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Abstract. We study the orthogonal projections of symplectic balls inR2n on complex subspaces. In particular
we show that these projections are themselves symplectic balls under a certain complexity assumption. Our
main result is a refinement of a recent very interesting result of Abbondandolo and Matveyev extending the
linear version of Gromov’s non-squeezing theorem. We use a conceptually simpler approach where the Schur
complement of a matrix plays a central role. An application to the partial traces of density matrices is given.

Résumé. Nous étudions les projections orthogonales de boules symplectiques dansR2n sur des sous-espaces
complexes. En particulier, nous montrons que ces projections sont elles-mêmes des boules symplectiques
sous une certaine hypothèse de complexité. Notre résultat principal est une amélioration d’un résultat
récent et très intéressant d’Abbondandolo et Matveyev, qui étend la version linéaire du théorème de non-
plongement de Gromov. Nous utilisons une approche conceptuellement plus simple où le complément
de Schur d’une matrice joue un rôle central. Une application aux traces partielles de matrices densité est
donnée.
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1. Introduction

1.1. What is known

Let σ = dp1 ∧dx1 + · · · +dpn ∧dxn be the standard symplectic form on R2n ≡ Rn ×Rn ; we call
symplectic ball the image of the ball

B 2n(z0,R) = {z ∈R2n : |z − z0| ≤ R}
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by a symplectic automorphism S ∈ Sp(n) (the symplectic group of (R2n ,σ)). As a conse-
quence of Gromov’s non-squeezing theorem [8, 10] the orthogonal projection of a symplectic
ball S(B 2n(z0,R)) on any two-dimensional symplectic subspace of (R2n ,σ) has area at least equal
to πR2. Abbondandolo and Matveyev asked in [3] the question whether this result could be
generalized to subspaces with higher dimensions. They showed that the orthogonal projection
ΠVS(B 2n(z0,R)) of S(B 2n(z0,R)) onto an arbitrary complex subspace (V,σ|V) of (R2n ,σ) such that
dimV= 2k satisfies

VolVΠVS(B 2n(z0,R)) ≥ (πR2)k

k !
(1)

where VolV is the volume element on V. Notice that (πR2)k /k ! is the volume of the ball
BV(ΠVz0,R) in V:

VolV(BV(ΠVz0,R)) = (πR2)k

k !
. (2)

They moreover proved that equality holds in (1) if and only STV is itself a complex subspace
of R2n . The inequality (1) implies the linear version of Gromov’s theorem when dimV=2 and
conservation of volume by linear symplectomorphisms when V = R2n . Abbondandolo and
Matveyev proved their results using the classical Wirtinger inequality [4]. Notice that there is a
precise equality (see [1, Theorem 7.1]) implying (1).

Results of this type are more subtle and difficult than they might appear at first sight; for
instance as Abbondandolo and Matveyev show the inequality (1) does not hold when one
replaces S by a nonlinear symplectomorphism f . In fact, one can construct examples where
VolVΠV f (B 2n(R)) can become arbitrarily small. They however make an interesting conjecture,
to which we will come back at the end of this paper.

1.2. What we will do

We will prove by elementary means a stronger version of (1) and of its extension. We will actually
prove (Theorem 3) that the orthogonal projection of a symplectic ball on a symplectic subspace
contains a symplectic ball with the same radius in this subspace, and is itself a symplectic ball
when the subspace under consideration is complex.

The proof will be done in the particular case where the symplectic spaceV is of the typeR2nA⊕0
in which case the symplectic orthogonal Vσ is 0⊕R2nB ; our refinement of (1) says that for every
S ∈ Sp(n) there exists S A ∈ Sp(nA) (the symplectic group of R2nA ⊕0 ≡R2nA 1) such that

ΠVS(B 2n(z0,R)) ⊇ S A(B 2nA (z0,A ,R)) (3)

and z0,A =ΠVz0.
This will be done using the theory of Schur complements and the notion of symplectic

spectrum of a positive definite matrix. Since symplectomorphisms are volume-preserving, (3)
implies (1). It is however a much stronger statement than (1) because, given two measurable sets
Ω andΩ′ with the same volume, there does not in general exist a symplectomorphism (let alone
a linear one) takingΩ toΩ′ as soon as the dimension of the symplectic space exceeds two [10].

