

ACADÉMIE DES SCIENCES

Comptes Rendus

Mathématique

Ramandeep Kaur and Sandeep Singh

On direct and inverse problems related to some dilated sumsets

Volume 362 (2024), p. 99-105
Online since: 2 February 2024
https://doi.org/10.5802/crmath. 537
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

On direct and inverse problems related to some dilated sumsets

Ramandeep Kaur ${ }^{a}$ and Sandeep Singh ${ }^{*, a}$
${ }^{a}$ Department of Mathematics, Akal University, Talwandi Sabo - 151302, India
E-mails: ramandeepka71@gmail.com, sandeepinsan86@gmail.com

Abstract

Let A be a nonempty finite set of integers. For a real number m, the set $m \cdot A=\{m a: a \in A\}$ denotes the set of m-dilates of A. In 2008, Bukh initiated an interesting problem of finding a lower bound for the sumset of dilated sets, i.e., a lower bound for $\left|\lambda_{1} \cdot A+\lambda_{2} \cdot A+\cdots+\lambda_{h} \cdot A\right|$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}$ are integers and A be a subset of integers. In particular, for nonempty finite subsets A and B, the problem of dilates of A and B is defined as $A+k \cdot B=\{a+k b: a \in A$ and $b \in B\}$. In this article, we obtain the lower bound for the cardinality of $A+k \cdot B$ with $k \geq 3$ and describe sets for which equality holds. We also derive an extended inverse result with some conditions for the sumset $A+3 \cdot B$.

Keywords. Sum of dilates, direct and inverse problems, additive combinatorics.
2020 Mathematics Subject Classification. 11B13, 11B75.
Funding. The research of the second author is funded by NBHM (Sanction No. 02011/49/2023/R\&DII/13983).
Manuscript received 9 September 2022, accepted 6 July 2023.

1. Introduction

Let A be a finite set of integers and k be any integer. The k-dilation, $k \cdot A$ of A is defined by $k \cdot A=\{k a: a \in A\}$. Classically, there are two types of problems of sumsets in additive number theory, called direct and inverse problems. In direct problems, one starts with a set and tries to describe the size of sumsets (of any type) associated with given set, called direct problems. In case of inverse problems one starts with the cardinality of a sumsets obtained from direct problem and tries to find the structure of set. More generally, in extended inverse problems one tries to find the structure of a sumset by assuming some arbitrary cardinality of a sumset. The main aim is to find the lower bound for the cardinality of sets of type $\lambda_{1} \cdot A_{1}+\lambda_{2} \cdot A_{2}+\cdots+\lambda_{h} \cdot A_{h}$, where $\lambda_{1} \cdot A_{1}+\lambda_{2} \cdot A_{2}+\cdots+\lambda_{h} \cdot A_{h}=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{h} a_{h} \mid a_{i} \in A_{i}\right.$ and $\left.\lambda_{i} \in \mathbb{Z}, i=1,2, \ldots, h\right\}$. In 2007, Bukh [3] gave an asymptotically sharp lower bound on the size of sumsets of the form $\lambda_{1} \cdot A+\lambda_{2} \cdot A+\cdots+\lambda_{k} \cdot A$, for arbitrary large integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and integer set A. Bukh derived the lower bound for $\lambda_{1} \cdot A+\lambda_{2} \cdot A+\cdots+\lambda_{k} \cdot A$ with some error term $o(|A|)$. He proved that for every vector $\bar{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathbb{Z}^{k}$ of coprime k-tuple, $\left|\lambda_{1} \cdot A+\lambda_{2} \cdot A+\cdots+\lambda_{k} \cdot A\right| \geqq$ $\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\cdots+\left|\lambda_{k}\right|\right)|A|-o(|A|)$ for a finite set $A \subset \mathbb{Z}$ with the error term $o(|A|)$ depending on λ only.

Confining ourselves to the sum of only two dilates, it is enough to consider only the sums $m \cdot A+k \cdot B$, where A and B are non empty subsets of integers. When both m and k are equal

