic progression with a length of at most r + l −3. This establishes the desired result. By
combining both cases, we obtain the overall result. □
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