We shall then prove (Section 3.2) the same result for the projection on an arbitrary complex
symplectic vector subspace V of

(
R2n ,σ

)
, not necessarily R2nA ⊕0.

Note that these results are invariant under phase space translations. We will therefore assume
henceforth that z0 = 0.

1For the sake of simplicity, we make the identification R2nA ⊕0 ≡ R2nA . In particular, we write by abuse of language
ΠV(zA , zB ) = zA instead of (zA ,0).
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In Section 4 we will show that, quite interestingly, our main result (and thus the Abbondandolo
and Matveyev theorem on the shadows of symplectic balls) can be restated in the language of
quantum mechanics as a well-known property about the partial traces of quantum states.

More specifically:

Any partial trace of a Gaussian quantum state is another Gaussian quantum state.

We finally discuss in Section 5 some possible extensions to the non-linear case, pointing out
the difficulties.

2. Preliminaries

In what follows M will be a real 2n × 2n positive definite matrix; we will write M > 0. We will
interchangeably use the notaton M z · z or M z2 for the associated quadratic form. We denote by

J the standard symplectic matrix
(

0n In
−In 0n

)
. We have, σ(z, z ′) = J z · z ′ when z = (x, p), z ′ = (x ′, p ′).

In this notation the condition S ∈ Sp(n) is equivalent to ST JS = J (or S JST = J ) where ST is the
transpose of S.

2.1. Williamson’s symplectic diagonalization

By definition the symplectic spectrum of M is the increasing sequence λσ1 (M) ≤ λσ2 (M) ≤ · · · ≤
λσn (M) of numbers λσj (M) > 0 where the ±iλσj (M) are the eigenvalues of J M (which are the same

as those of the antisymmetric matrix M 1/2 J M 1/2). We will use the following property, known in
the literature as “Williamson’s symplectic diagonalization theorem” [5, 10]: there exists S ∈ Sp(n)
such that

M = ST DS, D =
(
Λ 0
0 Λ

)
where Λ is the diagonal matrix whose eigenvalues are the numbers λσj (M) (all matrices corre-

sponding here to the standard splitting z = (x, p)). The symplectic spectra of M and M−1 are
inverses of each other in the sense that:

λσj (M−1) =λσn− j (M)−1 for 1 ≤ j ≤ n. (4)

We also have the less obvious property ([5, Section 8.3.2])

M ≤ N =⇒λσj (M) ≤λσj (N ) for 1 ≤ j ≤ n (5)

where M ≤ N means N −M ≥ 0.
The following simple result characterizing positive semi-definiteness in terms of the symplec-

tic spectrum will be very useful for proving Theorem 3:

Lemma 1. The Hermitian matrix M + i J is positive semi-definite: M + i J ≥ 0 if and only if
λσj (M) ≥ 1 for 1 ≤ j ≤ n.

Proof. Let M = ST DS be a Williamson diagonalization of M ; since ST JS = J the condition
M + i J ≥ 0 is equivalent to D + i J ≥ 0. The characteristic polynomial of D + i J is the product
P (λ) = P1(λ) · · ·Pn(λ) of polynomials

P j (λ) =λ2 −2λσj (M)λ+λσj (M)2 −1

and the eigenvalues of M + i J are thus the numbers λ j = λσj (M)±1. The condition M + i J ≥ 0 is
equivalent to λ j ≥ 0, that is to λσj (M) ≥ 1 for j = 1, . . . ,n. □



220 Nuno C. Dias, Maurice A. de Gosson and João N. Prata

Notice that if S ∈ Sp(n) we have

ST S + i J ≥ 0 and SST + i J ≥ 0 (6)

since λσj (ST S) = λσj (SST ) = 1 for all j (because D = I in view of Williamson’s diagonalization
result).

