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Abstract. We say that a control system is locally controllable if the attainable set from any state x contains an
open neighborhood of x, while it is controllable if the attainable set from any state is the entire state manifold.
We show in this note that a control system satisfying local controllability is controllable. Our self-contained
proof is alternative to the combination of two previous results by Kevin Grasse.

Résumé. Nous disons qu’un système de contrôle est localement controllable si les ensembles atteignables à
partir de tout état x sont un voisinage de x, tandis que le système est contrôlable si les ensembles atteignables
à partir de tout état coïncident avec la variété entière. Nous montrons qu’un système qui est localement
controllable est contrôlable. Notre preuve est une alternative à la combinaison de deux résultats précédents
par Kevin Grasse.
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1. Introduction

Let M be a connected finite-dimensional smooth manifold. Here we study the controllability
properties of a system of the form

ẋ = F (x,u(t )), x ∈ M , (C)

where F : M ×U → T M , with U ⊂ Rm for some m ∈ N and F is C 1. We consider as set of
admissible controls either Upc = ∪T≥0{u : [0,T ] → U | u piecewise constant}, or the family
U∞ =∪T≥0L∞([0,T ],U ). Given an admissible control u ∈U , where U is one of these two classes,
we denote by φ( · , x,u) the unique absolutely continuous maximal solution of (C) with initial
condition x at time 0. The attainable set from a point x in M for system (C) is

Ax = {φ(T, x,u) | T ≥ 0, u ∈U , φ( · , x,u) is defined on [0,T ]}. (1)

When y ∈Ax we say that y is attainable from or reachable from x. We say that system (C) is locally
controllable if the attainable set from any initial state x in M is a neighborhood of x, i.e.,

x ∈ IntAx , ∀ x ∈ M , (2)

while it is said to be controllable if Ax = M for each x in M . Observe that sometimes in the
literature the expression local controllability is used with a different meaning (see, for example, [4,
Definition 3.2]).

The notion of local controllability has been studied extensively in the literature, especially
in the stronger forms of small-time local controllability (ST-local controllability) (for which
the attainable set Ax is replaced by the set of points attainable from x within an arbitrarily
small positive time) and localized local controllability (L-local controllability) (for which one
considers the set of points attainable from x by admissible trajectories that stay in an arbitrarily
small neighborhood of x). A combination of the two constraints yields the notion of small-
time localized local controllability (STL-local controllability). Table 1 contains a scheme of the
implications that can be directly deduced from the above definitions, and we refer to Section 2
for a detailed description of these different types of local controllability and the relations between
them.

Table 1. Relations between different types of local controllability. As discussed in Section 2,
the missing arrows cannot be added to the scheme. The only arrow that needs to be justified
here is the one representing the fact that local controllability implies controllability. This is
the object of Theorem 1.

ST-local controllability

STL-local controllability local controllability controllability

L-local controllability
Thm. 1

Folklore has it that controllability can be deduced from suitable versions of local controlla-
bility: for example, in [3, Section 12.3] it is stated (without proof) that STL-local controllability
implies controllability. Another example are linear systems for which controllability is known to
be equivalent to ST-local controllability. The question whether ST-local controllability implies
controllability for a more general control system was formulated for instance in [1, Section 3].

The purpose of this paper is to prove that the weakest version of local controllability is
sufficient to deduce controllability, giving in particular a positive answer to the question just
mentioned.
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Theorem 1. If system (C) is locally controllable, then (C) is controllable.

We mention that if L-local controllability is known, then controllability can be shown with a
simpler proof than what is proposed here for Theorem 1 (see Appendix A) but still does not follow
immediately from the definitions, since reachability is not a symmetric property. Indeed, the fact
that one can reach an open neighborhood of a given initial state does not imply that any point in
the neighborhood can be steered back to the initial state.

Let us mention that it is hard to find testable conditions for local controllability to hold.
Indeed, in the literature it is more common to find conditions for ST-local controllability since
those can be deduced from Lie algebraic arguments (see, e.g., [9] and references therein). It
should be noticed that such conditions do not usually provide local controllability at every point,
since they tipically require that the point at which local controllability is studied is an equilibrium
of one of the admissible vector fields. Finally, we note that the interest in ST-local controllability
is motivated, for example, by its relation with the continuity of the optimal time function, as
explained in [14].

Key steps of the proof of Theorem 1

System (C) is said to be approximately controllable if all attainable sets are dense, i.e.,

clAx = M , ∀ x ∈ M ,

where cl denotes the closure with respect to the topology of M . The first step in the proof of of
Theorem 1 is to prove that local controllability implies approximate controllability.

