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Abstract. The aim of this paper is to prove new exact controllability properties of systems described by
perturbations of the classical Kirchhoff plate equation. We first consider systems described by an abstract
plate equation with a bounded control operator. The generator of these systems is perturbed by bounded
operators which are not necessarily compact, thus not falling in the range of application of compactness-
uniqueness arguments. Our first main result is abstract and can be informally stated as follows: if the system
described by the corresponding unperturbed abstract wave equation, with the same control operator, is
exactly controllable (in some time), then the considered perturbed plate system is exactly controllable in
arbitrarily small time. The employed methodology is based, in particular, on frequency-dependent Hautus
type tests for systems with skew-adjoint operators. When applied to systems described by the classical
Kirchhoff equations, our abstract results, combined with some elliptic Carleman-type estimates, yield exact
controllability in arbitrarily small time, provided that the system described by the wave equation in the same
spatial domain and with the same control operator is exactly controllable. The same abstract results can be
used to prove the exact controllability of the system obtained by linearizing the von Kármán plate equation
around a real analytic stationary state. This leads, via a fixed-point method, to our second main result: the
nonlinear system described by the von Kármán plate equations is locally exactly controllable around any
stationary state defined by a real analytic function. We also discuss the possible application of the methods
in this paper to systems described by Schrödinger type equations on manifolds or by the related Berger’s
nonlinear plate equation.

Résumé. L’objectif de ce travail est l’obtention des nouvelles propiétés de contrôlabilité exacte de systèmes
décrits par des perturbations de l’équation de plaque de Kirchhoff classique. Nous considérons d’abord les
systèmes décrits par une équation des plaques abstraite avec un opérateur de contrôle borné. Le générateur
de ces systèmes est perturbé par des opérateurs bornés qui ne sont pas nécessairement compacts, donc hors
du domaine d’application des arguments compacité-unicité. Notre premier résultat principal est abstrait et
peut être énoncé de manière informelle comme suit : si le système décrit par l’équation d’onde abstraite
non perturbée correspondante, avec le même opérateur de contrôle, est exactement contrôlable (dans un
certain temps), alors le système de plaques perturbé considéré est exactement contrôlable en un temps
arbitrairement petit. La méthodologie employée s’appuie notamment sur des tests de type Hautus dépendant
de la fréquence pour des systèmes à opérateurs anti-adjoints. Lorsqu’ils sont appliqués à des systèmes décrits
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par les équations classiques de Kirchhoff, nos résultats abstraits, combinés à des estimations elliptiques
de type Carleman, donnent une contrôlabilité exacte en un temps arbitrairement petit, à condition que le
système décrit par l’équation d’onde dans le même domaine spatial et avec le même l’opérateur de contrôle
est exactement contrôlable. Les mêmes résultats abstraits peuvent être utilisés pour prouver la contrôlabilité
exacte du système obtenu en linéarisant l’équation de la plaque de von Karman autour d’un état stationnaire
analytique réel. Ceci conduit, via une méthode de point fixe, à notre deuxième résultat principal : le système
non linéaire décrit par les équations de von Kárman est localement exactement contrôlable autour de
tout état stationnaire défini par une fonction analytique réelle. Nous discutons également de l’application
possible des méthodes de cet article à des systèmes décrits par des équations de type Schrodinger sur des
variétés ou par l’équation de plaque non linéaire de Berger associée.

Funding. This work benefits from the support of ANR project TRECOS, grant ANR-20-CE40-0009.

Manuscript received 21 December 2022, revised 13 July 2023, accepted 14 July 2023.

1. Introduction

The exact controllability for systems described by the linear plate equation, designed as Kirchhoff
plate equation in the remaining part of this paper, via a distributed internal control is by now a
well-understood subject. The existing type of results asserts that, under appropriate conditions
on the domain where the PDE holds and on the support of the control, exact observability holds
in arbitrarily small time(see, for instance, Zuazua [36, Appendix 1] for an early result of this type).

A natural question is the robustness of these results when the bilaplacian appearing in the
Kirchhoff equation is perturbed by a linear second order differential operator. As far as we
know, there is no result in this direction, with the exception of the case when the coefficients of
the perturbing operator are small (in an appropriate sense), where this robustness follows from
simple functional analytic arguments. For the related problem of exact controllability of systems
described by Schrödinger equations with the Laplacian perturbed by multiplication operators the
literature contains several results which assume either that a geometric optics condition holds or
that the domain in which the Schrödinger equation holds is a disk or a torus, see Anantharaman,
Léautaud and Macià [1], Bourgain, Burq and Zworski [7] and references therein.

In this work we assume that the spatial domain occupied by the plate and the control operator
are such that the system described by the wave equation in the same domain and with the
same control operator is exactly controllable. One of our main results asserts that under this
assumption, which is strictly stronger than the exact controllability of the unperturbed Kirchhoff
system (see comments in Section 2 below), combined with a unique continuation hypothesis, the
perturbed plate system is exactly controllable.

The remaining part of this work is organized as follows. Section 2 is devoted to a detailed
description of the general context and to the statement of the main results. In Section 3, we
describe, in an abstract setting, a strategy, based on resolvent estimates, to deal with bounded
perturbations of the generator of control systems. In Section 4, we give a Hautus-type condition
for the exact observability of systems described by abstract Schrödinger and Kirchhoff equations.
This test is then used in Section 5 to prove the exact controllability of linear perturbed abstract
systems. These abstract results are then used in Section 6 to prove the exact controllability of
linear perturbed Kirchhoff equations stated in Theorem 4. In Section 7, using a fixed-point
theorem, one can deduce the exact controllability of the nonlinear Von Kármán plate model
given in Theorem 6. Finally, in Section 8, we indicate how our methodology can be used to
tackle perturbations of the system described by the Schrödinger or plate equations on a class
of compact manifolds and of the nonlinear system described by Berger’s equation, which can be
seen as a simplification of the von Kármán system.
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2. Context and statement of the main results

As already mentioned, the exact controllability of the systems we are interested in is strongly
related to the similar property for systems described by the Schrödinger and wave equations.
In particular, in the case of boundary conditions corresponding (at least for a flat boundary)
to the hinged case, these properties can be derived from the corresponding properties of the
system described by the Schrödinger equation with homogeneous Dirichlet boundary condition
and with the same control operator. Moreover, the exact controllability in any positive time of
Schrödinger type systems can be obtained from the exact controllability (in some time) of the
corresponding system described by the wave equation as done in Miller [41, Remark 10.3] and
Tucsnak and Weiss [47, Section 6.8]. Thus, in the above sense, the exact controllability properties
of systems described by the wave equation implies the same property (in arbitrarily small time)
for the corresponding systems described by the Schrödinger or Kirchhoff plate equations.

To state the above assertions in a more precise manner, we introduce some notation that will
be used in the remaining part of this paper. Let n ∈N and letΩ⊂Rn be an open bounded set with
∂Ω of class C 3 or let Ω be a rectangular domain. We first consider the control system, described
by a wave equation,{

v̈(t , x)−∆v(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω),
v(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

(Σwave)

where O is an open nonempty subset of Ω, χO ∈ L∞(Ω) is non negative and positive in O , u is
the control function and [ v

v̇ ] is the state trajectory of the system. This system, with input space
L2(Ω), is clearly well-posed in the state space H 1

0 (Ω)×L2(Ω), where, as usual, for every m ∈N we
denote by H m(Ω), the space of functions in L2(Ω) with distributional derivatives, up to order m
in L2(Ω) and by H m

0 (Ω) the closure of C∞
0 (Ω) in H m(Ω). Using the same notation as for defining

(Σwave) we define two other systems (Σschrod) and (Σplate) which correspond, respectively, to the
Schrödinger and Kirchhoff plate equations, by{

ż(t , x)+ i∆z(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω),

z(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),
(Σschrod)

and {
ẅ(t , x)+∆2w(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω),

w(t , x) = 0, ∆w(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω).
(Σplate)

It is well-known that (Σschrod) and (Σplate) are well-posed control systems, both with input
space L2(Ω) and with state space L2(Ω) and (H 2(Ω) ∩ H 1

0 (Ω)) × L2(Ω), respectively. The exact
controllability properties of the three above systems are connected by a result that goes back to
Lebeau [35] (see also Tucsnak and Weiss [47, Sections 6.7 and 6.8]).

Proposition 1. Assume that the system (Σwave) is exactly controllable (in some time). Then, the
systems (Σschrod) and (Σplate) are exactly controllable in arbitrarily small time.

Remark 2. It appears that for the exact controllability in some time τ of (Σwave), a crucial
sufficient condition on the control domain is the following:
(BLR): Any light ray, travelling in Ω at unit speed and reflected according to geometric optics laws
when it hits the boundary ∂Ω, will hit O in time ⩽ τ.
This condition was first considered for the wave equation by Rauch and Taylor in [45] for a
manifold, by Bardos, Lebeau and Rauch in [2] for bounded open sets Ω with ∂Ω of class C∞

(see also [3] in the case of boundary control) and later generalized to domains with ∂Ω of class
C 3 by Burq in [8]. It also has been proved to be sufficient for the Schrödinger equation by
Lebeau in [35] (actually, Lebeau deals with boundary control, but the same strategy holds for
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internal control). This condition is “almost” necessary in a sense made precise in [3], and we shall
refer to it as the geometric control condition of Bardos, Lebeau and Rauch or, shortly, the (BLR)
condition. However, this condition is not necessary for the controllability of systems described
by the Schrödinger or the Kirchhoff equations. This can be seen, for instance, in the case when
Ω is a rectangular domain, for which it has been shown in Jaffard [28] and Komornik [31] that the
exact controllability in arbitrarily small time of the plate equation holds for every open nonempty
subset O ofΩ.

The first aim of this paper is to investigate the robustness of the result in Proposition 1 when
the Laplacian in (Σschrod) or the bi-Laplacian in (Σplate) are perturbed by lower order linear
operators. In the case of the Schrödinger equation we have:

Proposition 3. Assume that the system (Σwave) is exactly controllable (in some time) and let
a ∈ L∞(Ω;R). Then the system{

ż(t , x)+ i∆z(t , x)+ i a(x)z(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω),

z(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),
(1)

with state and control space L2(Ω), is exactly controllable in any positive time.

Although we did not find the above result explicitly stated in the literature, one can say
that it makes part of the folklore in the field. For the sake of completeness, we will explain
in Section 3 how Proposition 3 follows from known resolvent estimates. Let us also note that
when a stronger version of the (BLR) condition holds, such a perturbation can be studied using
Carleman estimates which are appropriate to absorb the lower-order terms (possibly depending
on time and space), as done, for instance, in Baudouin and Puel [5] or Yuan and Yamamoto [48].
Moreover, it has been shown in Burq and Zworski [9] and Burq, Bourgain and Zworski [7] that if
Ω is a rectangular domain then the conclusion of Proposition 3 holds for any open nonempty set
O ⊂Ω.

Much less is known for similar perturbations (bounded but not compact in the state space) of
the Kirchhoff system (Σplate). Our main result on linearly perturbed Kirchhoff systems, which is
proved in Section 6, is:

Theorem 4. Let (akℓ)1⩽k,ℓ⩽n be functions in W 2,∞(Ω;R) such that
akℓ = aℓk (1⩽ k,ℓ⩽ n),

n∑
ℓ=1

∂akℓ

∂xℓ
(x) = 0 (k ∈ {1,2, . . . , n}, x ∈Ω).

(2)

Let (bk )1⩽k⩽n be functions in W 1,∞(Ω) and let c ∈ L∞(Ω). Moreover, suppose that the system
(Σwave), with state space H 1

0 (Ω)×L2(Ω) and control space L2(Ω), is exactly controllable (in some
time). Then, the equation

ẅ(t , x)+∆2w(t , x)+
n∑

k,ℓ=1
akℓ(x)

∂2w

∂xk∂xℓ
(t , x)

+
n∑

k=1
bk (x)

∂w

∂xk
(t , x)+ c(x)w(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω), (3)

with the boundary conditions

w(t , x) = 0, ∆w(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω), (4)

defines a system, with state space (H 2(Ω)∩H 1
0 (Ω))×L2(Ω) and control space L2(Ω), which is exactly

controllable in any positive time.
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Remark 5. In the particular case when the matrix (akℓ)1⩽k,ℓ⩽n vanishes, the result in Theo-
rem 4 has been proven in Cindea and Tucsnak [15]. Moreover, in the same reference, the exact
controllability in some time (not necessarily in an arbitrarily small time) of the system (3)-(4) has
been established if akℓ =−αδkℓ, where α⩾ 0 and δkℓ is the Kronecker symbol.