[^0]to 1 , the sum $A+B$ is called the Minkowski sum of the sets A and B. In a remarkable result by Nathanson [12], it was proven that for non-empty subsets A and B of integers, $|A+B| \geq|A|+|B|-1$, and equality holds if and only if A and B are arithmetic progressions with the same common difference. Also, studying the dilated sumset $m \cdot A+k \cdot B$, when $A=B$ presents an interesting problem. Researchers have dedicated considerable effort to investigate these sumset problems and have made significant advancements in this field of study. In 2010, Cilleruelo et al. [6] proved $|A+3 \cdot A| \geq 4|A|-4$ and the equality holds only for $A=\{0,1,3\}$ or $A=\{0,1,4\}$ or $A=$ $3\{0,1, \ldots n\} \cup(3\{0,1, \ldots, n\}+1)$ and all the affine transforms of these sets. In the same paper, they proposed the conjecture that $|A+k \cdot A| \geq(k+1)|A|-\left\lceil\frac{k^{2}+2 k}{4}\right\rceil$, where A is any set of sufficiently large cardinality. This conjecture has been well studied in the past and is being studied presently. In 2009, Cilleruelo et al. [5] confirmed the conjecture for a prime number k such that $|A| \geq$ $3(k-1)^{2}(k-1)$!. In 2014, Du et al. [7] verified the conjecture for k to be prime power and product of two distinct primes such that $|A| \geq(k-1)^{2} k$!. Motivated by the work done on the cardinality of $A+k \cdot A$, several authors proved various results on the cardinality of $m \cdot A+k \cdot A$. In 2011, Hamidoune and Rue [9] investigated the scenario, where m is equal to 2 and k is an odd prime number. Consequently, they proved that for an odd prime k and a finite set A of integers with $|A|>8 k^{k},|2 \cdot A+k \cdot A| \geq(k+2)|A|-k^{2}-k+2$. In 2013, Ljujic [11] expanded upon this finding and derived the same limit for cases, where k is a power of an odd prime or a product of two distinct odd primes. In 2013, Balog et al. [1] proved that $|p \cdot A+q \cdot A| \geq(p+q)|A|-(p q)^{(p+q-3)(p+q)+1}$, where $p<q$ are relatively primes and $A \subseteq \mathbb{Z}$. In 2020, Chahal and Pandey [4] handled the case for the cardinality of $3 \cdot A+k \cdot A$, under some conditions on A and also generalized this result for $q \cdot A+k \cdot A$, where $q<k$ is an odd prime. In 2017, Freiman et al. [8] proved that if $r \geq 3$, then $|A+r \cdot A| \geq 4|A|-4$. For $r=2$, they also obtained an extended inverse result, which states that if $|A+2 \cdot A|<4|A|-4$, then A is a subset of arithmetic progression of length at most $2|A|-3$. In 2019, Bhanja et al. [2] presented an alternative proof of the inequality $|A+r \cdot A| \geq 4|A|-4$ for $r \geq 3$. Additionally, they extended the inverse theorem to the cardinality of the sum of dilates $A+2 \cdot B$, where A and B are subsets of the integers.

Let $A=\left\{a_{0}, a_{1}, \ldots, a_{r-1}\right\}$ be a finite subset of integers such that $a_{0}<a_{1}<\cdots<a_{r-1}$. Suppose $\ell^{*}\left(a_{i}\right)=a_{i}-a_{i-1}$ for all $i=1,2, \ldots, r-1$. In Section 2, we prove the following direct and inverse problem:

Theorem 1. Let $k \geq 3$ be a positive integer and let A and B be nonempty finite subsets of integers with the properties such that $|A| \leq|B|, \ell^{*}\left(a_{i}\right) \leq k$, for all $1 \leq i \leq r-1$ and $3 \leq \ell^{*}\left(b_{j}\right) \leq k$ for all $1 \leq j \leq l-1$. Then $|A+k \cdot B| \geq 3|A|+|B|-4$.
(Inverse Problem) Furthermore, $i f|A+k \cdot B|=3|A|+|B|-4$, then A and B are arithmetic progressions.
For any set A, we define $c_{m}(A)$ as the count of distinct classes of A modulo m. In Section 3, we obtain extended inverse problem for $|A+3 \cdot B|$. More precisely, we prove the following theorem:

Theorem 2. Let $A, B \subseteq \mathbb{Z}$ be finite subsets such that $c_{3}(A)=t$ and $0 \in A, B$ with properties
(1) $d(A)=d(B)=1$
(2) $\ell(A) \leq \ell(B)$
(3) $h_{A} \leq h_{B}$.

If $|A+3 \cdot B|=|A|+t(|B|-1)+h \leq 2|A|+t(|B|-2)$ for some integer h, then both A and B are subsets of arithmetic progressions of length at most $|B|+h=|A+3 \cdot B|-|A|-(t-1)|B|+t \leq|A|+|B|-3$.