2.2. Block-matrix partitions and Schur complements

Let R2nA ≡ R2nA ⊕ 0 and R2nB ≡ 0⊕R2nB be two symplectic subspaces of R2n . We split (R2n ,σ)
as a direct sum (R2nA ⊕R2nB ,σA ⊕σB ) where σA and σB are, respectively, the restrictions of σ
to R2nA and R2nB . We write z ∈ R2n as z = (zA , zB ) = zA ⊕ zB with zA = (xA , p A) ∈ R2nA and
zB = (xB , pB ) ∈R2nB .

We denote by ΠA (resp. ΠB ) the orthogonal projection R2n −→ R2nA (resp. R2nB ). We choose
symplectic bases BA , BB in R2nA and R2nB and identify linear mappings R2n −→ R2n with their
matrices in the symplectic basis B =BA ⊕BB of R2n . Such a matrix will be written as

M =
(

MA A MAB

MB A MBB

)
(7)

the blocks MA A , MAB , MB A , MBB having dimensions 2nA×2nA , 2nA×2nB , 2nB ×2nA , 2nB ×2nB ,
respectively. Similarly, the standard symplectic matrix J will be split as

J = J A ⊕ JB ≡
(

J A 0
0 JB

)
where J A (resp. JB ) is the standard symplectic matrix in (R2nA ,σA) (resp. (R2nB ,σB )).

Since M is positive definite and symmetric the upper-left and lower-right blocks in (7) are
themselves positive-definite and symmetric: MA A > 0 and MBB > 0. In particular the Schur
complements

M/MBB = MA A −MAB M−1
BB MB A (8)

M/MA A = MBB −MB A M−1
A A MAB (9)

are well defined and invertible [15], and the inverse of the matrix M is given by the formula

M−1 =
(

(M/MBB )−1 −(M/MBB )−1MAB M−1
BB

−M−1
BB MB A(M/MBB )−1 (M/MA A)−1

)
. (10)

2.3. Orthogonal projections of ellipsoids in R2n

We will also need the following general characterization of the orthogonal projection of an
ellipsoid on a subspace:

Lemma 2. LetΠA be the orthogonal projection R2n −→R2nA and

Ω= {z ∈R2n : M z2 ≤ R2}.

We have
ΠAΩ= {zA ∈R2nA : (M/MBB )z2

A ≤ R2}. (11)

Proof. Let us set Q(z) = M z2 −R2; the boundary ∂Ω of the hypersurface Q(z) = 0 is defined by

MA A z2
A +2MB A zA · zB +MBB z2

B = R2. (12)

A point zA belongs to ∂ΠAΩ if and only if the normal vector to ∂Ω at the point z = (zA , zB ) is
parallel to R2nA hence the constraint

∂zQ(z) = 2M z ∈R2nA ⊕0 .
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This is equivalent to the condition MB A zA +MBB zB = 0, that is to zB = −M−1
BB MB A zA . Inserting

zB in (12) shows that the boundary ∂ΠAΩ is the set of all zA ∈ R2nA such that (M/MBB )z2
A = R2

hence formula (11). □

Interchanging A and B the orthogonal projection ofΩ on R2nB is similarly given by

ΠBΩ= {zB ∈R2nB : (M/MA A)z2
B ≤ R2}. (13)

3. Orthogonal Projections of Symplectic Balls

3.1. The main result: statement and proof

Let us now prove the main result. We assume again the matrix M is written in block-form (7).
To simplify notation we also assume that all balls B 2n(z0,R) are centered at the origin and set
B 2n(0,R) = B 2n(R).The case of a general ball B 2n(z0,R) trivially follows using the translation
z 7−→ z + z0.

Theorem 3. Let S ∈ Sp(n).