The second objective of this paper is to prove the local exact controllability around equilibrium
states for systems describing the nonlinear vibrations of elastic plates. Our main result in this
direction concerns the von Kármán plate model, which is described by the equations

ẅ(t , x)+∆2w(t , x)+ [w,Φ(w, w)](t , x) = f (x)+u(t , x)χO (x) (t ⩾ 0, x ∈Ω),

w(t , x) =∆w(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

w(0, x) = w0(x), ẇ(0, x) = w1(x) (x ∈Ω),

(5)

where Ω ⊂ R2 is an open, bounded and nonempty set, f is a given force field, the Airy stress
functionΦ(v, w) is the solution of the boundary value problem∆

2Φ(v, w)(t , x) = [v, w](t , x) (t ⩾ 0, x ∈Ω),

w(t , x) = ∂w

∂ν
(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

(6)

and the bracket [·, ·] : H 2(Ω)×H 2(Ω) → L1(Ω) is defined by

[ψ,ϕ] = ∂2ψ

∂x2
1

∂2ϕ

∂x2
2

+ ∂2ψ

∂x2
2

∂2ϕ

∂x2
1

−2
∂2ψ

∂x1∂x2

∂2ϕ

∂x1∂x2

(
ψ,ϕ ∈ H 2(Ω)

)
. (7)

In the above system, which is one of the most popular nonlinear models describing the vibrations
of elastic plates (see, for instance, Berger and Fife [6], Ciarlet and Rabier [13] for basic facts on
this type of model), w stands for the transverse displacement, whereas the in-plane and the
rotational inertia are neglected. The control function is u ∈ L2([0,∞),L2(Ω)), whereas O is an
open nonempty subset ofΩ, designing the region where the control acts, and χO ∈ L∞(Ω) is non
negative and positive in O .

Let η be a stationary solution corresponding to the forcing term f , i.e. satisfying{
∆2η(x)+ [

η,Φ(η,η)
]

(x) = f (x) (x ∈Ω),

η(x) =∆η(x) = 0 (x ∈ ∂Ω).
(8)

A natural question is the controllability of the system defined by (5) around the equilibrium
η. As far as we know, the first result in this direction has been proved in Lagnese [32], who
considered a model including rotational inertia (which simplifies the analysis) and he proved a
local controllability result for η= 0. The proof in [32] can be adapted to the system (5) by using the
sharp regularity of the nonlinear term in (5) obtained in Favini et al. [23, 24] (see also Chueshov
and Lasiecka [12]). As far as we know, the literature contains no local controllability result for (5)
around equilibrium states η ̸= 0, or even for the linearization of the system around such states.
Closely related questions are discussed in Eller and Toundykov [22], where the authors consider a
plate system with a local nonlinearity containing no derivatives of w and they prove a semiglobal
controllability result.

The main novelty we bring in on the system defined by (5) (which involves non-local second
order nonlinearities) is that we prove its local exact controllability around any equilibrium η

defined by a function which is real analytic on Ω. This analyticity condition could be replaced
by a potentially weaker unique continuation assumption, which will be discussed in Remark 28.

The second main result in this paper is:

Theorem 6. Let Ω ⊂ R2 be a nonempty, open and bounded set, with ∂Ω of class C 3 or let Ω be a
rectangle. Let f ∈ L2(Ω). Assume that O is an open subset ofΩ such that the system (Σwave) is exactly
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controllable (in some time). Moreover, suppose that the function η is in W 2,∞(Ω), satisfies (8) and
is analytic inΩ. Then, for every τ> 0, there exists ε> 0 such that for every

w0 ∈ H 2(Ω)∩H 1
0 (Ω), w1 ∈ L2(Ω),

with

∥w0 −η∥H 2(Ω) +∥w1∥L2(Ω) ⩽ ε,

there exists u ∈ L2([0,τ];L2(Ω)) such that

w(τ, ·) = η, ẇ(τ, ·) = 0.

The proof of this result will be presented in Section 7.

3. Some background on the Hautus test for skew-adjoint systems

The aim of this section is to recall some basic facts on exact controllability and exact observability
of systems with skew-adjoint operators, with a focus on the Hautus test and its applications
for studying perturbations. For more general background on exact observability and exact
controllability, we refer to [47, Ch. 6 and Ch. 11].

Within this section H (the state space), U (the input space) and Y (the output space) are
generic Hilbert spaces. In this work we consider control systems described by{

ż(t ) = Az(t )+Bu(t ) (t ⩾ 0),

z(0) = 0,
(9)

where A : D(A) ⊂H →H is a skew-adjoint operator generating a unitary C 0-group T on H and
B ∈ L (U ,H ). We say that the pair (A,B) defines a system, with state space H and input space
U , which is exactly controllable in time τ if for every z1 ∈H , there exists u ∈ L2([0,τ];U ) such that
the solution of (9) satisfies z(τ) = z1.

It is well-known that the exact controllability of a well-posed linear system is equivalent to the
exact observability of the dual system. This is true, in particular for the three systems (Σwave),
(Σschrod) and (Σplate) introduced in Section 1. The duals of these systems can all be written in the
form

ż = Az, y =C z, (10)

where C is a linear bounded operator from H into Y . Recall that the pair (A,C ) is said exactly
observable in time τ> 0 if there exists Kτ > 0 such that

K 2
τ

∫ τ

0
∥CTt z0∥2

Y d t ⩾ ∥z0∥2
H (z0 ∈H ) .

The pair (A,C ) is said exactly observable if it is exactly observable in some time τ> 0.

Remark 7. In this work we consider only bounded observation operators C ∈ L (H ,Y ). How-
ever, some of our abstract results, in particular those in Section 3 and in Section 4, hold under
a weaker assumption on the observation operator, namely that C ∈ L (D(A),Y ) is an admissible
observation operator for the semigroup T generated by A, in the sense of [47, Definition 4.3.1].
However, working with admissible operators instead of bounded ones entails some technical is-
sues with respect to the functional setting in which controllability and observability results hold.
Thus, due to the main applications we have in mind and for the sake of clarity, the results below
are only stated in the case of bounded observation operators.

A widely used necessary and sufficient condition for exact observability of systems with skew-
adjoint generator is the following Hautus test, firstly proved in Miller [41, Theorem 5.1]:



Marius Tucsnak, Megane Bournissou and Sylvain Ervedoza 333

Theorem 8. With the above notation, let A be skew-adjoint on H and let C ∈L (H ,Y ). Then the
pair (A,C ) is exactly observable if and only if there exist constants M , m > 0 such that

M 2 ∥(iωI − A)z0∥2
H +m2∥C z0∥2

Y ⩾ ∥z0∥2
H (ω ∈R, z0 ∈D(A)). (11)

Moreover, if (11) holds then (A,C ) is exactly observable in time τ for any τ> Mπ.

In the finite-dimensional case, the observability of (A,C ) is equivalent to Cφ ̸= 0 for every
eigenvector φ of A. The situation is more complicated in the infinite-dimensional case (see [11,
39, 44] for statements without information on the time of observability). A natural analog of the
condition Cφ ̸= 0 for every eigenvector φ of A, at least when A is skew-adjoint, is an observability
inequality on the wave packets of A. More precisely, we have (see, for instance, [47, Section 6.9]):

Theorem 9. Assume that A is skew-adjoint on H and that it has compact resolvents and let
C ∈ L (H ,Y ). We denote by (φ j ) j ∈N∗ an orthonormal basis of eigenvectors of A and by (iλ j ) j ∈N∗

the corresponding eigenvalues. Moreover, for every ω ∈R and r > 0, we set

Jr (ω) = {
j ∈N∗ such that

∣∣λ j −ω
∣∣< r

}
.

The following statements are equivalent.

(1) : There exist r,δ> 0 such that for all ω ∈R and for all z of the form z = ∑
j ∈ Jr (ω)

z jφ j ,

∥C z∥Y ⩾ δ∥z∥H . (12)

(2) The pair (A,C ) is exactly observable.

An interesting question is to investigate the robustness of exact observability with respect to
bounded (but not necessarily small) perturbations P ∈ L (H ) of the generator. To this purpose,
an interesting tool is a reinforced form of the condition (11), in which the constant M is replaced
by a positive function tending to zero when |ω| → ∞, which is a sufficient condition for exact
observability in arbitrarily small time, see [42, Corollary 2.14]. Such a frequency-dependent
Hautus-type condition allows to deal with bounded skew-adjoint perturbations of the generator.
More precisely, we have:

Proposition 10. Assume that A is skew-adjoint on H and that it has compact resolvents. Let
C ∈ L (H ,Y ). Suppose that there exist a function M : R → [0,+∞) which tends to zero when
|ω|→+∞ and a constant m > 0 such that

M 2(ω)∥(iωI − A)z0∥2
H +m2∥C z0∥2

Y ⩾ ∥z0∥2
H , (ω ∈R, z0 ∈D(A)) . (13)

Moreover, let P ∈L (H ) be a bounded skew-adjoint operator such that Cφ ̸= 0 for every eigenvector
φ of A+P. Then the pair (A+P,C ) is exactly observable in any positive time.

Remark 11. As pointed out in [42, Remark 2.15], Proposition 10 is not necessary to get observ-
ability of a system in arbitrarily small time. Indeed, when considering the Schrödinger equation
in a 2d torus observed from a strip, there is no function M :R→ [0,+∞) which tends to zero when
|ω|→+∞ so that the resolvent estimate (13) holds, while it is well-known that observability holds
in arbitrarily small times (see e.g. [26]).

Proof. First, notice that A +P with D(A +P ) = D(A) is still skew-adjoint, thus it generates a C 0-
group of unitary operators on H .

Using the fact that the pair (A,C ) satisfies (13), together with triangular and Young inequalities,
one gets that

2M 2(ω)∥(iωI − A−P )z0∥2
H +2M 2(ω)∥P∥2

L (H )∥z0∥2
H

+m2∥C z0∥2
Y ⩾ ∥z0∥2

H (ω ∈R, z0 ∈D(A)) .
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Since M(ω) → 0 when |ω|→∞, it follows that for every γ> 0 there exists cγ > 0 such that

γ2 ∥(iωI − A−P )z0∥2
H +m2∥C z0∥2

Y ⩾ ∥z0∥2
H

(|ω| > cγ, z0 ∈D(A)
)

.

We have thus shown that (11) holds for “high frequencies”. This, combined with the fact that
Cφ ̸= 0 for every eigenvectorφ of A+P and [47, Proposition 6.6.4], implies the exact observability
of (A+P,C ) in any time τ> γπ. □

Proposition 10 allows us to prove, for instance, the robustness of the exact controllability of a
system described by the Schrödinger equation with respect to bounded perturbations as stated
in Proposition 3.

Proof of Proposition 3. Denote by A = −i∆ with D(A) = H 2(Ω)∩ H 1
0 (Ω) which is skew-adjoint

with compact resolvents, C : ϕ 7→ ϕχO ∈ L (L2(Ω)) and P : ϕ 7→ −i aϕ ∈ L (L2(Ω)) (with a ∈
L∞(Ω,R)) which is also skew-adjoint. By [41, Proof of Theorem 3.4] or [47, Section 6.7], it is known
that when (Σwave) is exactly controllable in some time, the Hautus-type condition (13) holds with
M(ω) = Mp

ω
with some constant M > 0. Moreover, Cφ ̸= 0 for every eigenvector φ of A+P (see for

example [47, Theorem 15.2.1]).
Therefore, Proposition 10 entails that the pair (A +P,C ) is exactly observable in any positive

time, and thus, by a duality argument, that the Schrödinger equation with a bounded potential (1)
is exactly controllable in any positive time. □

As in Theorem 9, the frequency-dependent Hautus-type condition (13) can be equivalently
expressed in terms of wave packets, as done in Miller [42, Theorem 2.16]. For the sake of
simplicity, we only give below a simplified version of [42, Theorem 2.16], which is sufficient for
the present work.

Proposition 12. Assume that A is skew-adjoint on H and that it has compact resolvents and let
C ∈L (H ,Y ). The following statements are equivalent.

(1) There exist δ> 0 and r : R→ (0,+∞) which tends to infinity when |ω| → +∞ such that for
all ω ∈R and z of the form z =∑

j ∈ Jr (ω)(ω) z jφ j , the inequality (12) holds.
(2) There exists m > 0 and M :R→ (0,+∞) which tends to zero when |ω|→+∞ such that (13)

holds.

Our approach to prove the robustness of the exact observability property for plate equations
with respect to bounded perturbations of the generator, as stated in Theorem 4, is to show that
the considered system satisfies a frequency-dependent Hautus condition of type (13). To this
aim, see Section 4, we first check a frequency-dependent wave packets condition.

However, the situation is more complicated in the case of systems described by the plate
equation (3) than in the case of the Schrödinger equation (1), already studied in this section.
Indeed, extra difficulties are generated by the fact that, when written in first-order form, the
generator of the perturbed system is no longer skew-adjoint. Thus, instead of directly applying
Proposition 10, we need a special decomposition in low and high frequency parts of the state
space and the application of a simultaneous controllability result.

4. A frequency-dependent Hautus condition for systems describing plate vibrations

In this section, we show that under appropriate assumptions, a class of abstract observation
systems, described by plate type equation with distributed observation satisfies a frequency-
dependent Hautus-type condition (13). This condition will be essential in the next section where
we show that the exact observability property is robust with respect to a class of perturbations of
the generator.
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Within this section, we continue to denote by H and Y two Hilbert spaces and we denote by
A0 : D(A0) →H a positive operator with compact resolvents. If there is no risk of confusion, the
inner product and the norm in H are simply denoted by 〈·, ·〉 and ∥ · ∥, respectively. For α > 0,
we denote by Hα the space D(Aα

0 ) endowed with the graph norm of Aα
0 . For α< 0 the space Hα

is defined as the dual of H−α with respect to the pivot space H . Note that for every α ∈ R the
operator A0 can be restricted (or extended) to a unitary operator in L (Hα,Hα−1). Moreover, let
C0 ∈L (H ,Y ) be an observation operator.