By $d(A)$ we denote the greatest common divisor of $\left\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{r-1}-a_{0}\right\}$. Let $a_{i}^{\prime}=$ $\left(a_{i}-a_{0}\right) / d(A)$ for $i=1$ to $r-1$ and $\ell(A)=\max (A)-\min (A)=a_{r-1}-a_{0}$. The set $B=\left(a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{r-1}^{\prime}\right)$ is called normal form of the set A. Clearly, $a_{0}^{\prime}<a_{1}^{\prime}<\cdots<a_{r-1}^{\prime}$ and $d(B)=1$. Define $h_{A}=$ $\ell(A)+1-|A|$ the number of holes in set A.

The following well known results of Liv [10] and Stanchescu [13] are used frequently for proving our results.

Theorem $3([10,13])$. Let A and B be finite subsets of \mathbb{N} such that $0 \in A \cap B$. Define $\delta_{A, B}=$ $\left\{\begin{array}{l}1 \text { if } \ell(A)=\ell(B) \\ 0 \text { if } \ell(A) \neq \ell(B)\end{array}\right.$. Then the followings hold:
(1) If $\ell(A)=\max (\ell(A), \ell(B)) \geq|A|+|B|-1-\delta_{A, B}$ and $d(A)=1$, then

$$
|A+B| \geq|A|+2|B|-2-\delta_{A, B}
$$

(2) If $\max (\ell(A), \ell(B)) \leq|A|+|B|-2-\delta_{A, B}$, then

$$
|A+B| \geq \max (\ell(A)+|B|, \ell(B)+|A|) .
$$

2. Proof of Theorem 1

Direct problem for $|A+k \cdot B|$

Proof. Let $A=\left\{a_{0}<a_{1}<\cdots<a_{r-1}\right\}$ and $B=\left\{b_{0}<b_{1}<\cdots<b_{l-1}\right\}$ be two finite sets of integers satisfying the given conditions. Consider the following sequence of distinct integers in the sumset $A+k \cdot B$,

$$
\begin{align*}
a_{0}+k b_{0} & <a_{1}+k b_{0}<a_{0}+k b_{1}<a_{1}+k b_{1}<a_{2}+k b_{1} \\
& <a_{1}+k b_{2}<a_{2}+k b_{2}<a_{3}+k b_{2}<a_{2}+k b_{3}<a_{3}+k b_{3} \\
& <a_{4}+k b_{3}<a_{3}+k b_{4}<\cdots<a_{i-1}+k b_{i-1}<a_{i}+k b_{i-1} \\
& <a_{i-1}+k b_{i}<a_{i}+k b_{i}<a_{i+1}+k b_{i} \\
& <a_{i}+k b_{i+1}<a_{i+1}+k b_{i+1}<a_{i+2}+k b_{i+1} \\
& <a_{i+1}+k b_{i+2}<\cdots<a_{r-2}+k b_{r-1}<a_{r-1}+k b_{r-1} \\
& <a_{r-1}+k b_{r}<a_{r-1}+k b_{r+1}<\cdots<a_{r-1}+k b_{l-1} . \tag{1}
\end{align*}
$$

This list contains $3|A|-2+l-r=2|A|+l-2$ integers. To prove the result it remains to find $|A|-2$ more integers of $A+k \cdot B$. Take the following list of six consecutive integers of $A+k \cdot B$ from (1) for every $1 \leq i \leq r-2$,

$$
\begin{equation*}
a_{i-1}+k b_{i-1}<a_{i}+k b_{i-1}<a_{i-1}+k b_{i}<a_{i}+k b_{i}<a_{i+1}+k b_{i}<a_{i}+k b_{i+1} . \tag{2}
\end{equation*}
$$

We claim that for each list of integers of type (2), there always exists an integer between $a_{i-1}+$ $k b_{i-1}$ and $a_{i}+k b_{i+1}$ in the sumset $A+k \cdot B$, which is not in the list (1). Let us verify our claim for every list of type (2). Consider

$$
\begin{array}{ll}
& a_{i}+k b_{i-1}<a_{i+1}+k b_{i-1}<a_{i-1}+k b_{i} \\
\text { and } \quad & a_{i+1}+k b_{i}<a_{i-1}+k b_{i+1}<a_{i}+k b_{i+1} .
\end{array}
$$

Clearly, $a_{i}+k b_{i-1}<a_{i+1}+k b_{i-1}$ and $a_{i-1}+k b_{i+1}<a_{i}+k b_{i+1}$ holds for every $i=1,2, \ldots, r-2$. We need only to prove that $a_{i+1}+k b_{i-1}<a_{i-1}+k b_{i}$ and $a_{i+1}+k b_{i}<a_{i-1}+k b_{i+1}$.