(i) There exists S A ∈ Sp(nA) such that

ΠA(S(B 2n(R)) ⊇ S A(B 2nA (R)); (14)

(ii) We have
ΠA(S(B 2n(R)) = S A(B 2nA (R)) (15)

if and only if S = (S A ⊕SB )U for some SB ∈ Sp(nB ), and some unitary automorphism
U ∈U (n) = Sp(n)∩O(2n) in which case we also have

ΠB (S(B 2n(R)) = SB (B 2nB (R)) (16)

Proof. (i). The symplectic ball S(B 2n(R)) consists of all z ∈ R2n such that M z2 ≤ R2 where
M = (SST )−1. It follows from Lemma 2 that ΠAS(B 2n(R)) is determined by the inequality
(M/MBB )z2

A ≤ R2. We are going to show that the symplectic eigenvalues λσA
j (M/MBB ) are all

≤ 1. The inclusion (14) will then follow since we have, in view of Williamson’s diagonalization
result,

M/MBB = (S−1
A )T D AS−1

A (17)

for some S A ∈ Sp(nA) and

D A =
(
ΛA 0
0 ΛA

)
, ΛA = diag(λσA

1 (M/MBB ), . . . ,λσA
nA

(M/MBB )). (18)

It follows that:

(M/MBB ) z2
A = (

(S−1
A )T D AS−1

A

)
z2

A (19)

= D A
(
S−1

A zA
)2 ≤ |S−1

A zA |2

The condition z ∈ S A(B 2nA (R)) being equivalent to |S−1
A zA |2 ≤ R2 thus implies (M/MBB )z2

A ≤ R2

and hence S A(B 2nA (R)) ⊆ΠAS(B 2n(R)).
To prove that we indeed have

λ
σA
j ((M/MBB )) ≤ 1 for 1 ≤ j ≤ nA (20)

we begin by noting that the symplectic eigenvalues λσj (M) of M = (SST )−1 are all trivially equal to

one, and hence also those of its inverse M−1: λσj (M−1) = 1 for 1 ≤ j ≤ n. In view of Lemma 1 the

Hermitian matrix M−1 + i J is positive semidefinite:

M−1 + i J ≥ 0 (21)
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which implies that (cf. (10))

(M/MBB )−1 + i J A ≥ 0 (22)

(recall that J = J A ⊕ JB ). Applying now Lemma 1 to (M/MBB )−1 this implies that the inequali-
ties (20) must hold (cf. (4)).

(ii). In view of (11) in Lemma 2 the equality (15) will hold if and only if M/MBB = (S AST
A )−1. If

S = (S A ⊕SB )U , then M = (SST )−1 = [(
S AST

A

)⊕ (
SB ST

B

)]−1
implies M/MBB = (S AST

A )−1 and we
have the equality (15).

Conversely, suppose the equality (15) holds. From the inversion formula (10) we have

M−1 =
(
(M/MBB )−1 X

X T (M/MA A)−1

)
. (23)

where X = −(M/MBB )−1MAB M−1
BB ; since M−1 ∈ Sp(n) is symmetric it satisfies the symplecticity

condition

M−1(J A ⊕ JB )M−1 = J A ⊕ JB

which is in turn equivalent to the set of conditions

(M/MBB )−1 J A(M/MBB )−1 +X JB X T = J A (24)

(M/MBB )−1 J A X +X JB (M/MA A)−1 = 0 (25)

X T J A X + (M/MA A)−1 JB (M/MA A)−1 = JB . (26)

Since

M/MBB = (S AST
A )−1 ∈ Sp(nA), (27)

it follows from (24) that

X JB X T = 0. (28)

Multiplying the identity (25) on the right by (M/MA A)X T and using (28), we obtain

(M/MBB )−1 J A X (M/MA A)X T = 0

that is

X (M/MA A)X T = 0. (29)

Since (M/MA A) > 0, this is possible if and only if X = 0. Finally, from (26) we conclude that
(M/MA A)−1 ∈ Sp(nB ). Moreover, since (M/MA A)−1 is symmetric and positive definite, there exists
SB ∈ Sp(nB ), such that (M/MA A)−1 = SB ST

B .
Altogether

M−1 = SST =
(
S AST

A 0
0 SB ST

B

)
(30)

Let us write P = S A ⊕ SB . By the polar decomposition of symplectic matrices (see [5, Propo-
sition 2.19]), there exist matrices RS ,RP ∈ Sp(n), symmetric and positive-definite and matrices
US ,UP ∈U (n) such that:

S = RSUS , P = RPUP . (31)

Notice that RS = (SST )1/2 and RP = (PP T )1/2. From (30,31), we have that:

SST = PP T ⇐⇒ R2
S = R2

P ⇐⇒ RS = RP .