With the above notation, the class of systems we consider is:
δ̈(t )+ A2

0δ(t ) = 0 (t ⩾ 0),

δ(0) = δ0 ∈H , δ̇(0) = δ1 ∈H−1,

y(t ) =C0δ(t ) (t ⩾ 0).

(14)

The system (14) can be written in a first-order form
ż(t ) =A z(t ) (t ⩾ 0),

z(0) = z0,

y(t ) =C z(t ) (t ⩾ 0),

in the state space H ×H−1, which is a Hilbert space with the inner product〈[
f1

g1

]
,

[
f2

g2

]〉
H ×H−1

= 〈
f1, f2

〉+〈
A−1

0 g1, A−1
0 g2

〉
,

with A : D(A ) →H ×H−1, C ∈L (H ×H−1,Y ) and z defined by D(A ) =H1 ×H and

A =
[

0 I
−A2

0 0

]
i.e. A

[
f
g

]
=

[
g

−A2
0 f

]
, (15)

C = [
C0 0

]
, (16)

z(t ) =
[
δ(t )
δ̇(t )

]
, z0 =

[
δ0

δ1

]
. (17)

Since A2
0 > 0 (see [47, Remark 3.3.7]), according to [47, Proposition 3.7.6], the operator A is skew-

adjoint and 0 ∈ ρ(A ). By Stone’s theorem, A generates a unitary group on H ×H−1.
The main result of this section is:

Theorem 13. With the above notation and assumptions, suppose that the pair (Ã,C̃ ) with

D(Ã) =H1 ×H 1
2

, Ã =
[

0 I
−A0 0

]
, C̃ = [

0 C0
]

, (18)

defines a system, with state space H 1
2
×H and output space Y , which is exactly observable (in

some time).
Then there exist a function M1 :R→ [0,+∞), which tends to zero when |ω|→∞, and a constant

m1 > 0 such that

M 2
1 (ω)∥(iωI −A )z0∥2

H ×H−1
+m2

1∥C z0∥2
Y ⩾ ∥z0∥2

H ×H−1
(ω ∈R, z0 ∈D(A )) , (19)

where A and C are respectively defined in (15) and (16).

Remark 14. It is not difficult to check that the above assumption that the pair (Ã,C̃ ) defines an
exactly observable system with state space H 1

2
×H and output space Y is equivalent to the fact

that
(

Ã,
[
C0 0

])
defines an exactly observable system with state space H ×H− 1

2
and output space

Y . By duality, these conditions are equivalent to the exact controllability of the control system,
with state space H 1

2
×H and input space Y , defined by (Ã, B̃), where B̃ = [ 0

C∗
0

]. In the approach
that will be presented in Section 6 to prove Theorem 4, this assumption will correspond to the
controllability of the system (Σwave), with state space H 1

0 (Ω)×L2(Ω) and control space L2(Ω).
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The proof of Theorem 13 relies on the link between a wave packets condition (first introduced
in [11]) and resolvent estimates (13) as stated by Miller in [42, Proposition 2.6]. Thus, the proof
relies on a wave packet condition for the abstract Kirchhoff system (14) which is deduced from a
similar condition for an abstract Schrödinger system. To this end, one needs first to show that (13)
holds for a system described by an abstract plate equation.

Proposition 15. With the notation and assumptions in Theorem 13, there exists a constant γ0 > 0
such that

1

ω

∥∥(
ω2I − A2

0

)
ϕ

∥∥2
H +∥ωC0ϕ∥2

Y ⩾ γ0∥ωϕ∥2
H

(
ω> 0, ϕ ∈D

(
A2

0

))
. (20)

Proof. Since the pair (Ã,C̃ ) is exactly observable, applying the Hautus type test in [38] (see
also [44, Proposition 4.5]), it follows that there exists a constant γ0 > 0 such that∥∥(ωI − A0)ϕ

∥∥2
H +ω∥C0ϕ∥2

Y ⩾ γ0ω∥ϕ∥2
H

(
ω> 0, ϕ ∈D(A0)

)
. (21)

On the other hand, using the fact that A0 > 0 it follows that∥∥(
ω2I − A2

0

)
ϕ

∥∥2
H = ∥∥(ωI + A0)(ωI − A0)ϕ

∥∥2
H ⩾ω2 ∥∥(ωI − A0)ϕ

∥∥2
H

(
ω> 0, ϕ ∈D

(
A2

0

))
.

The last estimate and (21) imply the conclusion (20). □

As a consequence of the above result we can prove a wave packets condition for the abstract
Schrödinger equation.

Proposition 16. With the notation and assumptions in Theorem 13, let (λn)n∈N∗ be the nonde-
creasing sequence formed by the eigenvalues of A0 and let (φn)n∈N∗ be a corresponding sequence
of eigenvectors, forming an orthonormal basis of H . Moreover, for every ω, r > 0 and ε ∈ (0, 1

2 ) we
set

Ir (ω) = {
m ∈N∗ such that |λm −ω| < r

}
, (22)

rε(ω) =
ω

1
2 −ε

(
ω⩾ω0,ε

)
,

min
{ω

2
,
ρε

3

}
ω ∈ (

0,ω0,ε
)

,
(23)

where

ω0,ε = max

{
1,

(
18

γ0

) 1
2ε

}
(with γ0 is the constant in (20)) and

ρε = inf
{∣∣λ−µ∣∣ ;λ ̸=µ eigenvalues of A0 in (0,2ω0,ε)

}
.

(Notice that ρε > 0 because there is only a finite number of eigenvalues of A0 in (0,2ω0,ε).) Then,
for every ε ∈ (0, 1

2 ), there exists γ1 > 0 such that we have

∥C0ϕ∥Y ⩾ γ1∥ϕ∥H

(
ω⩾ 0, ϕ ∈ span{φk }k ∈ Irε(ω)(ω)

)
. (24)

Proof. Let ε ∈ (0, 1
2 ). For the sake of clarity, in this proof, the dependency of ω0,ε and ρε with

respect to ε is not mentioned. For ω⩾ω0, we consider ϕ of the form

ϕ= ∑
m∈ Irε (ω)

cmφm . (25)

Then we clearly have that ϕ ∈D(A2
0) and∥∥(

ω2I − A2
0

)
ϕ

∥∥2
H = ∑

m∈ Irε(ω)(ω)

∣∣ω2 −λ2
m

∣∣2 |cm |2 ⩽ ω1−2ε
∑

m∈ Irε(ω)(ω)
|ω+λm |2|cm |2. (26)

On the other hand, it is clear that for every ω⩾ 1 and m ∈ Irε(ω)(ω) we have

0 <ω+λm < 2ω+ rε(ω)⩽ 3ω.
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The last inequality and (26) imply that for every ϕ of the form (25), we have∥∥(
ω2I − A2

0

)
ϕ

∥∥2
H ⩽ 9ω1−2ε∥ωϕ∥2

H ⩽
γ0ω

2
∥ωϕ∥2

H ,

for ω ⩾ ω0. By applying (20) to ϕ of the form (25), the above estimate leads to (24) for every
ω⩾ω0.

Moreover, by construction of rε, for every ω ∈ (0,ω0), there exists λ=λ(ω) such that

span{φk }k ∈ Irε(ω)(ω) = Ker(A0 −λI ) .

Indeed, if there exist n,m ∈ Irε(ω)(ω) such that λn ̸=λm ,

ρ⩽ |λn −λm |⩽ |λn −ω|+ |λm −ω|⩽ 2rε(ω)⩽
2ρ

3
,

which is a contradiction. Therefore, since C0ϕ ̸= 0 for every eigenfunction ϕ of A0 (because the
pair (Ã,C̃ ) is observable), it follows that for every ω ∈ (0,ω0), there exists γ1 = γ1(ω) > 0 such that

∥C0ϕ∥Y ⩾ γ1∥ϕ∥H ϕ ∈ span
{
φk

}
k ∈ Irε(ω)(ω) .

Finally, using the fact that A0 has a finite number of eigenvalues in (0,ω0), the constant γ1 can be
chosen uniformly with respect to ω ∈ (0,ω0), giving (24). □

Remark 17. The wave packets condition (24) on the pair (A0,C0) allows us to prove the existence
of constants M ,m > 0 such that

M 2

ω1−2ε ∥(ωI − A0)z0∥2
H +m2∥C z0∥2

Y ⩾ ∥z0∥2
H (ω ∈R, z0 ∈D(A0)) , (27)

using the link between wave packets condition and resolvent estimates as stated by Miller in [42,
Proposition 2.6] and recalled in Proposition 12. Taking A0 = −∆ with D(A0) = H 2(Ω)∩ H 1

0 (Ω)
and C : ϕ 7→ ϕχO , this gives a Hautus type condition (13) for the Schrödinger equation which is
weaker than the one already proven in [41, Proof of Theorem 3.4] or [47, Section 6.7] and used in
the proof of Proposition 3, in Section 3.

Finally, one can deduce the wave packets condition for the abstract Kirchhoff equation, which
leads us to the proof the main result of this section.

Proof of Theorem 13. Let A be the operator defined in (15), let (λn)n∈N∗ be the nondecreasing
sequence formed by the eigenvalues of A0 (repeated according to their multiplicity) and let
(φn)n∈N∗ be the corresponding eigenvectors of A0 forming an orthonormal basis of H−1. We
set φ−n = −φn for all n ∈ N∗. Then (see, for instance, [47, Proposition 3.7.7]) the eigenvalues of
A are (iµn)n∈Z∗ with µn = λn if n > 0 and µn =−λ−n if n < 0. Moreover, there is in H ×H−1 an
orthonormal basis formed of eigenvectors of A , given by

ψn = 1p
2

[
1

iµn
φn

φn

] (
n ∈Z∗)

. (28)

With the above notation and introducing, for all ω ∈R and r > 0, the sets

Jr (ω) = {
m ∈Z∗ such that |µm −ω| < ε} , (29)

we remark that for every ε ∈ (0, 1
2 ), if the function rε defined in (23) is extended by rε(ω) = rε(−ω)

for ω< 0, we have
Jrε(ω)(ω) = sign(ω)Irε(|ω|)(|ω|) (30)

where Ir has been defined in (22). From (28) and (30), it follows that if ψ = [ ηϕ ] ∈ D(A ) is in
span{ψk }k ∈ Jrε(ω)(ω), then η ∈ span{φk }k ∈ Irε(|ω|)(|ω|), ∥ψ∥H ×H−1 =p

2∥η∥H , and ∥Cψ∥Y = ∥C0η∥Y .
This facts and Proposition 16 imply that

∥Cψ∥Y ⩾ γ1∥η∥H = γ1p
2
∥ψ∥H ×H−1

(
ω ∈R, ψ=

[
η

ϕ

]
∈ span

{
ψk

}
k ∈ Jrε(ω)(ω)

)
.
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The above estimate implies the announced conclusion by applying the frequency-dependent
Hautus test given in Miller [42, Theorem 2.16] and recalled in Proposition 12. □

5. Perturbation of abstract Kirchhoff systems

The goal of this section is to use the resolvent estimate (19) to study the robustness of the exact
observability property for a system described by an abstract plate equation, with respect to
bounded (but not necessarily compact) perturbations of the generator. Notice that the similar
result for the perturbed Schrödinger equation given in Proposition 3 has already been dealt with
in Section 3.

We continue in this section to use the notation introduced in the previous one. More precisely,
H and Y are Hilbert spaces, A0 : D(A0) →H is a positive operator with compact resolvents, and
C0 ∈ L (H ,Y ). If needed, the spaces H and Y are identified with their duals. Moreover, if V
is another Hilbert space with continuous embedding V ⊂ H , the dual of V is identified with its
dual using the pivot space H . For α > 0 we still denote by Hα the space D(Aα

0 ) endowed with
the graph norm of Aα

0 and we define H−α as the dual of Hα with respect to the pivot space H .
Moreover, we set H0 := H and A still is the operator defined in (15). Recall that for every α ∈ R
we can extend (or restrict) A0 to a unitary operator from Hα onto Hα−1. With a slight abuse of
notation, we shall still denote by A0 this extension (or restriction).

The main result of this section is:

Theorem 18. With the notation and assumptions in Theorem 13, assume that

P0 ∈L (H ,H−1)∩L (H1,H )

is a symmetric operator on H−1, with domain H . Let P := [ 0 0
P0 0 ] ∈ L (H ×H−1) and let AP :

D(AP ) →H ×H−1 be the operator defined by

D(AP ) =D(A ), AP =A −P. (31)

Moreover, let C ∈L (H ×H−1) be defined by C = [
C0 0

]
and suppose that

Ker
(
s2I + A2

0 +P0
)∩KerC0 = {0} (s ∈C). (32)

Then the system, with state space H ×H−1 and output space Y , described by the pair (AP ,C ) is
exactly observable in any time τ> 0.

The proof of Theorem 18 partially relies on a series of results resenting similarities with those
in [47, Section 7.3]. For the sake of completeness, we give the detailed proofs below.

The first result of this series can be seen as a variation of [47, Proposition 7.3.3].

Proposition 19. With the above notation, ψ= [ ηϕ ] ∈ D(AP ) is an eigenvector of AP , associated to
the eigenvalue iµ, if and only if η is an eigenvector of A2

0 +P0, associated to the eigenvalue µ2, and
ϕ= iµη (note that µ does not have to be real).