On contrary suppose that $a_{i+1}+k b_{i-1} \geq a_{i-1}+k b_{i}$. It implies $a_{i+1}-a_{i-1} \geq k\left(b_{i}-b_{i-1}\right)$, which is a contradiction. As maximum value of $a_{i+1}-a_{i-1}$ can be $2 k$, and $3 \leq \ell^{*}\left(b_{j}\right) \leq k$ for all $1 \leq j \leq l-1$. Hence $a_{i+1}+k b_{i-1}<a_{i-1}+k b_{i}$ and similarly $a_{i+1}+k b_{i}<a_{i-1}+k b_{i+1}$.

Next our aim is to show that for any two consecutive lists of six integers of the form (2), we always have two distinct integers of $A+k \cdot B$, that are not included in (1). Let us consider two lists of six integers

$$
\begin{array}{ll}
& a_{i-1}+k b_{i-1}<a_{i}+k b_{i-1}<a_{i-1}+k b_{i}<a_{i}+k b_{i}<a_{i+1}+k b_{i}<a_{i}+k b_{i+1} \\
\text { and } & a_{i}+k b_{i}<a_{i+1}+k b_{i}<a_{i}+k b_{i+1}<a_{i+1}+k b_{i+1}<a_{i+2}+k b_{i+1}<a_{i+1}+k b_{i+2} . \tag{4}
\end{array}
$$

Observe that, x and y in $A+k \cdot B$ such that $a_{i-1}+k b_{i-1}<x<a_{i}+k b_{i+1}$ and $a_{i}+k b_{i}<y<$ $a_{i+1}+k b_{i+2}$, where x, y not in lists (3), (4). Our purpose is to show that either $x \neq y$ or there exists integer $z \neq x(=y)$ such that $z \in A+k \cdot B$ and lies between $a_{i-1}+k b_{i-1}$ and $a_{i+1}+k b_{i+2}$.

We claim that there exist two integers $x=a_{i-1}+k b_{i+1}$ and $y=a_{i+2}+k b_{i}$ satisfying $a_{i+1}+k b_{i}<$ $a_{i-1}+k b_{i+1}$ and $a_{i+2}+k b_{i}<a_{i-1}+k b_{i+1}$.

For first identity, assume that $a_{i+1}+k b_{i} \geq a_{i-1}+k b_{i+1}$, which contradicts as $3 \leq \ell^{*}\left(b_{j}\right) \leq k$ for all $1 \leq j \leq l-1$. Similarly, if possible, let $a_{i+2}+k b_{i} \geq a_{i-1}+k b_{i+1}$, again a contradiction. Now, if $a_{i-1}+k b_{i+1} \neq a_{i+2}+k b_{i}$, then we get two distinct integers $x=a_{i-1}+k b_{i+1}$ and $y=a_{i+2}+k b_{i}$, which are not in (3) and (4). If $x=a_{i-1}+k b_{i+1}=a_{i+2}+k b_{i}=y$, we prove that in this case there also exist a new integer $z=a_{i}+k b_{i+2}$ in (4), which is different from $x=y$. Clearly, $z>y=x$. We have to check that $a_{i}+k b_{i+2}>a_{i+2}+k b_{i+1}$. If possible, let

$$
\begin{aligned}
& a_{i}+k b_{i+2} \leq a_{i+2}+k b_{i+1} \\
& a_{i+2}-a_{i} \geq k\left(b_{i+2}-b_{i+1}\right) .
\end{aligned}
$$

Since the maximum value of $a_{i+2}-a_{i}$ is $2 k$. Therefore, our assumption is incorrect, leading to the confirmation and proof of our claim.

Thus in each case, we get two distinct elements of $A+k \cdot B$, which are not in (3) and (4). Hence, we get $|A|-2$ extra integers of $A+k \cdot B$, which are not included in (1). Consequently, $|A+k \cdot B| \geq 3|A|+|B|-4$.

