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Abstract. We show that by working over the absolute base S (the categorical version of the sphere spectrum)
instead of S[±1] improves our previous Riemann–Roch formula for SpecZ. The formula equates the (integer
valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms
with base 2) and the number 1, thus confirming the understanding of the ring Z as a ring of polynomials in
one variable over the absolute base S, namely S[X ],1+1 = X +X 2.

Résumé. Nous montrons que l’utilisation de la base absolue S (la version catégorique du spectre en sphère)
au lieu de S[±1], améliore notre formule de Riemann–Roch précédente pour SpecZ. La formule calcule la
caractéristique d’Euler (à valeur entière) d’un diviseur d’Arakelov comme la somme du degré du diviseur (en
utilisant des logarithmes de base 2) et le nombre 1, confirmant ainsi la compréhension de l’anneauZ comme
un anneau de polynômes en une variable sur la base absolue S,à savoir S[X ],1+1 = X +X 2.
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1. Introduction

In [2] we proved a Riemann–Roch formula for SpecZ working over the spherical extension
S[±1] := S[µ2,+] of the absolute base S. The proof of that result is based on viewing the ring
Z as a ring of polynomials1 with coefficients in S[±1] and generator 3 ∈ Z. In the present paper
we show that by working over the absolute baseS itself, one obtains the following Riemann–Roch
formula.

Theorem 1. Let D be an Arakelov divisor on SpecZ. Then2

dimSH 0(D)−dimSH 1(D) =
⌈

deg2 D
⌉′
+1. (1)

∗Corresponding author.
1More precisely every integer is uniquely of the form P (X ) where P is a polynomial with coefficients in {−1,0,1} and

X = 3, the presentation is given by 1+1 = X −1.
2We use the notation deg2 := deg/log2.
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Here ⌈x⌉′ denotes the right continuous function which agrees with the function ceiling(x) for x > 0
non-integer, and with –ceiling(−x) for x < 0 non-integer (see Figure 1).

The proof of (1) follows the same lines as the proof of the Riemann–Roch formula in [2], and
views Z as a ring of polynomials3 over S with generator −2. It greatly improves this earlier result
as follows:

(1) The term 1L involving the exceptional set L in the earlier formula is now eliminated.
(2) Formula (1) displays a perfect analogy with the Riemann–Roch formula holding for

curves of genus 0.
(3) The canonical divisor K =−2{2} has integral degree deg2(K ) =−2.

2. Working over the absolute baseS

We let Γop be the opposite of the Segal category (see [3, Chpt. 2] and [1]), it has one object k+ =
{∗,1, . . . , k} for each integer k > 0, and the morphisms are morphisms of pointed sets. Covariant
functors Γop −→ Sets∗ and their natural transformations determine the category ΓSets∗ of Γ-
sets (aka S-modules). When working over the spherical monoidal algebra S[±1] of the (pointed)
multiplicative monoid {±1}, the natural S[±1]-module associated to a norm on an abelian group
A is (k ∈N, λ ∈R)

∥H A∥λ(k+) :=
{

a ∈ Ak
∣∣∣∑∣∣a j

∣∣≤λ}
. (2)

The above formula is applied at the archimedean place, for subgroups A ⊂R and with |·| denoting
the euclidean absolute value. If S[±1] is replaced by the base S, there is a more basic definition
of an S-module associated to an arbitrary subset X ⊂ A containing 0 ∈ A

Lemma 2. Let A be an abelian monoid with 0 ∈ A. Let X ⊂ A be a subset containing 0. The
following condition defines a subfunctor of the S-module H A

(H A)X (k+) :=
{

a ∈ Ak

∣∣∣∣∣∑Z a j ∈ X , ∀ Z ⊂ k+

}
⊂ X k . (3)

Proof. By construction (H A)X (k+) is a subset of H A(k+) containing the base point a j = 0, ∀ j .
Let φ : k+ → m+ be a map preserving the base point ∗, we shall show that φ∗((H A)X (k+)) ⊂
(H A)X (m+). Let a ∈ (H A)X (k+). For any ℓ ∈ m+, ℓ ̸= ∗, one has

φ∗(a)(ℓ) = ∑
φ−1(ℓ)

a j =
∑
Zℓ

a j , Zℓ :=φ−1(ℓ).

It follows from (3) that φ∗(a)(ℓ) ∈ X for all ℓ and that for any pointed subset Z ′ ⊂ m+∑
ℓ∈Z ′

φ∗(a)(ℓ) =∑
Z

a j ∈ X , Z =∪ℓ∈Z ′ Zℓ.