Lemma 2. If (C) is locally controllable, then it is approximately controllable.

The proof of the lemma, presented in Section 3, relies on the regularity of the flow of (C) for a
fixed control, and on the connectedness of M . The second key property is the following lemma.

Lemma 3. Assume that (C) is locally controllable. Then, for every x and y in M,

y ∈Ax =⇒ x ∈Ay .

Lemma 3 is proved by showing that trajectories of (C) can be retraced back by finding a control
driving their endpoint to their starting point. More precisely, assume that y is in Ax and consider
a control u such that y = φ(T, x,u). For t in a left neighborhood of T , the point φ(t , x,u) can
be reached from y due to local controllability. By repeating this argument and concatenating
the controls, one can find smaller and smaller t ≥ 0 such that φ(t , x,u) can be reached from y .
In order to reach x = φ(0, x,u) (i.e., to prove the lemma) one has to show that the sequence of
times t found following such a procedure eventually attains zero, unlike the situation depicted in
Figure 1.

These arguments for the proof of Theorem 1 hold for other classes of controls, provided that
the control system remains well-posed in the space of absolutely continuous functions and that
the set of controls contains the piecewise constant functions. (For conditions of this type, see,
e.g., [2, Chapters 2 and 3].)

The fact that local controllability implies global controllability was already treated in [11]
for a compact state manifold M . For the noncompact case, in [5] the author shows that local
controllability implies global one for piecewise constant controls. A related result in [7] shows that
local controllability via bounded measurable controls implies the same via piecewise constant
controls, therefore extending the previous result to control systems with bounded measurable
controls. Our self-contained proof is alternative to the combination of these two results.
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φ( · , x,u)

z

y

x

Figure 1. When retracing back the trajectoryφ( · , p,u), the attainable sets might get smaller
and smaller and collapse to a point z before reaching x, since a priori their size is not lower
semi-continuous. Lemma 3 shows that this situation cannot happen, proving a key step for
the proof of Theorem 1.

2. On the local forms of controllability

Let us define the set of points attainable from a point x in M at a time t > 0 with trajectories of (C)
remaining inside of a domainΩ by

A t
x,Ω = {φ(t , x,u) | u ∈U , φ( · , x,u) defined on [0, t ] with values inΩ},

and let

A ≤T
x,Ω = ⋃

0<t≤T
A t

x,Ω, Ax,Ω = ⋃
0<t<+∞

A t
x,Ω.

Moreover, let us denote A ≤T
x =A ≤T

x,M and notice that Ax =A ≤+∞
x,M . System (C) is said to be small-

time locally controllable if

x ∈ IntA ≤T
x ∀ T > 0, ∀ x ∈ M ; (ST-locally controllable)

moreover, system (C) is said to be localized locally controllable if

x ∈ IntAx,Ω ∀ x ∈ M , ∀Ω neigh. of x. (L-locally controllable)

Finally, system (C) is said to be small-time localized locally controllable if

x ∈ IntA T
x,Ω ∀ T > 0, ∀ x ∈ M , ∀Ω neigh. of x. (STL-locally controllable)

One recognizes immediately that the implications contained in Table 1 can be directly deduced
from the above definitions, with the exception of Theorem 1. In this section we show that the
missing arrows cannot be added to the scheme, provinding the examples summarised in Table 2.

Table 2. A diagram summarizing the fact that the weaker forms of local controllability do
not imply the stronger.

ST-local controllability

STL-local controllability local controllability

L-local controllability

\ Ex. 5

\

Ex. 4

\

Ex. 5

\
Ex. 4

\
Ex. 5 \ Ex. 4
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Figure 2. An illustration of the admissible vector fields of the control system in Example 5,
which is L-locally controllable everywhere but is not ST-locally controllable at the origin.

Example 4 (ST-local controllability ≠⇒ L-local controllability). Recall that a linear control
system ẋ = Ax +Bu is controllable if and only if it is ST-locally controllable which, in turns, is
equivalent to the Kalman condition (see, e.g, [13]). On the other hand, a control system is L-
locally controllable only if the range Im(B) of B is the entire state space. Indeed, if Ax̄ points
outside Im(B) at some x̄ ∈ Im(B), considering a linear system of coordinates associated with a
basis containing Ax̄ and a set of generators for Im(B), we have that the component along Ax̄
of every admissible trajectory staying in a sufficiently small neighborhood of x̄ is increasing.
Hence, a necessary condition for L-local controllability is that Ax is in Im(B) for every x ∈ Im(B).
If such a condition is satisfied, every admissible trajectory starting from Im(B) cannot exit
it. Therefore, L-local controllability can only hold when Im(B) is maximal. (See [1] for more
results on controllability and local controllability of control-affine systems with unbounded
controls and [12] for a detailed study on the minimal time for controllability in the case of finite-
dimensional linear autonomous control systems with state constraints and unbounded controls.)