Inverse Problem for $|A+k \cdot B|$

Let us begin with the case $|A|=|B|=r$ and assume that $A=\left\{a_{0}<a_{1}<\cdots<a_{r-1}\right\}$ and $B=\left\{b_{0}<\right.$ $\left.b_{1}<\cdots<b_{r-1}\right\}$. The sumset $A+k \cdot B$ contains the following strictly increasing sequence of $3|A|-2$ integers

$$
\begin{align*}
a_{0}+k b_{0} & <a_{1}+k b_{0}<a_{0}+k b_{1}<a_{1}+k b_{1}<a_{2}+k b_{1} \\
& <a_{1}+k b_{2}<a_{2}+k b_{2}<a_{3}+k b_{2}<a_{2}+k b_{3}<a_{3}+k b_{3} \\
& <a_{4}+k b_{3}<a_{3}+k b_{4}<\cdots<a_{i}+k b_{i}<a_{i+1}+k b_{i} \\
& <a_{i}+k b_{i+1}<a_{i+1}+k b_{i+1}<a_{i+2}+k b_{i+1} \\
& <a_{i+1}+k b_{i+2}<\cdots<a_{r-2}+k b_{r-1}<a_{r-1}+k b_{r-1} . \tag{5}
\end{align*}
$$

Observe that the above sequence contains $|A|-2$ extra integers from the cardinality of $|A+k \cdot B|=$ $4|A|-4$.

Since $a_{i-1}+k b_{i}<a_{i}+k b_{i}<a_{i}+k b_{i+1}, a_{i-1}+k b_{i}<a_{i-1}+k b_{i+1}<a_{i}+k b_{i+1}$ and also the cardinality of $|A+k \cdot B|=4|A|-4$, it implies $a_{i}+k b_{i}=a_{i-1}+k b_{i+1}$, which gives $a_{i}-a_{i-1}=$ $k\left(b_{i+1}-b_{i}\right)$ for $i=1,2, \ldots, r-2$. Similarly, from the inequalities $a_{i-1}+k b_{i-1}<a_{i-1}+k b_{i}<a_{i}+k b_{i}$ and $a_{i-1}+k b_{i-1}<a_{i}+k b_{i-1}<a_{i}+k b_{i}$, we have $a_{i-1}+k b_{i}=a_{i}+k b_{i-1}$. Thus $a_{i}-a_{i-1}=$ $k\left(b_{i}-b_{i-1}\right)$ for $i=1,2, \ldots, r-2$. This completes the proof for the case $|A|=|B|$.

Further assume that $|A|<|B|$ and let $A=\left\{a_{0}<a_{1}<\cdots<a_{r-1}\right\}$ and $B=\left\{b_{0}<b_{1}<\cdots<b_{l-1}\right\}$. Suppose $0 \leq m \leq l-r$. Let $B=B_{0}^{(m)} \cup B_{1}^{(m)} \cup B_{2}^{(m)}$, where $B_{0}^{(m)}=\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}, B_{1}^{(m)}=$ $\left\{b_{m}, b_{m+1}, \ldots, b_{m+r-1}\right\}, B_{2}^{(m)}=\left\{b_{m+r}, b_{m+r+1}, \ldots, b_{l-1}\right\}$.

Therefore, $A+k \cdot B \supseteq\left(a_{0}+k \cdot B_{0}^{(m)}\right) \cup\left(A+k \cdot B_{1}^{(m)}\right) \cup\left(a_{r-1}+k \cdot B_{2}^{(m)}\right)$. It implies that $\left|a_{0}+k \cdot B_{0}^{(m)}\right|=m$, $\left|A+k \cdot B_{1}^{(m)}\right| \geq 4 r-4,\left|a_{r-1}+k \cdot B_{2}^{(m)}\right|=l-m-r$. Thus

$$
\begin{aligned}
3 r+l-4 & =|A+k \cdot B| \\
& \geq\left|a_{0}+k \cdot B_{0}^{(m)}\right|+\left|A+k \cdot B_{1}^{(m)}\right|+\left|a_{r-1}+k \cdot B_{2}^{(m)}\right| \\
& \geq m+4 r-4+l-m-r \\
& =3 r+l-4 .
\end{aligned}
$$

Hence the proof of the result.

3. Extended Inverse Problem for $|A+3 \cdot B|$

Proof. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{r-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{l-1}\right\}$, where $a_{0}<a_{1}<\cdots<a_{r-1}$ and $b_{0}<b_{1}<$ $\cdots<b_{l-1}$. Without loss of generality, we can assume that $a_{0}=0$ and $b_{0}=0$. Let A_{0}, A_{1} and A_{2} be three distinct congruence classes of A, such that $A_{0} \subseteq 3 \mathbb{Z}, A_{1} \subseteq 3 \mathbb{Z}+1$ and $A_{2} \subseteq 3 \mathbb{Z}+2$. We further assume that $\left|A_{0}\right|=m \geq 1,\left|A_{1}\right|=n \geq 0,\left|A_{2}\right|=p \geq 0$, and thus we have $r=m+n+p$.