This proves that φ∗((H A)X (k+)) ⊂ (H A)X (m+). □

Next proposition shows that for X = [−λ,λ] ⊂ R a symmetric interval, the S-module (HR)X is
a module over the S-algebra ∥HR∥1.

Proposition 3. Let λ> 0, X = [−λ,λ] ⊂R a symmetric interval and (HR)X as in (3). Then

(HR)X (k+) =
{

a ∈Rk

∣∣∣∣∣ ∑
a j >0

a j ≤λ,
∑

a j <0

(−a j
)≤λ}

(4)

Moreover, the module action of the S-algebra HR on itself by multiplication induces an action of
the S-algebra ∥HR∥1 on the module (HR)X .

3Every integer is uniquely of the form P (X ) where P is a polynomial with coefficients in {0,1} and X = −2, the
presentation is 1+1 = X +X 2.
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Proof. The condition (4) is fulfilled by all elements of (HR)X (k+) since it involves sums on subsets
of k+. Conversely if a ∈Rk fulfills (4) and Z ⊂ k+ let

Z+ := {
j ∈ Z

∣∣a j > 0
}

, Z− := {
j ∈ Z

∣∣a j < 0
}

One has 0 ≤∑
Z+ a j ≤λ, 0 ≥∑

Z− a j ≥−λ and thus −λ≤∑
Z a j ≤λ.

To prove the second statement, let Y = k+,Y ′ = k ′+ be finite pointed sets and consider the map
given by the product

m : ∥HR∥1(Y )∧ (HR)X
(
Y ′)→ (HR)

(
Y ∧Y ′)

It associates to (αi ) ∈ ∥HR∥1(Y ),
∑ |αi | ≤ 1 and (a j ) ∈ (HR)X (Y ′) the doubly indexed b := (bi , j ),

bi , j =αi a j and one needs to show that b ∈ (HR)X (Y ∧Y ′). Let

Y+ = {i ∈ Y | αi > 0} , Y− = {i ∈ Y | αi < 0} , Y ′
+ = {

j ∈ Y ′ ∣∣ a j > 0
}

, Y ′
− = {

j ∈ Y ′ ∣∣ a j < 0
}

By the rule of signs the pairs (i , j ) for which bi , j > 0 form the union Y+×Y ′+∪Y−×Y ′− so that one
gets ∑

bi , j >0
bi , j =

∑
Y+×Y ′+

αi a j +
∑

Y−×Y ′−
(−αi )

(−a j
)=∑

Y+
αi

∑
Y ′+

a j +
∑
Y−

(−αi )
∑
Y ′−

(−a j
)≤λ

using (4) for the sums over the a j together with the inequality
∑

Y+ αi +∑
Y− (−αi ) ≤ 1 (since∑ |αi | ≤ 1). One treats in a similar way the sum over the negative bi , j . □

In general, letσ ∈ Homop
Γ

(k+,1+) withσ(ℓ) = 1∀ ℓ ̸= ∗ andδ( j ,k) ∈ Homop
Γ

(k+,1+), δ( j ,k)(ℓ) :=
1 if ℓ= j , δ( j ,k)(ℓ) :=∗ if ℓ ̸= j .
Given an S-module F and elements x, x j ∈F (1+), j = 1, . . . , k, one writes

x =∑
j

x j ⇐⇒∃ z ∈F (k+) s.t. F (σ)(z) = x, F
(
δ( j ,k)

)
(z) = x j , ∀ j . (5)

A tolerance relation R on a set X is a reflexive and symmetric relation on X . Equivalently, R is
a subset R ⊂ X × X which is symmetric and containing the diagonal. We shall denote by T the
category of tolerance relations (X ,R). Morphisms in T are defined by

HomT

(
(X ,R), (X ′,R′)

)
:= {

φ : X → X ′, φ(R) ⊂R′} .

We denote T∗ the pointed category under the object {∗} endowed with the trivial relation. A
tolerant S-module is a pointed covariant functor Γop −→T∗ ([2]). We recall below the definition
of their dimension.

Definition 4 ([2]). Let (E ,R) be a tolerant S-module. A subset F ⊂ E(1+) generates E(1+) if the
following two conditions hold

(1) For x, y ∈ F , with x ̸= y =⇒ (x, y) ∉R

(2) For every x ∈ E(1+) there existsα j ∈ {0,1}, j ∈ F and y ∈ E(1+) such that y =∑
F α j j ∈ E(1+)

in the sense of (5), and (x, y) ∈R.