If we define U =U−1
P US ∈U (n) and multiply the last identity by US on the right, we obtain:

RSUS = RPUPU−1
P US ⇐⇒ S = PU ,

and the result follows. □
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We remark that the proof above actually provides the means to calculate explicitly the sym-
plectic automorphisms S A in (14). Recapitulating, it is constructed as follows: given S ∈ Sp(n)
calculate

M = (SST )−1 =
(

MA A MAB

MB A MBB

)
and then obtain the Schur complement (8)

M/MBB = MA A −MAB M−1
BB MB A .

The matrix S A is then obtained from (27) (observe that S A is only defined up to a symplectic
rotation, but this ambiguity is irrelevant since B 2nA (R) is rotationally invariant).

3.2. Discussion and extension

In the previous sections we used the abbreviated notation ΠA(zA ⊕ zB ) = zA , etc. In this subsec-
tion, we shall restore the notationΠA(zA ⊕zB ) = zA ⊕0 whenever necessary for the sake of clarity.

Consider a general complex symplectic subspace V of (R2n ,σ) (that is such that JV = V) and
let Vσ be its symplectic orthocomplement.

Choose symplectic bases BV of V and BVσ of Vσ such that their union BV ∪ BVσ is a
symplectic orthonormal basis ofR2n (this is easily done using the symplectic version of the Gram–
Schmidt construction for orthogonal bases; see [5]). Set dimV = 2nA and dimVσ = 2nB (hence
n = nA +nB ) and let BA and BB be symplectic bases of (R2nA ,σA) and (R2nB ,σB ), respectively,
such that BA ∪BB is a symplectic orthonormal basis of (R2n ,σ). Let U be the linear mapping
R2n −→ R2n defined by BV =U (BA) and BVσ =U (BB ); clearly U is symplectic and orthogonal.
The mapping ΠV : R2n −→ R2n defined by ΠV =UΠAU−1 is then the projection onto V along Vσ.
In the basis BV∪BVσ it has the representation

ΠV =
(

IV 0
0 0

)
, (32)

where IV is the 2nA × 2nA identity matrix. An element of the symplectic group SpV(nA) is
represented in this basis as:

MV =
(

SV 0
0 IVσ

)
, (33)

where IVσ is the 2nB ×2nB identity matrix and SV ∈ Sp(nA). We thus have:

MV =U MAU−1 , (34)

with

MA =
(

S A 0
0 IB

)
, (35)

for some S A ∈ Sp(nA) and IB the 2nB ×2nB identity matrix.
We denote by B 2nA

V
(R) the ball of radius R > 0 in V:

B 2nA
V

(R)⊕0 =U
(
B 2nA (R)⊕0

)
. (36)

Similar definitions apply to Vσ.
Equipped with these definitions we can now prove the following generalization of Theorem 3:

Theorem 4. Let S ∈ Sp(n).

(i) There exists MV ∈ SpV(nA) of the form (34), (35) in the basis BV∪BVσ , such that

ΠV(S(B 2n(R)) ⊇ SV(B 2nA
V

(R)); (37)
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(ii) We have
ΠV(S(B 2n(R)) = SV(B 2nA

V
(R)) (38)

if and only if SV −1 = (SV⊕SVσ ) in the basis BV∪BVσ , for some SVσ ∈ Sp(nB ), and some
unitary automorphism V ∈U (n) = Sp(n)∩O(2n) in which case we also have

ΠVσ (S(B 2n(R)) = SVσB 2nB
Vσ

(R)) (39)

Proof. (i). We have
ΠV(S(B 2n(R))) =UΠAU−1(S(B 2n(R))). (40)

Theorem 3 implies that there exists

MA =
(

S A 0
0 IB

)
, (41)

with S A ∈ Sp(nA) such that

ΠA(U−1(S(B 2n(R)))) ⊇ MA(B 2nA (R)⊕0) . (42)

Consequently, from (40), (42):

ΠV(S(B 2n(R))) ⊇U MA(B 2nA (R)⊕0) . (43)

Setting MV =U MAU−1 (and obtain MV of the form (34), (35)) and using (36), we finally obtain:

ΠV(S(B 2n(R))) ⊇ MV

(
B 2nA
V

(R)⊕0
)

. (44)

By abbuse of notation we write again MV

(
B 2nA
V

(R)⊕0
)= SV

(
B 2nA
V

(R)
)
, and the result follows.