Hence any controllable linear system such that Im(B) is not maximal is ST-locally controllable
without being L-locally controllable. This also proves that a ST-locally controllable system is not
necessarily STL-locally controllable, and that a locally controllable system is not necessary L-
locally controllable, as indicated in Table 2.

Example 5 (L-local controllability ≠⇒ ST-local controllability). We now present an example of
a control system in R2 that is L-locally controllable, but which fails to be ST-locally controllable
at the origin. The example shows, in particular, that a L-locally controllable system is not neces-
sarily STL-locally controllable and that a locally controllable system is not necessarily ST-locally
controllable, as indicated in Table 2. Let us define, for all x = (x1, x2) ∈R2,

X0(x) =
(
1
0

)
, X1(x) =

(−x2

x1

)
, and X2(x) =

(
x1

x2

)
,

and let us consider the control system

x ′ = u0X0(x)+u1X1(x)+u2X2(x), u0 ∈ [0,1], u1,u2 ∈ [−1,1].

An illustration of this system can be found in Figure 2. Outside of the origin this system is STL-
locally controllable, since the vector fields X1 and X2 are transversal and u1,u2 can take both
positive and negative values. One can check that the maximal angular velocity is independent of
the radius, and that the time needed to complete a semicircle is greater than or equal to π.
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z

y

x

Figure 3. If (C) is approximately controllable and the controllable set to a certain state x
has nonempty interior, then x can be reached from any other state in M . This is observed
in Remark 6.

3. Proofs

3.1. Preliminaries

Let us observe that, fixed a control u ∈U , the non-autonomous differential equation (C) is well-
posed in the space of absolutely continuous functions. Precisely, for a given initial condition
x ∈ M , there exist T > 0 and a neighborhood W of x such that φ(t , y,u) is defined for (t , y) ∈
[0,T ]×W and absolutely continuous with respect to t . Moreover, for any t ∈ [0,T ] the flowφ(t , ·,u)
restricted to W is a local C 1-diffeomorphism (see, e.g., [8, Theorem 6.2]) or [13, Theorem 1]).

Let us denote by F = {F ( · ,u) | u ∈U } the family of vector fields of M parametrized by F . For
a fixed vector field f in F , we denote by e t f (y) the value at time t of the trajectory of ẋ = f (x)
starting from y , implicitly assuming that such a trajectory is indeed defined between 0 and t .

Given a point x in M , the controllable set to x is the set of points which can be steered to x, i.e.,

A −
x = {y ∈ M | x ∈Ay }.

Observe that A −
x is the attainable set from x for the control system defined by −F , whose

solutions are the trajectories of (C) followed in the opposite time direction.

Remark 6. Assume that (C) is approximately controllable. If a point x in M satisfies IntA −
x ̸= ;,

then x can be reached from any other point. Indeed, for any y in M , since Ay is dense in M it
intersects the interior of A−

x . Thus, there exists z ∈ Ay ∩ A−
x . Since z ∈ Ax and z ∈ Ay , system (C)

can be steered from y to x (see Figure 3).

3.2. Approximate controllability of locally controllable systems

We are ready to prove Lemma 2.

Proof of Lemma 2. Let x ∈ M . We want to show that cl(Ax ) is open. By connectedness of M , this
implies that cl(Ax ) = M , thus proving the lemma.

Let y ∈ cl(Ax ). We claim that for every control u ∈ U and t > 0 such that φ(t , y,u) is defined,
we have that

φ(t , y,u) ∈ cl(Ax ). (3)

This concludes the proof of the lemma. Indeed, from (3) it follows that Ay ⊂ cl(Ax ); since Ay

contains y in its interior due to local controllability, this proves that cl(Ax ) is open.
In order to prove (3), fix any neighborhood V of φ(t , y,u): we show that V has nonempty

intersection with Ax . Consider a neighborhood W of y such that the map ϕ = φ(t , ·,u)|W is
a C 1-diffeomorphism. In particular, ϕ(W ) is a neighborhood of φ(t , y,u), and the set W ′ =
ϕ−1(V ∩ϕ(W )) is a neighborhood of y . Since y is in the closure of Ax , there exists y1 ∈ W ′∩Ax .
Consider an admissible control steering (C) from x to y1: by concatenating such a control with
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u one finds that φ(t , y1,u) is in Ax . This implies that φ(t , y1,u) belongs to V ∩Ax , proving that
V ∩Ax is nonempty, as required. □

3.3. Symmetry of attainable sets of locally controllable systems

Proof of Lemma 3. Let x and y in M be such that y ∈ Ax . We argue by contradiction supposing
that x ∉Ay . We claim that this implies the existence of a point z in M (actually z ∈Ax ) such that

z ∉Ay and IntA −
z ̸= ;. (4)

This yields a contradiction, since the assertions in (4) cannot hold both at the same time due to
Remark 6. (Notice that Remark 6 applies to system (C) because of Lemma 2.) The rest of the proof
is dedicated to proving the existence of a point z satisfying (4).