Case 1. $\left|A_{0}\right|=m \geq 1,\left|A_{1}\right|=n \geq 1,\left|A_{2}\right|=p=0$ i.e. $c_{3}(A)=2$. Assume that

$$
\begin{aligned}
& A_{0}=\left\{0=3 x_{0}<3 x_{1}<\cdots<3 x_{m-1}\right\} \\
& A_{0}^{*}=\frac{1}{3} \cdot A_{0}=\left\{0=x_{0}<x_{1}<\cdots<x_{m-1}\right\} \\
& A_{1}=\left\{3 y_{0}+1<3 y_{1}+1<\cdots<3 y_{n-1}+1\right\} \\
& A_{1}^{*}=\frac{1}{3} \cdot\left(A_{1}-1\right)-y_{0}=\left\{0<y_{1}-y_{0}<y_{2}-y_{0}<\cdots<y_{n-1}-y_{0}\right\}
\end{aligned}
$$

Then $\ell\left(A_{0}^{*}\right)=x_{m-1}<a_{r-1}=\ell(A)$ and $\ell\left(A_{1}^{*}\right)=y_{n-1}-y_{0}<a_{r-1}=\ell(A)$. Now

$$
\begin{aligned}
|A+3 \cdot B| & =\left|\left(A_{0} \cup A_{1}\right)+3 \cdot B\right| \\
& =\left|A_{0}+3 \cdot B\right|+\left|A_{1}+3 \cdot B\right| \\
& =\left|3 \cdot A_{0}^{*}+3 \cdot B\right|+\left|3 \cdot\left(A_{1}^{*}+y_{0}\right)+1+3 \cdot B\right| \\
& =\left|A_{0}^{*}+B\right|+\left|A_{1}^{*}+B\right| .
\end{aligned}
$$

Further, We prove two inequalities in Claim 4 and Claim 5.
Claim 4. $\ell(B) \leq l+\max (m, n)-2 \leq l+r-3$.
Proof of Claim 4. Since $\ell(B) \geq \ell(A)>\ell\left(A_{0}^{*}\right)$ and $\ell(B) \geq \ell(A)>\ell\left(A_{1}^{*}\right)$, therefore $\delta_{B, A_{0}^{*}}=\delta_{B, A_{1}^{*}}=0$. Let's consider the case where $m \leq n$. Assuming Claim 4 is false, then $\ell(B) \geq l+n-1=\left|B+\left|A_{1}^{*}\right|-\right.$ $1 \geq l+m-1=|B|+\left|A_{0}^{*}\right|-1$ and $d(B)=1$. Thus by Theorem $3,\left|A_{0}^{*}+B\right| \geq l+2\left|A_{0}^{*}\right|-2=l+2 m-2$ and $\left|A_{1}^{*}+B\right| \geq l+2\left|A_{1}^{*}\right|-2=l+2 n-2$

Hence $|A+3 \cdot B| \geq 2 l+2 r-4$, which contradicts to our hypothesis.
In the case where $n \leq m$, we can obtain the result by following the same approach as described earlier.

Thus $\ell(B) \leq l+\max (m, n)-2$. Since $r=m+n$ and $\max (m, n) \leq r-1$, therefore $\ell(B) \leq$ $l+\max (m, n)-2 \leq l+r-3$. This completes the proof of Claim 4.

Claim 5. $|A+3 \cdot B| \geq|A|+2(|B|-1)+h_{B}$.

Proof of Claim 5. Assume the case $m \leq n$. According to Claim 4, it is evident that $\ell(B) \leq l+n-2$. Additionally, referring to Theorem 3, we have $\left|A_{1}^{*}+B\right| \geq(n+l-1)+h_{B}$. Consequently,

$$
\begin{aligned}
|A+3 \cdot B| & =\left|A_{0}^{*}+B\right|+\left|A_{1}^{*}+B\right| \\
& \geq\left(\left|A_{0}^{*}\right|+|B|-1\right)+(n+l-1)+h_{B} \\
& \geq(m+l-1)+(n+l-1)+h_{B} \\
& =2 l+r-2+h_{B} .
\end{aligned}
$$

Similarly for the remaining case ($n \leq m$), $|A+3 \cdot B| \geq 2 l+r-2+h_{B}$. Thus, we obtain that h_{B} satisfies $0 \leq h_{B} \leq|A+3 \cdot B|-(2 l+r-2)=h \leq r-3$. Therefore, $B \subseteq\left\{b_{0}, b_{0}+1, b_{0}+2, \ldots, b_{l-1}\right\} \subseteq\left\{0,1, \ldots, b_{l-1}\right\}$ and B is an arithmetic progression of length at most $b_{l-1}+1=l+h_{B} \leq l+h \leq r+l-3$. As $\ell(A) \leq \ell(B)$, the set A is also contained in A.P. of length at most $r+l-3$. The result can be easily verified for the case $\left|A_{0}\right|=m \geq 1,\left|A_{1}\right|=n=0$ and $\left|A_{2}\right|=p \geq 1$.