(ii). Suppose that

ΠV(S(B 2n(R))) = MV

(
B 2nA
V

(R)⊕0
)

. (45)

With the previous arguments in reverse order, we conclude that:

ΠAU−1S
(
B 2n(R)

)= MA
(
B 2nA ⊕0

)
, (46)

for MA =U MVU−1.
From Theorem 3(ii), there exist SB ∈ Sp(nB ) and V ′ ∈U (n), such that:

U−1S = (S A ⊕SB )V ′ ⇐⇒ S =U (S A ⊕SB )U−1UV ′ . (47)

Setting V =UV ′ ∈U (n) and U (S A ⊕SB )U−1 = SV⊕SVσ , the result follows. □

Theorem 4 implies de facto the Abbondandolo and Matveyev result (1): since SV ∈ Sp(nA) is
volume-preserving formula (37) implies that

Vol2nA ΠV(S(B 2n(R)) ≥ (πR2)nA

nA !
. (48)

Similarly, the equality (38) implies

Vol2nA ΠV(S(B 2n(R)) = (πR2)nA

nA !
. (49)

According to Abbondandolo and Matveyev, the previous equality holds if and only if the
subspace STV is complex, that is JSTV = STV. Let us verify from our results that this is indeed
the case. From Theorem 4(i), we have the inclusion (37), which is equivalent to (cf. (42))

ΠA(U−1(S(B 2n(R)))) ⊇ MA(B 2nA (R)⊕0) , (50)

wheras the equality (38) is equivalent to:

ΠA(U−1(S(B 2n(R)))) = MA(B 2nA (R)⊕0) . (51)

If the inclusion (50) is strict, then (49) cannot hold. Therefore, (51) must be valid.



Nuno C. Dias, Maurice A. de Gosson and João N. Prata 225

From Theorem 3(ii) there exist SB ∈ Sp(nB ) and V ∈U (n), such that:

U−1S = (S A ⊕SB )V . (52)

Since
(
ST

A ⊕ST
B

)(
R2nA ⊕0

) = (
R2nA ⊕0

) = J
(
R2nA ⊕0

)
, U ,V ∈ U (n), and U

(
R2nA ⊕0

) = V, we
conclude that:

V T J
(
R2nA ⊕0

)=V T (
R2nA ⊕0

)
⇐⇒ JV T (

R2nA ⊕0
)=V T (

R2nA ⊕0
)

⇐⇒ JV T (
ST

A ⊕ST
B

)(
R2nA ⊕0

)=V T (
ST

A ⊕ST
B

)(
R2nA ⊕0

)
⇐⇒ JST U

(
R2nA ⊕0

)= ST U
(
R2nA ⊕0

)⇐⇒ JSTV= STV ,

(53)

which shows that STV is indeed complex.

4. Application to the Partial Trace of a Density Operator

Let ρ̂ be a density operator on L2(Rn) with Wigner distribution ρ. Thus ρ̂ is of trace class with
trace Tr(ρ̂) = 1 and is positive semidefinite: ρ̂ ≥ 0. Using the spectral theorem there exists a
sequence (ψ j ) j of orthonormal functions in L2(Rn) and a sequence of nonnegative numbers
(λ j ) j summing up to one such that

ρ̂ =∑
j
λ j |ψ j 〉〈ψ j | ;

the Wigner distribution of ρ̂ is then the convex sum ρ = ∑
j λ j Wψ j where Wψ j is the usual

Wigner transform of ψ j . Assume now that ρ is a Gaussian function

ρ(z) = 1

(2π)n
p

detΣ
e−

1
2Σ

−1z·z (54)

where the covariance matrixΣ is a symmetric positive definite real 2n×2n matrix. Such a function
is the Wigner distribution of a density operator if and only if the quantum condition