Proof. Suppose that µ ∈ C and [ ηϕ ] ∈ D(AP ) \ {[ 0
0 ]} are such that AP [ ηϕ ] = iµ[ ηϕ ]. According to the

definition of AP this is equivalent to

ϕ= iµη and − A2
0η−P0η= iµϕ=−µ2η. □

Clearly, A2
0 + P0, with domain H1, is self-adjoint on H−1 and it has compact resolvents.

According to a classical result (see, for instance, [47, Proposition 3.2.12]) it follows that A2
0 +P0 is

diagonalizable with an orthonormal basis (φ̃k )k ∈N∗ in H−1 formed of eigenvectors of A2
0+P0 and
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with the corresponding family of real eigenvalues (λ̃k )k ∈N∗ satisfying lim
k →∞

|λ̃k | = ∞. Moreover,

since for all z ∈H1,〈(
A2

0 +P0
)

z, z
〉
H−1

⩾ ∥A0z∥2
H−1

−∥P0∥L (H ,H−1)∥z∥H ∥z∥H−1

⩾
1

2
∥z∥2

H − 1

2
∥P0∥2

L (H ,H−1)∥z∥2
H−1

,

it follows that limk →∞ λ̃k = +∞. Hence, without loss of generality, we may assume that the
sequence (λ̃k )k ∈N∗ is nondecreasing. We extend the sequence (φ̃k )k ∈N∗ to a sequence indexed
by Z∗ by setting φ̃k =−φ̃−k for every k ∈Z−. We introduce the real sequence (µk )k ∈Z∗ by

µk =
√∣∣λ̃k

∣∣ if k > 0 and µk =−µ−k if k < 0.

We denote by

W0 = span

{[
1

i sign(k) φ̃k

φ̃k

]∣∣∣∣∣ k ∈Z∗, µk = 0

}
.

If Ker(A2
0 +P0) = {0} then of course W0 is the zero subspace of H ×H−1. Let N ∈N∗ be such that

λ̃N > 0. We denote by

WN = span

{[
1

iµk
φ̃k

φ̃k

]∣∣∣∣∣ k ∈Z∗, |k| < N , µk ̸= 0

}
,

and define YN =W0 +WN . We also introduce the space

VN = span

{[
1

iµk
φ̃k

φ̃k

]∣∣∣∣∣ |k|⩾ N

}
, (33)

the closure being taken in H ×H−1.

Lemma 20. With the above notation, we have H ×H−1 = YN ⊕VN . Moreover, YN and VN are
invariant under the semigroup T generated by AP on H ×H−1.

Proof. We adapt below the proof of [47, Lemma 7.3.4].
First, to prove that H ×H−1 = YN⊕VN , one can show that YN =V ⊥

N for a suitable inner product
to be defined. To deal with the fact that A2

0 +P0 is not a positive operator, we introduce a new
operator A1, whose eigenfunctions are the same as the one of A2

0 +P0, but its eigenvalues are all
positive. More precisely, let A1 : H1 →H−1 be defined by

A1 f = ∑
λ̃k=0

〈
f , φ̃k

〉
H φ̃k +

∑
λ̃k ̸=0

|λ̃k |
〈

f , φ̃k
〉
H φ̃k

(
f ∈H1

)
. (34)

Since the family (φ̃k )k ∈N∗ is an orthonormal basis in H−1 and each φ̃k is an eigenvector of A1,
it follows that A1 is diagonalizable. Moreover, since the eigenvalues of A1 are positive, it follows
that A1 > 0. Following line by line the proof of [47, Proposition 3.4.9], it can be checked that the
inner product on H ×H−1 defined by〈[

f1

g1

]
,

[
f2

g2

]〉
1

= 〈
f1, f2

〉
H +

〈
A
− 1

2
1 g1, A

− 1
2

1 g2

〉
H

([
f1

g1

]
,

[
f2

g2

]
∈H ×H−1

)
, (35)

is equivalent to the original one, meaning that it induces a norm equivalent to the original one.
Let A1 be the operator on H ×H−1 defined by

D(A1) =H1 ×H , A1 =
[

0 I
−A1 0

]
.

According to [47, Proposition 3.7.6], A1 is skew-adjoint on X (if endowed with the inner product
〈·, ·〉1 defined in (35)). Thus, [47, Proposition 3.7.7] entails that YN = V ⊥

N (for the inner product
〈·, ·〉1) giving that H ×H−1 = YN ⊕VN .
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We next prove that YN and VN are invariant under the semigroup T generated by AP . First,
using the fact that λ̃k > 0 for every k > N and Proposition 19, it follows that VN is a closed
subspace spanned by a set of eigenvectors of AP , thus is invariant under the action of T. To
prove that W0 is also invariant under the action of T, one can notice that for every k in Z∗ such
that µk = 0,

AP

[
1

i sign(k) φ̃k

φ̃k

]
=

[
φ̃k

0

]
= i sign(k)

2

([
1

i sign(k) φ̃k

φ̃k

]
+

[
1

i sign(−k) φ̃−k

φ̃−k

])
∈W0.

To prove that WN is invariant under the action of T, one can first notice that for every k in Z∗,
|k| < N such that µk ̸= 0, µ2

k = sign(λ̃|k|)λ̃|k| and [A2
0 +P0]φ̃k = λ̃|k|φ̃k . Thus, one gets that

AP

[
1

iµk
φ̃k

φ̃k

]
=

[
φ̃k

λ̃|k|
iµk

φ̃k

]
= iµk

[
1

iµk
φ̃k

−sign(λ̃|k|)φ̃k

]
∈WN ,

because [
1

iµk
φ̃k

−φ̃k

]
=

[
1

iµ−k
φ̃−k

φ̃−k

]
∈WN .

Finally, YN =W0 +WN is invariant under the action of T. □

We are now in a position to prove the main result of this section.

Proof of Theorem 18. We first note that Theorem 13 implies that

M 2
1 (ω)∥(iωI −AP −P ) z0∥2

H ×H−1
+m2

1∥C z0∥2
Y ⩾ ∥z0∥2

H ×H−1
(ω ∈R, z0 ∈D(A )) .

Using an elementary inequality, we obtain that

2M 2
1 (ω)∥(iωI −AP ) z0∥2

H ×H−1
+2M 2

1 (ω)∥P0∥2
L (H ,H−1)∥z0∥2

H ×H−1

+m2
1∥C z0∥2

Y ⩾ ∥z0∥2
H ×H−1

(ω ∈R, z0 ∈D(A )) .

Since we know from Theorem 13 that M1(ω) → 0 when |ω| → ∞, it follows that for every γ > 0
there exists cγ > 0 such that

γ2 ∥(iωI −AP )z0∥2
H ×H−1

+2m2
1∥C z0∥2

Y ⩾ ∥z0∥2
H ×H−1

(|ω|⩾ cγ, z0 ∈D(A )
)

. (36)

Moreover, using the inner product (35) associated with the operator A1 defined in (34) (which is
equivalent to the original one), (36) implies that for every γ> 0 there exist c̃γ, mγ > 0 such that

γ2 ∥(iωI −AP ) z0∥2
1 +m2

γ∥C z0∥2
Y ⩾ ∥z0∥2

1

(|ω|⩾ c̃γ, z0 ∈D(A )
)

. (37)

For N ∈ N∗ such that λ̃N > 0, we denote by AP,N the part of AP in VN , where VN is the space
defined in (33). Since AP,N coincides with the part of A1 in VN , it follows that AP,N is skew-
adjoint on VN (endowed with the inner product 〈·, ·〉1). Moreover, using (37), it follows that, for
every γ> 0, there exist c̃γ, mγ > 0 such that the following estimate holds

γ2 ∥∥(
iωI −AP,N

)
z0

∥∥2
1 +m2

γ∥C z0∥2
Y ⩾ ∥z0∥2

1

(|ω|⩾ c̃γ, z0 ∈D(A )∩VN
)

. (38)

Since AP,N is skew-adjoint (thus normal) on VN , it follows that there exists Nγ ∈N∗ such that∥∥∥(
iωI −AP,Nγ

)
z0

∥∥∥
1
⩾ γ−1∥z0∥1

(
|ω| < c̃γ, z0 ∈D(A )∩VNγ

)
.

The above estimate and (38) imply that for every γ> 0 there exist mγ > 0 and Nγ ∈N∗ such that

γ2
∥∥∥(

iωI −AP,Nγ

)
z0

∥∥∥2

1
+m2

γ∥C z0∥2
Y ⩾ ∥z0∥2

1

(
ω ∈R, z0 ∈D(A )∩VNγ

)
. (39)

The above estimate and the fact that AP,Nγ is skew-adjoint imply, according to the Hautus-type
test for systems with skew-adjoint generator proved in Miller [41] (see also [47, Theorem 6.6.1]),
that the pair (AP,Nγ ,CNγ ), where CNγ is the restriction of C to VNγ , is exactly observable in any
time τ> γπ.
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Denoting by Ã P,Nγ the part of AP in YNγ and by C̃ Nγ the restriction of C to YNγ , we obtain that
the finite-dimensional system (Ã P,Nγ ,C̃ Nγ ) is observable by applying the classical Hautus test
thanks to (32). Since Ã P,Nγ and AP,Nγ have no common eigenvalues and (AP,Nγ ,CNγ ) is exactly
observable in any time larger than γπ, we can apply [47, Theorem 6.4.2] to obtain that (AP ,C )
is exactly observable in any time τ > γπ. Since γ > 0 can be arbitrarily small, this implies the
conclusion of the theorem. □

As a consequence of Theorem 18, we can obtain a second perturbation result. More precisely,
the result below shows that the exact observability property still holds if, besides the perturbation
P0, we add a perturbation Q0 whose contribution is compact with respect to the topology of the
state space.

Corollary 21. With the notation and assumptions in Theorem 18, let Q0 ∈ L (H ,H−1) be a
compact operator and let Q = [ 0 0

Q0 0 ] ∈L (H ×H−1). Let APQ : D(APQ ) →H ×H−1 be the operator
defined by

D
(
APQ

)=D(A ), APQ =A −P −Q. (40)

Then APQ generates a C 0-semigroup T on H ×H−1. Moreover, assuming that

Ker
(
s2I + A2

0 +P0 +Q0
)∩KerC0 = {0} (s ∈C), (41)

the pair (APQ ,C ) is exactly observable in any time τ> 0.

Proof. The fact that APQ generates a C 0-semigroup on H × H−1 follows from the obvious
property P +Q ∈ L (H ×H−1). Moreover, we can remark that the result in Proposition 19 holds
for every P0 ∈L (H ,H−1) (no symmetry of P0 is needed), thus, in particular, if we replace P0 by
P0 +Q0. It follows that ψ = [ ηϕ ] ∈ D(APQ ) is an eigenvector of APQ , associated to the eigenvalue
iµ, if and only if η is an eigenvector of A2

0 +P0 +Q0, associated to the eigenvalue µ2, and ϕ= iµη.
This fact and (41) imply that

Ker(sI −APQ )∩KerC = {0} (s ∈C).

We also note that, under our assumptions, Q ∈ L (H ×H−1) is a compact operator. Moreover,
we know from Theorem 18 that the pair (AP ,C ), with AP defined in (31), is exactly observable in
any time τ > 0. Since APQ = AP −Q, the conclusion follows now using the duality of the exact
observability and of exact controllability properties and by applying [20, Theorem 1.2] to deal
with the compact perturbation using a compactness-uniqueness method. □

By duality, Corollary 21 yields the following exact controllability result:

Corollary 22. With the notation and assumptions in Corollary 21, let R0 ∈ L (H1,H ) be the
operator defined by

〈R0ϕ,ψ〉H = 〈ϕ,Q0ψ〉H1,H−1

(
ϕ ∈H1, ψ ∈H

)
. (42)

Then the equation

ẅ(t )+ A2
0w(t )+ (P0 +R0)w(t ) =C∗

0 u(t ) (t ⩾ 0), (43)

determines a well-posed control system with state space H1×H and input space Y . Moreover, this
system is exactly controllable in arbitrarily small time.

Proof. Recall that the Hilbert spaces H and Y are identified with their duals. Moreover, if V is
another Hilbert space, with continuous embedding V ⊂ H , the dual of V is identified with its
dual using the pivot space H .

We next consider, for every τ> 0, the input mapΦτ ∈L (L2([0,τ];Y ),H1 ×H ) defined by

Φτu =
[

w(τ)
ẇ(τ)

] (
u ∈ L2([0,τ];Y )

)
, (44)
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where w is the unique solution of (43) satisfying the initial conditions w(0) = 0 and ẇ(0) = 0. In
order to write Φ′

τ ∈L (H−1 ×H ,L2([0,τ];Y )) in a convenient manner we consider the system{
ÿ(t )+ A2

0 y(t )+P0 y(t )+Q0 y(t ) = 0 (t ∈ [0,τ]),

y(τ) = y1, ẏ(τ) =−y0,
(45)

where Q0 is defined by (42). We first assume that y1 ∈H2 and y0 ∈H1 so that

y ∈C ([0,τ];H2)∩C 1([0,τ];H1)∩C 2([0,τ];H ).

We also (temporarily) assume that u ∈ H 1([0,τ];Y ) and u(0) = 0, so that the solution of (43) with
zero initial data satisfies

w ∈C ([0,τ];H2)∩C 1([0,τ];H1)∩C 2([0,τ];H ).