Case 2. $\left|A_{0}\right|=m \geq 1,\left|A_{1}\right|=n \geq 1,\left|A_{2}\right|=p \geq 1$ i.e. $c_{3}(A)=3$. Assume that

$$
\begin{aligned}
& A_{0}=\left\{0=3 x_{0}<3 x_{1}<\cdots<3 x_{m-1}\right\} \\
& A_{0}^{*}=\frac{1}{3} \cdot A_{0}=\left\{0=x_{0}<x_{1}<\cdots<x_{m-1}\right\}, \\
& A_{1}=\left\{3 y_{0}+1<3 y_{1}+1<\cdots<3 y_{n-1}+1\right\}, \\
& A_{1}^{*}=\frac{1}{3} \cdot\left(A_{1}-1\right)-y_{0}=\left\{0<y_{1}-y_{0}<y_{2}-y_{0}<\cdots<y_{n-1}-y_{0}\right\}, \\
& A_{2}=\left\{3 z_{0}+2<3 z_{1}+2<\cdots<3 z_{p-1}+2\right\}, \\
& A_{2}^{*}=\frac{1}{3} \cdot\left(A_{2}-2\right)-z_{0}=\left\{0<z_{1}-z_{0}<z_{2}-z_{0}<\cdots<z_{p-1}-z_{0}\right\} .
\end{aligned}
$$

Then $\ell\left(A_{0}^{*}\right)=x_{m-1}<a_{r-1}=\ell(A), \ell\left(A_{1}^{*}\right)=y_{n-1}-y_{0}<a_{r-1}=\ell(A)$ and $\ell\left(A_{2}^{*}\right)=z_{p-1}-z_{0}<a_{r-1}=$ $\ell(A)$. Now

$$
\begin{aligned}
|A+3 \cdot B| & =\left|\left(A_{0} \cup A_{1} \cup A_{2}\right)+3 \cdot B\right| \\
& =\left|A_{0}+3 \cdot B\right|+\left|A_{1}+3 \cdot B\right|+\left|A_{2}+3 \cdot B\right| \\
& =\left|3 \cdot A_{0}^{*}+3 \cdot B\right|+\left|3 \cdot\left(A_{1}^{*}+y_{0}\right)+1+3 \cdot B\right|+\left|3 \cdot\left(A_{2}^{*}+z_{0}\right)+2+3 \cdot B\right| \\
& =\left|A_{0}^{*}+B\right|+\left|A_{1}^{*}+B\right|+\left|A_{2}^{*}+B\right| .
\end{aligned}
$$

Furthermore, we establish two inequalities in claim 1 and claim 2.
Claim 6. $\ell(B) \leq l+\max (m, n, p)-2 \leq l+r-3$.
Proof of Claim 6. Since $\ell(B) \geq \ell(A)>\ell\left(A_{0}^{*}\right), \ell(B) \geq \ell(A)>\ell\left(A_{1}^{*}\right)$ and $\ell(B) \geq \ell(A)>\ell\left(A_{2}^{*}\right)$, therefore $\delta_{B, A_{0}^{*}}=\delta_{B, A_{1}^{*}}=\delta_{B, A_{2}^{*}}=0$.

Let's start by considering the case where $m \leq n \leq p$. Assuming that Claim 6 is false, we can deduce that $\ell(B) \geq l+p-1=|B|+\left|A_{2}\right|-1 \geq l+n-1=|B|+\left|A_{1}\right|-1 \geq l+m-1=|B|+\left|A_{0}^{*}\right|-1$, while $d(B)=1$. Thus by Theorem 3

$$
\begin{align*}
\left|A_{0}^{*}+B\right| \geq l+2\left|A_{0}^{*}\right|-2=l+2 m-2, \quad\left|A_{1}^{*}+B\right| \geq l+2\left|A_{1}^{*}\right|-2=l+2 n-2 \\
\quad \text { and } \quad\left|A_{2}^{*}+B\right| \geq l+2\left|A_{2}^{*}\right|-2=l+2 p-2 . \tag{6}
\end{align*}
$$

Hence $|A+3 \cdot B| \geq 3 l+2 r-6$, which contradicts our hypothesis.
For all the remaining cases we obtain the result by proceeding like above. Thus $\ell(B) \leq$ $l+\max (m, n, p)-2$. Since $r=m+n+p$ and $\max (m, n, p) \leq r-1$, therefore, $\ell(B) \leq l+$ $\max (m, n, p)-2 \leq l+r-3$. This completes the proof of Claim 6.