Consider u ∈ U and T > 0 such that φ(T, x,u) = y . Define the absolutely continuous curve
γ : [0,T ] → M by γ(t ) =φ(t , x,u). Let

τ= inf{t ∈ [0,T ] | γ(t ) ∈Ay }.

We claim that γ([0,T ])∩Ay = γ((τ,T ]) (see Figure 1, in which z plays the role of γ(τ)). Indeed,
γ−1(γ([0,T ])∩Ay ) is open since Ay is open, and its complement is nonempty since it contains
zero (we are assuming that x ∉Ay ). Moreover,if a certain s ∈ [0,T ] satisfies γ(s) ∈Ay , then, for all
t in [s,T ], one has γ(t ) ∈Ay since it suffices to concatenate the control steering (C) from y to γ(s)
with u|[s,t ] in order to attain γ(t ). Up to renaming γ(τ) as x, we can assume that τ = 0. Namely,
without loss of generality, we can assume

x ∉Ay and φ(t , x,u) ∈Ay , for all t ∈ (0,T ].

Let V be a neighborhood of x contained in Ax . We now construct a parametrization Cn : In →
M (In ⊂ Rn open) of a n-dimensional C 1-embedded submanifold of M satisfying Cn(In) ⊂ A −

x ,
and therefore x (or more exactly γ(τ)) satisfies (4). This will be done by a recursive argument, by
constructing a finite sequence of embeddings Ck : Ik → M (Ik ⊂Rk open) of class C 1, k = 1, . . . ,n,
with

Ck (s) ∈V and x ∈ACk (s), for all s ∈ Ik . (5)

Let us begin with k = 1. Let v ∈ U (constant) such that F (x, v) ̸= 0 and denote f1 = F ( · , v).
Let I1 be an open interval of the form (0,δ1) such that the map C1 : I1 → M of class C 2 defined
by C1(t ) = e−t f1 (x) parameterizes an embedded curve. Since the constant control defined by v
belongs to U , then one can reach x from any point in C1(I1). Moreover, one has that C1(I1) is
contained in V , up to choosing δ1 sufficiently small. Thus, C1 satisfies (5) for k = 1.

Now, suppose having constructed a k-dimensional parameterization Ck of class C 1 satisfy-
ing (5), with 1 ≤ k ≤ n − 1. Fix a point xk ∈ Ck (Ik ), and consider a control uk in U and a time
Tk ≥ 0 such that xk = φ(Tk , x,uk ). (We are using here that xk ∈ V ⊂ Ax .) Let Wk be a neighbor-
hood of x such that ϕk =φ(Tk , ·,uk )|Wk is a C 1-diffeomorphism. Then Sk :=ϕ−1

k ◦Ck parameter-
izes an embedded submanifold of dimension k containing x. Moreover,

x ∈ASk (s), ∀ s ∈ Ik , (6)

since x ∈ ACk (s), and Ck (s) ∈ ASk (s) using uk as control. In particular, we have that Sk (s) ∉ Ay for
all s ∈ Ik . As a consequence, since φ(t , x,u) ∈Ay for all t ∈ (0,T ], we have that

Sk (Ik )∩ {φ(t , x,u) | t ∈ (0,T ]} =;. (7)

This implies the existence of tk ∈ [0,T ] and of σ ∈ Ik with Sk (σ) ∈ V such that F (Sk (σ),u(tk ))
is transverse to TSk (σ)Sk (Ik ). Indeed, if one had F (Sk (s),u(t )) ∈ TSk (s)Sk (Ik ) for all s ∈ Ik and
t ∈ [0,T ], then, by uniqueness of solutions of Cauchy problems with C 1 vector fields, φ(t , x,u)
would stay in Sk (Ik ), at least for t sufficiently small. However, this contradicts (7). Moreover, σ
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yx

x1

C1(I1)

φ( · , x,u1) φ( · , x,u)

fv

S1(σ)

C2(I2)

Figure 4. A graphic representation of the iterations in the proof of Lemma 3. One can steer
any point in C2(I2) to x by first attaining S1(I1), then attaining C1(I1) via the control u1 from
which one can reach the initial state x.

can be chosen so that Sk (σ) is arbitrarily close to x, and in particular so that it belongs to V . Let
fk be the vector field fk =F ( · ,u(tk )).