The above regularity properties for y and w allow us to take the inner product in L2([0,τ];H ) of
all the terms in (43) by y . In particular, integrating twice by parts with respect to time, we have∫ τ

0

〈
ẅ(t ), y(t )

〉
dt = 〈

ẇ(τ), y1
〉+〈

w(τ), y0
〉+∫ τ

0

〈
w(t ), ÿ(t )

〉
dt . (46)

Moreover, we have ∫ τ

0

〈
A2

0w(t ), y(t )
〉

dt =
∫ τ

0

〈
w(t ), A2

0 y(t )
〉

dt . (47)

On the other hand, from (5) and (42) it follows that∫ τ

0

〈
P0w(t ), y(t )

〉
dt =

∫ τ

0

〈
w(t ),P0 y(t )

〉
dt , (48)∫ τ

0

〈
R0w(t ), y(t )

〉
dt =

∫ τ

0

〈
w(t ),Q0 y(t )

〉
dt . (49)

Summing up (46)-(49) and using (45), (43) it follows that for every y1 ∈ H2, y0 ∈ H1 and
u ∈ H 1([0,τ];Y ), with u(0) = 0, we have∫ τ

0

〈
u(t ),C0 y(t )

〉
Y dt = 〈

w(τ), y0
〉+〈

ẇ(τ), y1
〉

.

By a simple density argument, it follows that∫ τ

0

〈
u(t ),C0 y(t )

〉
Y dt = 〈

A0w(τ), A−1
0 y0

〉+〈
ẇ(τ), y1

〉
.

for every y1 ∈H , y0 ∈H−1 and u ∈ L2([0,τ];Y ). By combining the last formula and (44) it follows
that 〈

Φτu,

[
y0

y1

]〉
H1×H ,H−1×H

=
∫ τ

0

〈
u(t ),C0 y(t )

〉
Y dt ,

for every y1 ∈H , y0 ∈H−1 and u ∈ L2([0,τ];Y ). We have thus shown that(
Φ′
τ

[
y0

y1

])
(t ) =C0 y(t )

(
y0 ∈H−1, y1 ∈H , t ∈ [0,τ]

)
, (50)

where y satisfies (45).
On the other hand, from (45), it is clear that [ y(t )

ẏ(t ) ] = Tt−τ[ y1−y0 ], where T is the C 0-group
introduced in Corollary 21. By combining (50) and Corollary 21 it follows that there exists a
constant Kτ > 0 such that

Kτ

∥∥∥∥Φ′
τ

[
y0

y1

]∥∥∥∥
L2([0,τ];Y )

⩾
∥∥∥∥[

y0

y1

]∥∥∥∥
H−1×H

(
y0 ∈H−1, y1 ∈H

)
.

Using a classical result (see, for instance, Barnes [4, Theorem 7]) it follows that Φτ is onto from
L2([0,τ];Y ) to H1 ×H , which implies the announced exact controllability result. □
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6. Proof of the main result on linear systems

The goal of this section is to prove Theorem 4 on the controllability of the perturbations of a plate
equation. Within this section, we specify the spaces H , Y and the operators A0 and C0 which
have been introduced in an abstract context in Sections 4 and 5. More precisely, we set:

• H = L2(Ω), where Ω is an open bounded set of Rn , with ∂Ω of class C 3 or Ω is a
rectangular domain;

• −A0 is the Dirichlet Laplacian on L2(Ω). More precisely,

D(A0) = H 2(Ω)∩H 1
0 (Ω), (1)

A0ϕ=−∆ϕ (
ϕ ∈D(A0)

)
; (2)

The operator A0 is positive with compact resolvents;
• Y = L2(Ω) and C0 ∈L (H ,Y ) is defined by

C0ϕ=ϕχO (ϕ ∈H ), (3)

where O is an open subset of Ω and χO ∈ L∞(Ω) is a nonnegative function which is
positive on O .

With H and A0 chosen above, it is known (see, for instance, [47, Section 3.6]) that

H2 =
{
ϕ ∈ H 4(Ω)∩H 1

0 (Ω) | ∆ϕ= 0 on ∂Ω
}

, H1 = H 2(Ω)∩H 1
0 (Ω).

Moreover, we have
H−1 =

[
H 2(Ω)∩H 1

0 (Ω)
]′

,

where [H 2(Ω)∩H 1
0 (Ω)]′ is the dual of H 2(Ω)∩H 1

0 (Ω) with respect to the pivot space L2(Ω).

Proof of Theorem 4. The proof consists in applying Corollary 22 with the appropriate choice
of spaces and operators. We first remark that, since the system (Σwave) described by the wave
equation is exactly controllable in some time, a standard duality argument implies that the pair
(Ã,C̃ ) defined in (18) is exactly observable in some time. Thus, since the spaces H , Y , the
operators A0,C0 and the spaces Hα have been specified in the preamble of this section, it only
remains to define the operators P0 and R0.

Let P0 ∈L (H1,H ) be the operator defined by

P0ϕ=
n∑

k,ℓ=1
akℓ

∂2ϕ

∂xk∂xℓ

(
ϕ ∈H1

)
. (4)

Using (2) and the fact that (akℓ)1⩽k,ℓ⩽n are real-valued, it is easy to check that P0 is well-defined
and 〈

P0ϕ,ψ
〉
H = 〈

ϕ,P0ψ
〉
H

(
ϕ, ψ ∈H1

)
.

Moreover, the above formula implies that∣∣〈P0ϕ,ψ
〉
H

∣∣⩽ n∑
k,ℓ=1

∥akℓ∥L∞(Ω)∥ϕ∥H ∥ψ∥H1

(
ϕ, ψ ∈H1

)
.

It follows that P0 can be uniquely extended to an unbounded symmetric operator on H−1 (still
denoted by P0), with domain H , by setting〈

P0ϕ,ψ
〉
H = 〈

ϕ,P0ψ
〉
H1,H−1

(
ϕ ∈H1, ψ ∈H

)
. (5)

Let R0 ∈L (H1,H ) be the operator defined by

R0ϕ=
n∑

k=1
bk

∂ϕ

∂xk
+ cϕ

(
ϕ ∈H1

)
.

An integration by parts shows that〈
R0ϕ,ψ

〉
H = 〈

ϕ,Q0ψ
〉
H

(
ϕ, ψ ∈H1

)
,
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where
Q0ψ=−div

(
bψ

)
+ cψ

(
ψ ∈H1

)
. (6)

From the last two formulas, it follows that Q0 can be extended uniquely to a compact operator
(still denoted by Q0) in L (H ,H−1).

To conclude using Corollary 22, we still have to check the unique continuation properties (32)
and (41). More precisely, we need to prove that for ε ∈ {0,1},ψ ∈ H 2(Ω)∩H 1

0 (Ω) and µ ∈Cwe have

µ2ψ+∆2ψ+P0ψ+εQ0ψ= 0 in Ω,
ψ= 0, ∆ψ= 0 on ∂Ω,
ψ= 0 in O ,

 ⇒ ψ= 0. (7)

This unique continuation is a direct consequence of the Carleman estimate given in Theorem 34
of Appendix A. Indeed, denote

g =−P0ψ−εQ0ψ−µ2ψ.

Applying Theorem 34, there exists a function β ∈ C 2(Ω) and a positive constant C > 0 such that
for all s ⩾ 1, ∫

Ω

(
s2 ∣∣D2ψ

∣∣2 + s4|∇ψ|2 + s6|ψ|2
)
e2sβdx ⩽C

∫
Ω
|g |2e2sβdx, (8)

where D2ψ designs the Hessian matrix of ψ, | · | stands for the euclidian norm on finite dimen-
sional spaces and we have used the fact that ψ = 0 in O . Moreover, using the definition of the
operators P0 and Q0 given in (4) and (6), one can easily check that, for all x ∈Ω,

|g (x)|⩽ max
k,ℓ=1, ...,n

∥akℓ∥L∞(Ω)
∣∣D2ψ(x)

∣∣+ε max
k=1, ...,n

∥bk∥L∞(Ω)|∇ψ(x)|+ (
ε∥c∥L∞(Ω) +|µ|2) |ψ(x)|.

Therefore, this estimate combined with (8) implies that for every s ⩾ 1,∫
Ω

(
s2 ∣∣D2ψ

∣∣2 + s4|∇ψ|2 + s6|ψ|2
)
e2sβ⩽C

(
max

k,ℓ=1, ...,n
∥akℓ∥2

L∞(Ω)

∫
Ω

∣∣D2ψ
∣∣2

e2sβ

+ε2 max
k=1, ...,n

∥bk∥2
L∞(Ω)

∫
Ω
|∇ψ|2e2sβ+ (

ε2∥c∥2
L∞(Ω) +|µ|4)∫

Ω
|ψ|2e2sβ

)
.

Taking s large enough in the last inequality, we obtain that ψ= 0, which concludes the proof. □

7. Proof of Theorem 6

The main ingredient in the proof of Theorem 6 is an exact controllability result for the system
obtained by linearizing (5) around the stationary state (η,0). To write down this system, we insert
the formula

w(t , x) = η(x)+εδ(t , x)
(
t ⩾ 0, x ∈Ω

)
,

in (5) and we develop in a power series with respect to ε. Identifying the terms of order 1, we
obtain the system:

δ̈(t , x)+∆2δ(t , x)+ [δ,Φ(η,η)]+2[η,Φ(η,δ)] = u(t , x)χO (x) (t ⩾ 0, x ∈Ω),

δ(t , x) =∆δ(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈Ω),

(1)

where the Airy stress function Φ is the solution of (6). The main result in this section is the
following.

Theorem 23. Assume thatΩ, O and η satisfy the assumptions in Theorem 6. Then (1) determines
a well-posed control system with state space[

H 2(Ω)∩H 1
0 (Ω)

]×L2(Ω),

and control space L2(Ω). Moreover, this system is exactly controllable in any time τ> 0.
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To write (1) as a well-posed control system, we have to introduce some spaces and operators.
To this aim, we first recall some properties of the Airy stress functionΦ defined in (6) given in [12,
Corollary 1.4.4].

Proposition 24. For every p ∈ [1,∞], the Airy stress functionΦ defines a bounded bilinear operator

from H 2(Ω)×H 2(Ω) to W 2+ 2
p ,p (Ω)∩H 2

0 (Ω). In particular, there exists a positive constant KΩ such
that

∥Φ(v, w)∥W 2,∞(Ω) ⩽KΩ∥v∥H 2(Ω) ∥w∥H 2(Ω)

(
v, w ∈ H 2(Ω)

)
. (2)

Then, we also recall the following property of the von Kármán bracket defined in (7), given
in [12, Proposition 1.4.5].

Proposition 25. For any u ∈ H 2(Ω) and v, w ∈ H 2 ∩H 1
0 (Ω), the following relation holds∫

Ω
[u, v]wdx =

∫
Ω

[u, w]vdx.

Corollary 26. For every η ∈ H 2(Ω), the mapping P0,1 : δ 7→ [η,Φ(η,δ)] defines a linear bounded op-
erator from H 2 ∩H 1

0 (Ω) to L2(Ω). Moreover, P0,1 can be extended to an operator in L (L2(Ω), [H 2 ∩
H 1

0 (Ω)]′) and is symmetric on [H 2 ∩H 1
0 (Ω)]′.

Proof. The fact that for every η ∈ H 2(Ω), we have P0,1 ∈L (H 2(Ω),L2(Ω)) is a direct consequence
of (2). Moreover, for every δ,ψ ∈ H 2 ∩H 1

0 (Ω),〈
P0,1δ,ψ

〉
L2(Ω) =

〈
δ,P0,1ψ

〉
L2(Ω) . (3)

To prove this relation, introduce the operator AD defined by{
D(AD ) = H 4(Ω)∩H 2

0 (Ω),

ADϕ=∆2ϕ
(
ϕ ∈D(AD )

)
.

This operator is known to be positive on L2(Ω) and the definition of P0,1 can be rewritten as

P0,1δ=
[
η, A−1

D [η,δ]
] (

δ ∈ H 2(Ω)∩H 1
0 (Ω)

)
.

Using Proposition 25 and the self-adjointness of A−1
D , it follows that, for every δ,ψ ∈ H 2 ∩H 1

0 (Ω),〈
P0,1δ,ψ

〉
L2(Ω) =

〈[
η, A−1

D [η,δ]
]

,ψ
〉

L2(Ω) =
〈

A−1
D [η,δ],

[
η,ψ

]〉
L2(Ω)

= 〈
[η,δ], A−1

D [η,ψ]
〉

L2(Ω) =
〈
δ,

[
η, A−1

D [η,ψ]
]〉

L2(Ω) =
〈
δ,P0,1ψ

〉
L2(Ω) .

Then, the relation (3) and the continuity of P0,1 from H 2 ∩H 1
0 (Ω) to L2(Ω) imply that there exists

C > 0 such that for all δ,ψ ∈ H 2 ∩H 1
0 (Ω),∣∣∣〈P0,1δ,ψ

〉
L2(Ω)

∣∣∣⩽C∥δ∥L2(Ω)∥ψ∥H 2∩H 1
0 (Ω).

Therefore, P0,1 can be extended uniquely to an operator in L (L2(Ω), [H 2∩H 1
0 (Ω)]′) (still denoted

by P0,1) with〈
P0ϕ,ψ

〉
L2(Ω) =

〈
ϕ,P0ψ

〉
H 2∩H 1

0 (Ω),
[
H 2∩H 1

0 (Ω)
]′ (

ϕ ∈ H 2 ∩H 1
0 (Ω), ψ ∈ L2(Ω)

)
.