Claim 7. $|A+3 \cdot B| \geq|A|+3(|B|-1)+h_{B}$.

Proof of Claim 7. Assume the case $m \leq n \leq p$. By Claim 6, observe that $\ell(B) \leq l+p-2$.
Also the By Theorem 1.3, $\left|A_{2}^{*}+B\right| \geq(p+l-1)+h_{B}$ and thus

$$
\begin{aligned}
|A+3 \cdot B| & =\left|A_{0}^{*}+B\right|+\left|A_{1}^{*}+B\right|+\left|A_{2}^{*}+B\right| \\
& \geq\left(\left|A_{0}^{*}\right|+|B|-1\right)+\left(\left|A_{1}^{*}\right|+|B|-1\right)+\left|A_{2}^{*}+B\right| \\
& \geq(m+l-1)+(n+l-1)+(p+l-1)+h_{B} \\
& =3 l+r-3+h_{B} .
\end{aligned}
$$

Similarly for all the remaining cases $|A+3 \cdot B| \geq 3 l+r-3+h_{B}$. Therefore, we can deduce that h_{B} satisfies the inequality $0 \leq h_{B} \leq|A+3 \cdot B|-(3 l+r-3)=h \leq r-3$. Consequently, it follows that $B \subseteq\left\{b_{0}, b_{0}+1, b_{0}+2, \ldots, b_{l-1}\right\} \subseteq\left\{0,1, \ldots, b_{l-1}\right\}$ and B forms an arithmetic progression with a length of at most $b_{l-1}+1=l+h_{B} \leq l+h \leq r+l-3$. Since $\ell(A) \leq \ell(B)$, the set A is also contained within an arithmetic progression with a length of at most $r+l-3$. This establishes the desired result. By combining both cases, we obtain the overall result.

Acknowledgments

The authors are thankful to Dr MSG for their guidance.

References

[1] A. Balog, G. Shakan, "On the sum of dilations of a set", Acta Arith. 164 (2014), no. 2, p. 153-162.
[2] J. Bhanja, S. Chaudhary, R. K. Pandey, "On some direct and inverse results concerning sums of dilates", Acta Arith. 188 (2019), no. 2, p. 101-109.
[3] B. Bukh, "Sums of dilates", Comb. Probab. Comput. 17 (2008), no. 5, p. 627-639.
[4] S. S. Chahal, R. K. Pandey, "On a sumset problem of dilates", Indian J. Pure Appl. Math. 52 (2021), no. 4, p. 1180-1185.
[5] J. Cilleruelo, Y. O. Hamidoune, O. Serra, "On sums of dilates", Comb. Probab. Comput. 18 (2009), no. 6, p. 871-880.
[6] J. Cilleruelo, M. Silva, C. Vinuesa, "A sumset problem", J. Comb. Number Theory 2 (2010), no. 1, p. 79-89.
[7] S.-S. Du, H.-Q. Cao, Z.-W. Sun, "On a sumset problem for integers", Electron. J. Comb. 21 (2014), no. 1, article no. P1.13 (25 pages).
[8] G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, "Direct and inverse problems in additive number theory and in non-abelian group theory", Eur. J. Comb. 40 (2014), p. 42-54.
[9] Y. O. Hamidoune, J. Rué, "A lower bound for the size of a minkowski sum of dilates", Comb. Probab. Comput. 20 (2011), no. 2, p. 249-256.
[10] V. F. Lev, P. Y. Smeliansky, "On addition of two distinct sets of integers", Acta Arith. 70 (1995), no. 1, p. 85-91.
[11] Z. Ljujić, "A lower bound for the sum of dilates", J. Comb. Number Theory 5 (2013), no. 1, p. 31-51.
[12] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, vol. 165, Springer, 1996.
[13] Y. V. Stanchescu, "On addition of two distinct sets of integers", Acta Arith. 75 (1996), no. 2, p. 191-194.

[^0]: * Corresponding author.