By transversality of fk (Sk (σ)) and TSk (σ)Sk (Ik ), there exist δk+1 > 0 and an open neighborhood
I ′k ⊂ Ik containing σ such that the map Ck+1 : I ′k × (−δk+1,δk+1) → M defined by

Ck+1(s, t ) = e t fk ◦Sk (s), ∀ (s, t ) ∈ I ′k × (−δk+1,δk+1),

is a C 1 parametrization of an embedded submanifold of dimension k + 1. Moreover, since
Ck+1(σ,0) = Sk (σ) ∈V , the set I ′k × (−δk+1,δk+1) can be chosen so that Ck+1(I ′k × (−δk+1,δk+1)) ⊂
V . We are now left to observe that x ∈ACk+1(s) for all s ∈ Ik+1 :=I ′k×(−δk+1,0). In fact, starting from
Ck+1(s) one can reach Sk (Ik ) using the (constant) control u(tk ) corresponding to fk , and x can be
reached from Sk (Ik ) by (6). This concludes the iteration, since Ck+1|Ik+1 satisfies (5). □

3.4. Conclusion

Once Lemma 3 is proven, Theorem 1 follows from the following standard argument.

Proof of Theorem 1. Assume that (C) is locally controllable. Define the relation ∼ on M by saying
that x ∼ y if and only if x ∈Ay . Thanks to Lemma 3, ∼ is an equivalence relation. Due to the local
controllability, the equivalence classes are open. Each class is also closed, since its complement is
the union of the other classes, and such an union is open. Due to the connectedness of M , there
is only one class and system (C) is controllable. □

Appendix A. A simpler proof when L-local controllability holds.

In this appendix we give a simpler proof of the controllability of L-locally controllable systems.
We first observe the following.

Proposition 7. If system (C) is L-locally controllable, then for any point x ∈ M the set A −
x has

nonempty interior.

A proof of this proposition can be found below. However, observe that Proposition 7 can
be directly deduced from [6, Theorem 5.3], since the property of localized local controllability
implies, in the terminology of [6], that (C) has the nontangency property.



Ugo Boscain, Daniele Cannarsa, Valentina Franceschi and Mario Sigalotti 1821

Proof. The argument mimics the proof of Krener’s theorem [10]. Fix x in M . We claim that there
exists f1 ∈ F such that f1(x) ̸= 0. Indeed, if that were not the case, any solution φ( · , x,u) with
u ∈U would be constant. Let

N1 = {e−t f1 (x) | t ∈ (0,δ)}

for δ> 0. If M is one-dimensional, then we have concluded. Otherwise, we claim that there exist
y1 ∈ N1 and f2 ∈ F such that f1(y1) and f2(y1) are linearly independent. Indeed, let V1 be a
neighborhood of e−

δ
2 f1 (x) not containing x nor e−δ f1 (x) and assume that every f ∈ F is tangent

to N1∩V1. Then the trajectories of (C) starting from N1∩V1 and staying in V1 cannot quit N1∩V1.
This contradicts the localized local controllability property.

Thus, define the embedded two-dimensional submanifold of class C 1

N2 = {e−t2 f2 ◦e−t1 f1 (x) | (t1, t2) ∈ I2 × (0,δ2)},

for a suitable nonempty open subinterval I2 of (0,δ) and a suitable δ2 > 0. If the dimension of
M is equal to 2 the proof is concluded, otherwise, reasoning as above, there exist y2 =∈ N2 and
f3 ∈F such that f3(y2) is transverse to N2, i.e.,

dim(span{ f3(y2)}+Ty2 N2) = dim(N2)+1 = 3.

Hence, the differential of the map (t1, t2, t3) 7→ e−t3 f3 ◦e−t2 f2 ◦e−t1 f1 (x) has full rank in a neighbor-
hood of (t̄1, t̄2,0), where t̄1, t̄2 are such that y2 = e−t̄2 f2 ◦e−t f̄1 (x). We can then iterate the construc-
tion up to reaching the dimension of M . □

Now due to Lemma 2, L-locally controllable systems are approximately controllable. Moreover,
Proposition 7 ensures that any point x in M satisfies IntA −

x ̸= ;. Thus, by Remark 6, we deduce
that any x in M can be reached from any other point.
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