□

Proposition 27. For all η ∈W 2,∞(Ω), we define the operator P0,2 ∈L (H 2 ∩H 1
0 (Ω),L2(Ω)) by

P0,2δ=
[
δ,Φ(η,η)

] (
δ ∈ H 2 ∩H 1

0 (Ω)
)

.

Then, there exist functions (akℓ)1⩽k,ℓ⩽2 in H 2(Ω) such that

P0,2δ=
2∑

k,ℓ=1
akℓ

∂2δ

∂xk∂xℓ

(
δ ∈ H 2 ∩H 1

0 (Ω)
)

, (4)
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with akℓ = aℓk ∈ H 2(Ω) (k, ℓ ∈ {1,2}) ,
2∑

ℓ=1

∂akℓ
∂xℓ

= 0 (k ∈ {1,2}) .
(5)

Moreover, P0,2 can be extended to an operator in L (L2(Ω), [H 2 ∩ H 1
0 (Ω)]′) which is symmetric on

[H 2 ∩H 1
0 (Ω)]′.

Finally, if η is analytic, then the functions (akℓ)1⩽k,ℓ⩽2 in (4) are also analytic.

Proof. The definition of P0,2 implies that (4) holds with

a11 = ∂2

∂x2
2

Φ(η,η), a12 = a21 =− ∂2

∂x1∂x2
Φ(η,η), a22 = ∂2

∂x2
1

Φ(η,η). (6)

The fact that (akℓ)1⩽k,ℓ⩽2 satisfies (5) is a direct consequence of (6). The regularity of
(akℓ)1⩽k,ℓ⩽2 follows from the elliptic regularity: As η is in W 2,∞(Ω), [η,η] is in L2(Ω) and thus,
Φ(η,η) is in H 4(Ω).

The fact that P0,2 is in L (H ,H−1)∩L (H1,H ) and it is symmetric on H−1, can be checked
as in the proof of Theorem 4, in Section 6. □

We are now in a position to prove the main result in this section.

Proof of Theorem 23. To prove Theorem 23, we apply Corollary 22
with the spaces H ,Y , the operators A0 and C0 given at the beginning of Section 6 and

P0 = P0,1 +P0,2, with P0,1 and P0,2 defined in Corollary 26 and Proposition 27, respectively.
Moreover, since the system (Σwave) is supposed to be exactly controllable in some time, we can

use a standard duality argument (see Remark 14), to deduce that the pair (Ã,C̃ ) defined in (18) is
exactly observable in some time.

Therefore, to apply Corollary 22, it remains to prove the unique continuation (32): if ϕ is the
solution of

s2ϕ+∆2ϕ+P0,1ϕ+P0,2ϕ= 0 in Ω,

ϕ= 0, ∆ϕ= 0 on ∂Ω,

ϕ= 0, in O ,

for some s ∈C, then ϕ= 0. Using (4), the above property is equivalent to proving that if ϕ and
Γ satisfy for some s ∈C

s2ϕ+∆2ϕ+∑2
k,ℓ=1 akℓ

∂2ϕ
∂xk∂xℓ

+ [η,Γ] = 0 in Ω,

ϕ= 0, ∆ϕ= 0 on ∂Ω,

ϕ= 0, in O ,

(7)

and {
∆2Γ= [η,ϕ] in Ω,

Γ= 0, ∂Γ
∂ν = 0 on ∂Ω,

(8)

then ϕ = 0. This follows from the fact that ϕ is analytic on Ω, which in turn is a consequence
of the analyticity of η and of the coefficients (akℓ)1⩽k,ℓ⩽2 in Ω (see Proposition 27) and of the
classical results in [46, Section 4.1.4] or [30, Ch.7]. □

Remark 28. The analyticity of η, assumed in Theorem 6, is used only to ensure the following
unique continuation property: if ϕ and Γ satisfy (7)–(8) for some s ∈ C, then ϕ vanishes every-
where (and thus Γ too). This unique continuation property may hold with different assump-
tions on η. One could, for instance, use the algebraic resolubility method of Gromov to give suf-
ficient algebraic conditions on the derivatives of η guaranteeing that the unique continuation
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holds for (7)–(8). More precisely, these conditions would require that a large determinant involv-
ing derivatives of η to be non zero, similarly to Condition (1.8) in Duprez and Lissy [18, Theo-
rem 1.2] (see also [17, 19] or [37, Ex. 1, Section 1.3, p. 18–19]). Nevertheless, we have no reason
to think that this unique continuation property holds for any η smooth enough. However, due to
the the above considerations, we conjecture that this property generically holds for smooth η.

We next consider the nonlinear controlled system

δ̈(t , x)+∆2δ(t , x)+ [δ,Φ(η,η)](t , x)+2[η,Φ(δ,η)](t , x)+ [η,Φ(δ,δ)](t , x)

+2[δ,Φ(η,δ)](t , x)+ [δ,Φ(δ,δ)](t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈Ω) , (9)

with the boundary conditions and initial conditions

δ(t , x) =∆δ(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω) , (10)

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈Ω). (11)

It is easily seen that Theorem 6 (with w = δ+η) directly follows from the result below.

Theorem 29. Under the assumptions in Theorem 6, for every τ> 0 there exists α> 0 such that for
every

δ0 ∈ H 2(Ω)∩H 1
0 (Ω), δ1 ∈ L2(Ω),

with
∥δ0∥H 2(Ω) +∥δ1∥L2(Ω) ⩽α,

there exists u ∈ L2([0,τ];L2(Ω)) such that the solution of (9)-(11) satisfies

δ(τ, ·) = 0, δ̇(τ, ·) = 0.

Proof. Let τ> 0. In this proof, for convenience, the dependency of the objects in this proof with
respect to τ is not mentioned. First, from the exact controllability in time τ of the linearized
equation (1), stated in Theorem 23, it follows that there exists a continuous linear operator

L :
(
H 2 ∩H 1

0 (Ω)
)×L2(Ω)×L2 (

[0,τ];L2(Ω)
) → L2 (

[0,τ];L2(Ω)
)

such that for every δ0 ∈ H 2 ∩H 1
0 (Ω), δ1 ∈ L2(Ω) and g ∈ L2([0,τ];L2(Ω)), the solution δg of

δ̈g +∆2δg +
[
δg ,Φ(η,η)

]+2
[
η,Φ(η,δg )

]= g +ugχO (t ⩾ 0, x ∈Ω),

δg (t , x) =∆δg (t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δg (0, x) = δ0(x), δ̇g (0, x) = δ1(x) (x ∈Ω),

(12)

with ug =L (δ0,δ1, g ), satisfies

δg (τ, ·) = 0 and δ̇g (τ, ·) = 0. (13)

Indeed, the solution δg of (12) can be written as δg = δg ,lin +δg ,cont, where δg ,lin is the solution of
δ̈g ,lin +∆2δg ,lin +

[
δg ,lin,Φ(η,η)

]+2
[
η,Φ(η,δg ,lin)

]= g (t ⩾ 0, x ∈Ω),

δg ,lin(t , x) =∆δg ,lin(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δg ,lin(0, x) = δ0(x), δ̇g ,lin(0, x) = δ1(x) (x ∈Ω),

and ug is the control given by Theorem 23 such that the solution δg ,cont of
δ̈g ,cont +∆2δg ,cont +

[
δg ,cont,Φ(η,η)

]+2
[
η,Φ(η,δg ,cont)

]= ugχO (t ⩾ 0, x ∈Ω),

δg ,cont(t , x) =∆δg ,cont(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δg ,cont(T, x) = 0, δ̇g ,cont(T, x) = 0 (x ∈Ω),

satisfies
δg ,cont(0, x) =−δg ,lin(T, x), δ̇g ,cont(0, x) =−δ̇g ,lin(T, x) (x ∈Ω).
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(Note that, since (1) determines a well-posed control system with state space [H 2(Ω)∩H 1
0 (Ω)]×

L2(Ω) and control space L2(Ω), the control can be chosen such that it depends continuously (in
L2([0,τ];L2(Ω))) and linearly on the data to be controlled (in [H 2(Ω)∩H 1

0 (Ω)]×L2(Ω)).)
Our goal is to prove the local exact controllability of the nonlinear system (9) via a fixed-

point argument. To this aim, let δ0 ∈ H 2 ∩ H 1
0 (Ω) and δ1 ∈ L2(Ω). We construct a map G :

L2([0,τ];L2(Ω)) → L2([0,τ];L2(Ω)) by setting, for g ∈ L2([0,τ];L2(Ω)),

G (g ) = [
η,Φ

(
δg ,δg

)]+2
[
δg ,Φ

(
η,δg

)]+ [
δg ,Φ

(
δg ,δg

)]
(14)

where δg is the solution of (12) with the source term g and the control

ug =L (δ0,δ1, g ). (15)

To conclude the proof of the theorem, it clearly suffices to check the existence of a fixed-point of
G .
Step 1: The map G is well-defined. First, using the property of the Airy function given in
Proposition 24 and the definition (7) of the bracket [·, ·], there exists C > 0 such that, for every
δ0 ∈ H 2 ∩H 1

0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0,τ];L2(Ω)),

∥∥G (g )
∥∥

L2([0,τ];L2(Ω)) ⩽C
3∑

i=2

(
∥δg ∥C ([0,τ];H 2(Ω)) +∥δ̇g ∥C([0,τ];L2(Ω))

)i
.

Moreover, using the continuity of L (see (15)), it follows that there exists C > 0 such that, for every
δ0 ∈ H 2 ∩H 1

0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0,τ];L2(Ω)), the solution δg of (12) satisfies

∥δg ∥C([0,τ];H 2(Ω)) +∥δ̇g ∥C([0,τ];L2(Ω)) ⩽C
(
∥δ0∥H 2(Ω) +∥δ1∥L2(Ω) +∥g∥L2([0,τ];L2(Ω))

)
. (16)

Combining the two previous estimates, one gets the existence of C > 0 such that

∥G (g )∥L2([0,τ];L2(Ω)) ⩽C
3∑

i=2

(
∥δ0∥i

H 2(Ω) +∥δ1∥i
L2(Ω) +∥g∥i

L2([0,τ];L2(Ω))

)
. (17)

Step 2: The map G maps Br to itself. Let C > 0 be the constant in (17). Let r > 0 such that

C
(
r + r 2)< 1

2
, (18)

and define the associated ball of L2([0,τ];L2(Ω)) by

Br = {g ∈ L2 (
[0,τ];L2(Ω)

)
; ∥g∥L2([0,τ];L2(Ω)) ⩽ r }.

Let α> 0 be such that

2C
(
α2 +α3)< r

2
, (19)

and let δ0 ∈ H 2 ∩H 1
0 (Ω) and δ1 ∈ L2(Ω) satisfy

∥δ0∥H 2(Ω) +∥δ1∥L2(Ω) ⩽α. (20)

Using (17), (18) and (19), it follows that for every g ∈ Br we have

∥G (g )∥L2([0,τ];L2(Ω)) ⩽ 2C
(
α2 +α3)+C

(
r 2 + r 3)⩽ r.

Consequently, the ball Br in invariant under the action of G .
Step 3: The map G is a contraction on Br . Let r and α satisfy the conditions (18) and (19)
introduced at Step 2.

We first remark that there exists C > 0 such that for every g1, g2 ∈ Br we have

∥G (g1)−G (g2)∥L2([0,τ];L2(Ω)) ⩽Cr
[
∥δg1 −δg2∥C([0,τ];H 2(Ω)) +∥δ̇g1 − δ̇g2∥C([0,τ];L2(Ω))

]
, (21)
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where δgi is the solution of (12) with the source term gi and the control ugi . To avoid repetitions,
we detail the above estimate only for the first term in the definition (14) of G . To this aim, we use
Proposition 24, to obtain the existence of C > 0 with∥∥[

η,Φ
(
δg1 ,δg1

)]− [
η,Φ

(
δg2 ,δg2

)]∥∥
L2([0,τ];L2(Ω))

⩽C
[∥∥δg1 −δg2

∥∥
C([0,τ];H 2(Ω)) +

∥∥δ̇g1 − δ̇g2

∥∥
C([0,τ];L2(Ω))

]
×

[∥∥δg1 +δg2

∥∥
C([0,τ];H 2(Ω)) +

∥∥δ̇g1 + δ̇g2

∥∥
C([0,τ];L2(Ω))

]
.

Moreover, using (16) and (19) one gets that for every g1, g2 ∈ Br we have∥∥δg1 +δg2

∥∥
C([0,τ];H 2(Ω)) +

∥∥δ̇g1 + δ̇g2

∥∥
C([0,τ];L2(Ω)) ⩽Cr.

The other nonlinear terms in G can be tackled in similar manner, leading to (21). Then, as before,
using (16), one can deduce from (21) that, for all g1, g2 ∈ Br ,∥∥G (g1)−G (g2)

∥∥
L2([0,τ];L2(Ω)) ⩽Cr∥g1 − g2∥L2([0,τ];L2(Ω)).