Σ+ iħ
2

J ≥ 0 (55)

holds [5, 7, 13]; this condition ensures us that ρ̂ ≥ 0. Let

Ω=
{

z ∈R2n :
1

2
Σ−1z · z ≤ 1

}
(56)

be the covariance ellipsoid of ρ̂. Condition (55) is equivalent to the geometric condition [5]

There exists S ∈ Sp(n) such that S(B 2n(
p
ħ)) ⊂Ω . (57)

Let us now define the partial trace

ρA(zA) =
∫
RnB

ρ(zA , zB )dzB (58)

and denote by ρ̂A the Weyl operator (2πħ)nA OpW(ρA) with symbol ρA . While it is clear that
ρ̂A satisfies Tr(ρ̂A) = 1 it is not immediately obvious that the positivity condition ρ̂A ≥ 0 holds,
i.e. that ρ̂A is a density operator. This actually immediately follows from Theorem 3: setting
M = ħ

2Σ
−1, we have

ρ(z) = (πħ)−n(det M)1/2e−
1
ħ M z2

(59)

and a straightforward calculation of Gaussian integrals shows that

ρA(zA) = (πħ)−nA (det M/MBB )1/2e−
1
ħ (M/MBB )z2

A . (60)

Moreover, the covariance ellipsoid

ΩA = {zA : (M/MBB )z2
A ≤ħ} (61)
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is the orthogonal projectionΠAΩ onR2nA of the covariance ellipsoidΩ of ρ̂ (cf. Lemma 2). In view
of (57) Ω contains a ball S(B 2n(

pħ)), and by Theorem 3 ΩA also contains a ball S A(B 2nA (
pħ)).

Hence, by (57) ΣA = ħ
2 (M/MBB )−1 satisfies the quantum condition

ΣA + iħ
2

J A ≥ 0 (62)

and we conclude that ρ̂A is a quantum state.
Conversely, if Theorem 3 does not hold, ΩA = ΠAΩ does not contain a symplectic ball, and

by (57) ΣA does not satisfy the quantum condition (55). Hence, ρ̂A will not be a quantum state.
We conclude that, in view of the relation between (55) and (57), our main result (and thus the

Abbondandolo and Matveyev theorem) is equivalent to the statment:

Any partial trace of a Gaussian quantum state is another Gaussian quantum state.

the proof of which usually requires the use of the rather complicated KLM (Kastler–Loupias–
Miracle–Sole) conditions [6].

5. Perspectives and Remarks

A first natural question that arises is whether Theorem 3 can be extended in some way to non-
linear symplectic mappings, that is to general symplectomorphisms of (R2n ,σ). The first answer
is that there are formidable roadblocks to the passage from the linear to the nonlinear case, as
shortly mentioned in the Introduction. For instance, Abbondandolo and Matveyev [3] show,
elaborating on ideas of Guth [9], that for every ε > 0 one can find a symplectomorphism f of
(R2n ,σ) defined near B 2n(0,1) such that

Vol(ΠV f (B 2n(0,1)) < ε.

They however speculate in [3] that their projection result might still hold true when the linear
symplectic automorphism S ∈ Sp(n) is replaced with a symplectomorphism f of (R2n ,σ) close to
a linear one.

The conjecture that (1) holds true when S is replaced by a nonlinear symplectomorphism
which is sufficiently close to a linear one has been recently proved in [2] in the case dimV = 4
and, in general in Corollary 3 of [1].

It would be interesting to apply our methods to tackle this difficult problem. In particular, it
would be interesting to know whether the main result of our paper also generalizes to nonlinear
symplectomorphism: Is it true that if the symplectomorphism f is close enough to a linear one,
then the set ΠA( f (B(R))) contains the image of the ball of radius R in R2nA by a (nonlinear)
symplectomorphism of R2nA ?

Also, Theorem 3 could be used to shed some light on packing problems which form a notori-
ously difficult area of symplectic topology (see the review [12] by Schlenk).

Given the partitioning R2n =R2nA ⊕R2nB it seems natural to expect some connection between
orthogonal projections of symplectic balls and the separability/entanglement problem in quan-
tum mechanics [7, 11, 14]. We intend to address this problem in a future work.
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