Hence, reducing r if needed, one gets that G is a strict contraction on Br .
Conclusion. Thus, by the Banach fixed-point theorem, the map G has a fixed point, which
concludes the proof as explained before. □

8. Comments and related questions

8.1. Perturbed Schrödinger and plate equations on surfaces of variable curvature

The aim of this subsection is to show that the general results from Section 5 can be applied to
systems governed by the Schrödinger and plate type equations in other geometrical situations,
namely without assuming that the system described by the corresponding abstract wave equa-
tion is exactly observable. To this purpose, let (M , g ) be a compact smooth Riemannian manifold
whose geodesic flow has the Anosov property. We refer to Dyatlov, Jin and Nonnemacher [21,
Section 2.1] for the precise definition of this concept, recalling here just the fact that it includes
the case of surfaces with negative Gauss curvature. The result below can be seen as a counterpart
in a different geometrical setting of the result given in Proposition 3 in an Euclidian context. The
remarkable fact is that, unlike in Proposition 3, the control region can be an arbitrary open set.

Proposition 30. With the above notation, let ∆g be the Laplace-Beltrami operator on M, let O be
an open nonempty subset of M, let χO be the indicator function of O and let a ∈ L∞(M ;R). Then
the system described by

ż(t , x)+ i∆g z(t , x)+ i a(x)z(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈ M) , (22)

with state and control space L2(M), is exactly controllable in any positive time.

Proof. Let −A0 be the Laplace-Beltrami operator on H = L2(M). It is known that A0 is a densely
defined operator and positive on H . Let C ∈ L (H ) be the multiplication operator by χO . The
major ingredient of this proof is the result in [21, Theorem 2], which implies the existence of
K = KM ,O > 0, m > 0 and ω0 > 0 such that

K 2 log(ω)

ω
∥(ωI − A0)z0∥2

H +m2∥C z0∥2
H ⩾ ∥z0∥2

H , (ω⩾ω0, z0 ∈D(A0)) . (23)

On the other hand, Cφ ̸= 0 for every eigenvectorφ of −i A0−P , where P is the multiplication oper-
ator by i a (this is the unique continuation property for eigenvectors of the Laplace operator with
potential, which is classical, see for instance [34, Chap. 21]). Thus, we can apply Proposition 10
to conclude that (−i A0 −P,C ) is exactly observable in any positive time. By duality, it follows that
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(i A0+P,C ) with state and input space H , is exactly controllable in any positive time, which is the
announced conclusion. □

Remark 31. When a = 0, the exact controllability in any time of the Schrödinger equation (22)
has already been proved in [21, Theorem 5] when M has the Anosov property and in [29,
Theorem 1.3] when M is a compact hyperbolic surface.

To state a similar result for systems described by the plate equation we use the gradient and
divergence operators on Riemannian manifolds, denoted by ∇g and divg , respectively. We refer,
for instance, to Cǎlin and Chang [10, Ch. 2] for the definition of these operators.

Proposition 32. With the assumptions and notation in Proposition 30, let b ∈ C∞(M ;R) and
c ∈ L∞(M). Then the system described by

ẅ(t , x)+∆2
g w(t , x)+divg

(
b(x)

(∇g w
)

(t , x)
)+ c(x)w(t , x) = u(t , x)χO (x) (t ⩾ 0, x ∈ M), (24)

with state space H 2(M)×L2(M) and control space L2(M), is exactly controllable in any positive
time.

Proof. Let H := L2(M) and denote by −A0 the Laplace-Beltrami operator on H . Then A0 is a
positive operator on H , with domain H1 = H 2(M). Consider the linear operators

C0ϕ = ϕχO (ϕ ∈H ),

P0ϕ = divg
(
b∇gϕ

)
(ϕ ∈H1),

Q0ϕ = cϕ (ϕ ∈H ).

It can be easily checked that, under our assumptions, we have that P0 ∈L (H1,H ) is symmet-
ric on H and that Q0 ∈L (H ). Moreover, by applying [34, Chap. 21], it follows that

Ker
(
s2I + A2

0 +P0
)∩KerC0 = Ker

(
s2I + A2

0 +P0 +Q0
)∩KerC0 = {0} (s ∈C),

To conclude, it would be sufficient to apply a result similar to Corollary 22 in order to obtain that
the equation

ẅ(t )+ A2
0w(t )+ (P0 +R0)w(t ) =C∗

0 u(t ) (t ⩾ 0),

with R0 = Q∗
0 , determines a system, with state space H1 ×H and control space H , which is

exactly controllable in arbitrarily small time. This would imply, using the obvious facts that R0 is
just the multiplication operator by c and C∗

0 =C0, the announced conclusion.
The reason for which Corollary 22 cannot be directly applied is that it relies upon several

preliminary results, namely those of Section 4 and Section 5. Nevertheless, the conclusion of
this corollary holds here. Indeed, the only ingredient of the proof of Corollary 22 which cannot
be adapted in an obvious manner to the context of the present proof is Theorem 13. However, we
can easily show that the conclusion of Theorem 13 is still true in the context of the current proof.
Indeed, the exact controllability of the corresponding wave equation, assumed in Theorem 13
and not necessarily holding here, is used in the proof of Theorem 13 only to obtain the resolvent
estimate (21). This resolvent estimate can be replaced by (23), which holds in our context and
which is clearly sufficient to obtain the conclusion of Theorem 13. We have thus shown that
indeed the conclusion of Corollary 22 holds here, which ends our proof. □

8.2. Small time controllability for the Berger plate equation

In this subsection, we consider a system that can be seen as an asymptotic limit of the Von
Kármán equations (see Perla Menzala and Zuazua [40], Nayfeh and Mook [43]) and we show that,
using Corollary 22, we can easily improve the known results on the controllability of an associated
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system. More precisely, Berger’s model for an elastic plate filling the domain Ω ⊂ R2 and hinged
on the boundary ∂Ω is:

ẅ(t , x)+∆2w(t , x)−
(

a +b
∫
Ω
|∇w |2 dx

)
∆w(t , x) = f (x)+uχO (t ⩾ 0, x ∈Ω),

w(t , x) =∆w(t , x) = 0 (t ⩾ 0, x ∈ ∂Ω),

w(0, x) = 0, ẇ(0, x) = 0 (x ∈Ω).

(25)

In the above system, f is a given force field and a is a real constant. The constant b is supposed
to be positive. Let η be a stationary solution corresponding to the forcing term f , i.e. satisfying∆2η(x)−

(
a +b

∫
Ω
|∇η|2 dx

)
∆η(x) = f (x) (x ∈Ω),

η(x) =∆η(x) = 0 (x ∈ ∂Ω).

The main result in this subsection is:

Proposition 33. Let Ω⊂ R2 be an open bounded set with C 2 boundary and let O ⊂Ω be an open
and nonempty subset of Ω such that (Σwave) (introduced in Section 1) is exactly controllable in
some time. Then the nonlinear system (25) is locally exactly controllable in any positive time τ> 0,
i.e., for every τ > 0 there exists M > 0 such that for every [ w0

w1 ] ∈ (H 2(Ω)∩ H 1
0 (Ω))× L2(Ω), with

∥w0 −η∥2
H 2(Ω)

+∥w1∥2
L2(Ω)

⩽ M 2, there exists u ∈ L2([0,τ];L2(O )) such that the solution w of (25)
satisfies

w(τ, ·) = η, ẇ(τ, ·) = 0.

A weaker version of the above result, which was yielding the exact controllability in some (not
necessarily small) time has been proved in [14], in the case η = 0. The fact that the arbitrarily
small controllability time was not obtained in [14] is due to the following limitation: in the above-
referred work, the exact controllability of the linearized system was proved only for large enough
time (see Remark 5 above).

Sketch of the proof of Proposition 33. With the results of the present paper at hand, we can
apply Theorem 4, with akℓ =−αδkℓ, where

α= a +b∥∇η∥2
L2(Ω),

δkℓ is the Kronecker symbol, bk = 0 and c = 0, to obtain that the system obtained by lineariz-
ing (25) around η is exactly controllable in any positive time. Using this fact, the approach pro-
posed in [14] can be easily adapted to obtain the local exact controllability of (33) in arbitrarily
small time and thus proving Proposition 33. □

8.3. Conclusions and open questions

In this work we have developed a perturbation approach for abstract control systems described
by Kirchhoff and Schrödinger type equations. More precisely, after writing the equations as
a first-order system, the perturbations we have considered are bounded, but not necessarily
compact, with respect to the natural topology of the state space. Consequently, a compactness-
uniqueness based methodology cannot be directly applied. Nevertheless, we show that, under
the assumption that the system described by the wave equation on the same spatial domain
and with the same control operator is exactly controllable, we can apply a frequency domain
perturbation argument. This methodology yields robustness of the exact controllability property
with respect to this type of perturbation, with some extra assumptions (similar to those appearing
in compactness-uniqueness approaches) on the unique continuation of the eigenvectors of the
perturbed systems. The new results obtained on the systems obtained by perturbing the classical



352 Marius Tucsnak, Megane Bournissou and Sylvain Ervedoza

Kirchhoff plate equation by terms involving up to second-order derivatives with respect to the
space variable provide, in particular, enough estimates to tackle the local controllability for some
nonlinear plate systems. More precisely, they allow to obtain the local, around a sufficiently
smooth equilibrium state, exact controllability in arbitrarily small time, for systems described
by the nonlinear von Kármán or Berger plate equations.

The main limitation of our approach is the systematic use of the assumption that the system
described by the wave equation on the same spatial domain and with the same control operator
is exactly controllable. In the case of systems described by the Schrödinger equation with homo-
geneous Dirichlet conditions in rectangular domains, this assumption has been removed in [9]
and [7], provided that the perturbation preserves the skew-adjoint nature of the generator. We
can conjecture that similar results hold for systems described by the plate equation in rectangu-
lar domains, opening the way to the local exact controllability of rectangular von Kármán plates
with controls localized in an arbitrary control region. However, since in this case the generator of
the corresponding first-order system is not skew-adjoint, adapting the arguments (which are not
perturbation theory-based ones) from [9] and [7] to the case of systems described by the plate
equation does not seem an obvious task.

Acknowledgements

The authors are grateful to Nicolas Burq for helpful suggestions and discussions. We are also
indebted to the referee for her / his suggestions and comments on the first version of this work.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

Appendix A. A Carleman estimate for the bi-Laplacian

The goal of this section is to prove the global Carleman estimate for the bi-Laplacian which has
been used in the proof of Theorem 4.

To give the precise statement of this result, we introduce some notation, which will be used in
all the remaining part of this section. Firstly, given n ∈N, the euclidian norms on Cn and Mn(C)
are denoted by | · |. We denote by Ω a nonempty bounded open set of Rn with a C 2 boundary or
a rectangular domain and by O an open and nonempty subset ofΩ. Moreover, for g ∈ H 2(Ω), we
write (D2g )(x) and ∇g (x) for the Hessian matrix and the gradient of g at x ∈Ω, respectively.

For the remaining part of this section, let α be a C 2(Ω) function satisfying

∀ x ∈ ∂Ω, α(x) = 0, ∀ x ∈Ω, α(x) > 0, and inf
Ω\O

|∇α| > 0. (26)

The existence of a function α with the above properties has been proved in Fursikov and
Imanuvilov [25] (see also [47, Chapter 14] or [16, Lemma 2.68]).

We are now in a position to state the main result in this section.

Theorem 34. With the above notation and assumptions, there exist a constant C > 0 and λ̂ > 0
such that for every s ⩾ 1 and every ψ ∈ H 4(Ω) satisfying ψ=∆ψ= 0 on ∂Ωwe have∫

Ω

(
s2 ∣∣D2ψ

∣∣2 + s4 ∣∣∇ψ∣∣2 + s6|ψ|2
)
e2sβdx

⩽C

(∫
Ω

∣∣∆2ψ
∣∣2

e2sβdx +
∫
O

[
s3|∆ψ|2 + s6|ψ|2]e2sβdx

)
, (27)
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where β is given by β= eλ̂α, with α ∈C 2(Ω) as in (26).

We refer to [33, Section 1.4, Proposition 1.1] for the proof of the optimality of the powers of the
parameter s in the Carleman estimate (27).

Remark 35. The following global Carleman estimate for the bi-Laplacian is known from [15,
Proposition 1]: for every a > 0, there exist ŝ ⩾ 1, λ̂ > 0 and a constant C > 0 such that for every
s ⩾ ŝ, for every ψ ∈ H 4(Ω) satisfying ψ=∆ψ= 0 on ∂Ω,∫

Ω

(
s4|∇ψ|2 + s6|ψ|2

)
e2sβdx

⩽C

(∫
Ω

∣∣∆2ψ−a∆ψ
∣∣2

e2sβdx +
∫
O

[
s
∣∣∇(∆ψ)

∣∣2 + s3|∆ψ|2 + s4|∇ψ|2 + s6|ψ|2
]

e2sβdx

)
, (28)

where β = eλ̂α with α ∈ C 2(Ω) as in (26). However, (28) is not sufficient to prove the unique
continuation (7), since one needs to consider the case a = 0 and to estimate all the second order
derivatives of ψ from the right hand side of the Carleman estimate (27) or (28).

The strategy used to prove Theorem 34 is the same as the one in [15, Proposition 1]. More
precisely, we apply twice a global Carleman estimate for the Laplacian, which is deduced from
Imanuvilov [27, Lemma 2.7]:

Theorem 36. With the notation and assumptions in Theorem 34, there exist λ̂> 0 and a constant
C > 0 such that for every s ⩾ 1, for every y ∈ H 2(Ω)∩H 1

0 (Ω) we have∫
Ω

(
1

s

∣∣D2 y
∣∣2 + s|∇y |2 + s3|y |2

)
e2sβdx ⩽C

(∫
Ω

∣∣∆y
∣∣2 e2sβdx + s3

∫
O
|y |2e2sβdx

)
, (29)

where β= eλ̂α with α ∈C 2(Ω) as in (26).

Proof. Let T > 0. From [27, Lemma 2.7], one gets the existence of λ̂> 0 such that for every λ⩾ λ̂

there exist ŝ ⩾ 1 and C > 0 such that for every s ⩾ ŝ, t ∈ (0,T ) and y ∈ H 2(Ω)∩H 1
0 (Ω),∫

Ω

(
1

sβT,λ(t )

∣∣D2 y
∣∣2 + sλ2βT,λ(t )|∇y |2 + s3λ4 (

βT,λ(t )
)3 |y |2

)
e2sδT,λ(t ) dx

⩽C

(∫
Ω

∣∣∆y
∣∣2 e2sδT,λ(t ) dx + s3λ4

∫
O

(
βT,λ(t )

)3 |y |2e2sδT,λ(t ) dx

)
,

where the weight functions βT,λ(t ) and δT,λ(t ) are defined by

βT,λ(t , x) = eλα(x)

[t (T − t )]2 and δT,λ(t , x) = eλα(x) −eλ
2∥α∥∞

[t (T − t )]2 ,

with α ∈C 2(Ω) satisfying (26).
Applying the above estimate at time t = T /2, taking λ = λ̂ and replacing s by 16s/T 4, we get

the existence of ŝ ⩾ 1 such that for all s ⩾ ŝ we have∫
Ω

(
1

sβ

∣∣D2 y
∣∣2 + sλ2β|∇y |2 + s3λ4β3|y |2

)
e

2s
(
β−eλ̂

2∥α∥∞
)

dx

⩽C

(∫
Ω

∣∣∆y
∣∣2 e

2s
(
β−eλ̂

2∥α∥∞
)

dx + s3λ4
∫
O
β3|y |2e

2s
(
β−eλ̂

2∥α∥∞
)

dx

)
,

withβ= eλ̂α. Multiplying by e2seλ̂
2∥α∥∞

on both sides, and boundingβ from below and from above
(which can be done independently of s), we get (29) for s ⩾ ŝ. If ŝ > 1, applying (29) for the value
ŝ of the Carleman parameter, straightforward bounds on e2sβ for s ∈ [1, ŝ] yields (29) for all s ⩾ 1.
This concludes the proof. □

Using twice the Carleman estimate (29) for the Laplacian, one can deduce the Carleman
estimate (27) for the bi-Laplacian and prove Theorem 34.
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Proof of Theorem 34. Let g ∈ L2(Ω) and ψ ∈ H 4(Ω) satisfying ψ = ∆ψ = 0 on ∂Ω. Then y = ∆ψ
satisfies {

∆y =∆2ψ inΩ,

y = 0 in ∂Ω.

Then, by applying the Carleman estimate (29) (neglecting the terms involving derivatives of order
one and two in y , i.e. of order three and four in ψ), one gets the existence of λ̂> 0 and C > 0 such
that for every s ⩾ 1,

s3
∫
Ω
|∆ψ|2e2sβdx ⩽C

(∫
Ω

∣∣∆2ψ
∣∣2

e2sβdx + s3
∫
O
|∆ψ|2e2sβdx

)
. (30)

One the other hand, applying the Carleman estimate (29) to ψ, we have
for all s ⩾ 1,∫

Ω

(
1

s

∣∣D2ψ
∣∣2 + s|∇ψ|2 + s3|ψ|2

)
e2sβdx ⩽C

(∫
Ω
|∆ψ|2e2sβdx + s3

∫
O
|ψ|2e2sβdx

)
. (31)

Combining (30) and (31), we deduced that for every s ⩾ 1, estimate (27) holds. □

References

[1] N. Anantharaman, M. Léautaud and F. Macià, “Wigner measures and observability for the
Schrödinger equation on the disk”, Invent. Math. 206 (2016), no. 2, pp. 485–599.

[2] C. Bardos, G. Lebeau and J. Rauch, “Un exemple d’utilisation des notions de propagation
pour le contrôle et la stabilisation de problèmes hyperboliques”, Rend. Semin. Mat., Torino
Fasc. Spec. (1988), pp. 11–31.

[3] C. Bardos, G. Lebeau and J. Rauch, “Sharp sufficient conditions for the observation, control
and stabilization of waves from the boundary”, SIAM J. Control Optim. 30 (1992), pp. 1024–
1065.

[4] B. Barnes, “Majorization, range inclusion, and factorization for bounded linear operators”,
Proc. Am. Math. Soc. 133 (2005), no. 1, pp. 155–162.

[5] L. Baudouin and J.-P. Puel, “Uniqueness and stability in an inverse problem for the
Schrödinger equation”, Inverse Probl. 18 (2002), no. 6, pp. 1537–1554.

[6] M. S. Berger and P. C. Fife, “On von Kármán’s equations and the buckling of a thin elastic
plate”, Bull. Am. Math. Soc. 72 (1966), no. 6, pp. 1006–1011.

[7] J. Bourgain, N. Burq and M. Zworski, “Control for Schrödinger operators on 2-tori: rough
potentials”, J. Eur. Math. Soc. 15 (2013), no. 5, pp. 1597–1628.

[8] N. Burq, Contrôle de l’équation des ondes dans des ouverts peu réguliers, École polytech-
nique, 1995.

[9] N. Burq and M. Zworski, “Control for Schrödinger operators on tori”, Math. Res. Lett. 19
(2012), no. 2, pp. 309–324.

[10] O. Calin and D.-C. Chang, Geometric mechanics on Riemannian manifolds. Applications to
partial differential equations, Birkhäuser, 2005.

[11] G. Chen, S. A. Fulling, F. J. Narcowich and S. Sun, “Exponential decay of energy of evolution
equations with locally distributed damping”, SIAM J. Appl. Math. 51 (1991), no. 1, pp. 266–
301.

[12] I. Chueshov and I. Lasiecka, Von Karman evolution equations. Well-posedness and long-
time dynamics, Springer, 2010.

[13] P. G. Ciarlet and P. Rabier, Les équations de von Kármán, Springer, 1980.
[14] N. Cîndea and M. Tucsnak, “Local exact controllability for Berger plate equation”, Math.

Control Signals Syst. 21 (2009), no. 2, pp. 93–110.



Marius Tucsnak, Megane Bournissou and Sylvain Ervedoza 355

[15] N. Cîndea and M. Tucsnak, “Internal exact observability of a perturbed Euler–Bernoulli
equation”, Ann. Acad. Rom. Sci., Math. Appl. 2 (2010), no. 2, pp. 205–221.

[16] J.-M. Coron, Control and nonlinearity, American Mathematical Society, 2007.
[17] J.-M. Coron and P. Lissy, “Local null controllability of the three-dimensional Navier–Stokes

system with a distributed control having two vanishing components”, Invent. Math. 198
(2014), no. 3, pp. 833–880.

[18] M. L. Duprez and P. Lissy, “Indirect controllability of some linear parabolic systems of m
equations with m−1 controls involving coupling terms of zero or first order”, J. Math. Pures
Appl. 106 (2016), no. 5, pp. 905–934.

[19] M. L. Duprez and P. Lissy, “Positive and negative results on the internal controllability of
parabolic equations coupled by zero- and first-order terms”, J. Evol. Equ. 18 (2018), no. 2,
pp. 659–680.

[20] M. L. Duprez and G. Olive, “Compact perturbations of controlled systems”, Math. Control
Relat. Fields 8 (2018), no. 2, pp. 397–410.

[21] S. Dyatlov, L. Jin and S. Nonnenmacher, “Control of eigenfunctions on surfaces of variable
curvature”, J. Am. Math. Soc. 35 (2022), no. 2, pp. 361–465.

[22] M. Eller and D. Toundykov, “Semiglobal exact controllability of nonlinear plates”, SIAM J.
Control Optim. 53 (2015), no. 4, pp. 2480–2513.

[23] A. Favini, M. A. Horn, I. Lasiecka and D. Tataru, “Global existence, uniqueness and regu-
larity of solutions to a von Kármán system with nonlinear boundary dissipation”, Differ.
Integral Equ. 9 (1996), no. 2, pp. 267–294.

[24] A. Favini, M. A. Horn, I. Lasiecka and D. Tataru, “Addendum to the paper: “Global ex-
istence, uniqueness and regularity of solutions to a von Kármán system with nonlinear
boundary dissipation” [Differential Integral Equations 9 (1996), no. 2, 267–294; MR1364048
(97a:35065)]”, Differ. Integral Equ. 10 (1997), no. 1, pp. 197–200.

[25] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Seoul National
University Research Institute of Mathematics, Global Analysis Research Center, 1996.

[26] A. Haraux, “Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectan-
gulaire”, J. Math. Pures Appl. 68 (1989), no. 4, pp. 457–465.

[27] O. Y. Imanuvilov, “On exact controllability for the Navier-Stokes equations”, ESAIM, Control
Optim. Calc. Var. 3 (1998), pp. 97–131.

[28] S. Jaffard, “Contrôle interne exact des vibrations d’une plaque rectangulaire”, Port. Math.
47 (1990), no. 4, pp. 423–429.

[29] L. Jin, “Control for Schrödinger equation on hyperbolic surfaces”, Math. Res. Lett. 25 (2018),
no. 6, pp. 1865–1877.

[30] F. John, Plane waves and spherical means applied to partial differential equations, Inter-
science Publishers, 1955.

[31] V. Komornik, “On the exact internal controllability of a Petrowsky system”, J. Math. Pures
Appl. 71 (1992), no. 4, pp. 331–342.

[32] J. E. Lagnese, “Local controllability of dynamic von Kármán plates”, Control Cybern. 19
(1990), no. 3-4, pp. 155–168.

[33] J. Le Rousseau, “On Carleman estimates with two large parameters”, Indiana Univ. Math.
J. 64 (2015), pp. 55–113.

[34] J. Le Rousseau, G. Lebeau and L. Robbiano, Elliptic Carleman estimates and applications
to stabilization and controllability. Vol. II. General boundary conditions on Riemannian
manifolds, Birkhäuser/Springer, 2022. PNLDE Subseries in Control.

[35] G. Lebeau, “Contrôle de l’équation de Schrödinger”, J. Math. Pures Appl. 71 (1992), no. 3,
pp. 267–291.



356 Marius Tucsnak, Megane Bournissou and Sylvain Ervedoza

[36] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome
1: Contrôlabilité exacte. (Exact controllability, perturbations and stabilization of distributed
systems. Vol. 1: Exact controllability), Masson, 1988. with appendices by E. Zuazua, C.
Bardos, G. Lebeau and J. Rauch.

[37] P. Lissy, Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles,
PhD thesis, Université Pierre et Marie Curie - Paris VI, 2013. https://theses.hal.science/tel-
00918763.

[38] K. Liu, “Locally distributed control and damping for the conservative systems”, SIAM J.
Control Optim. 35 (1997), no. 5, pp. 1574–1590.

[39] K. Liu, Z. Liu and B. Rao, “Exponential stability of an abstract nondissipative linear system”,
SIAM J. Control Optim. 40 (2001), no. 1, pp. 149–165.

[40] G. P. Menzala and E. Zuazua, “Timoshenko’s plate equation as a singular limit of the
dynamical von Kármán system”, J. Math. Pures Appl. 79 (2000), no. 1, pp. 73–94.

[41] L. Miller, “Controllability cost of conservative systems: resolvent condition and transmuta-
tion”, J. Funct. Anal. 218 (2005), no. 2, pp. 425–444.

[42] L. Miller, “Resolvent conditions for the control of unitary groups and their approxima-
tions”, J. Spectr. Theory 2 (2012), no. 1, pp. 1–55.

[43] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, revised edition, John Wiley & Sons,
2008.

[44] K. Ramdani, T. Takahashi, G. Tenenbaum and M. Tucsnak, “A spectral approach for the
exact observability of infinite-dimensional systems with skew-adjoint generator”, J. Funct.
Anal. 226 (2005), no. 1, pp. 193–229.

[45] J. Rauch and M. Taylor, “Exponential decay of solutions to hyperbolic equations in
bounded domains”, Indiana Univ. Math. J. 24 (1974), pp. 79–86.

[46] F. Treves, Analytic partial differential equations, Springer, 2022.
[47] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Springer, 2009.
[48] G. Yuan and M. Yamamoto, “Carleman estimates for the Schrödinger equation and appli-

cations to an inverse problem and an observability inequality”, Chin. Ann. Math., Ser. B 31
(2010), no. 4, pp. 555–578.

https://theses.hal.science/tel-00918763
https://theses.hal.science/tel-00918763

	1. Introduction
	2. Context and statement of the main results
	3. Some background on the Hautus test for skew-adjoint systems
	4. A frequency-dependent Hautus condition for systems describing plate vibrations
	5. Perturbation of abstract Kirchhoff systems
	6. Proof of the main result on linear systems
	7. Proof of Theorem 6
	8. Comments and related questions
	8.1. Perturbed Schrödinger and plate equations on surfaces of variable curvature
	8.2. Small time controllability for the Berger plate equation
	8.3. Conclusions and open questions

	Acknowledgements
	Declaration of interests
	Appendix A. A Carleman estimate for the bi-Laplacian
	References