The dimension dimS(E ,R) is defined as the minimal cardinality of a generating set F .

3. Dimension of H 0 overS

Let m ∈N, and Im = [−m,m]∩Z. Next lemma follows from (5) and Definition 4.

Lemma 5. The dimension dimS((HZ)Im ) is the smallest cardinality of a subset G ⊂ Im such that
for any j ∈ Im there exists a subset Z ⊂G with

∑
Z i = j and

∑
Z ′ i ∈ Im for any Z ′ ⊂ Z .
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The number of elements of Im is 2m +1 and the number of subsets of G is 2#G , thus one has
the basic inequalities

#G ≥ log2(2m +1) > log2(2m), dimS((HZ)Im ≥ ⌈
log2(m)

⌉+1. (6)

Here x 7→ ⌈x⌉ denotes the ceiling function which associates to x the smallest integer > x. For
m = 1 one needs the two elements {−1,1} to generate, while for m = 2 one selects the three
elements {−2,1,2}. For m = 3 one takes the three elements {−3,1,2} while for m = 4 one takes
the 4 elements {−3,−1,1,3}.

In general, one uses the following result.

Lemma 6. Let n ∈N and I := [−a, a] ⊂Z, where 2n−1 ≤ a < 2n .

(i) If n > 4 there exist n distinct elements α j ∈ (0, a) such that
∑
α j = a and that any element

z ∈ [0, a] can be written as a partial sum z =∑
Z α j .

(ii) The minimal number of S-generators of (HZ)I is n +1.

Proof. (i) We have
∑n−1

0 2 j = 2n −1 ≥ a and σ := ∑n−2
0 2 j = 2n−1 −1 < a. The idea is to adjoin to

the set T := {2 j | 0 ≤ j ≤ n−2}, whose cardinality is n−1 and whose sum isσ< a, another element
a−σ so that the full sum is a. The first try is by taking F = T ∪ {a−σ}. Assume first that a−σ ∉ T .
The partial sums obtained from F are the union of the interval [0,σ] with the interval [a −σ, a]
and these two intervals cover [0, a], since a−σ+σ= a while a−σ≤σ+1. If a−σ ∈ T one has for
some k ≥ 0 that a =σ+2k . To avoid the repetition we adopt the following rules for 2n−1 ≤ a < 2n

(Case 1) If a = 2n−1 we let F := {2 j | 0 ≤ j ≤ n −3}∪ {2n−2 −2}∪ {3}
(Case 2) If a ̸= 2n−1 and a −σ ∈ T , let F := {2 j | 0 ≤ j ≤ n −3}∪ {2n−2 −1}∪ {a −σ+1}
(Case 3) If a ̸= 2n−1 and a −σ ∉ T , let F := T ∪ {a −σ}

Since by hypothesis n > 4 one has 2n−2 − 2 > 2n−3, so in Case 1. one gets #F = n and the
sum of elements of F is a = 2n−1. The partial sums of elements of {2 j | 0 ≤ j ≤ n − 3} cover
the interval J = [0,2n−2 − 1]. By adding 2n−2 − 2 to elements of J one obtains the interval
J +2n−2−2 = [2n−2−2,2n−1−3] whose union with J is [0,2n−1−3], then by imputing the element
3 ∈ F one sees that the partial sums cover [0, a].

In Case 2. one obtains similarly #F = n since a −σ+ 1 ∉ T and the sum of elements of F is
σ+a−σ= a. The partial sums of elements of {2 j | 0 ≤ j ≤ n−3} cover the interval J = [0,2n−2 −1]
and using 2n−2−1 added to elements of J one obtains the interval J +2n−2−1 = [2n−2−1,2n−1−2]
whose union with J is J ′ = [0,2n−1 −2] = [0,σ−1]. Adding a −σ+1 to J ′ one obtains the interval
J" = [a −σ+1, a]. Since a −σ ∈ T one has a −σ≤ 2n−2, hence a −σ+1 ≤σ−1, so that the lowest
element of J" belongs to J ′ and J ′∪ J" = [0, a].

In Case 3. the partial sums of elements of F cover [0, a] as explained above.
(ii) Let k be the minimal number ofS-generators of (HZ)I . By (6) one has k ≥ n+1. It remains

to show that there exists a generating set of cardinality n + 1. We assume first that n > 4 and
thus, by (i ), let α j ∈ (0, a) be n distinct elements fulfilling (i ). Let F = {−a}∪ {α j } ⊂ [−a, a]. By
construction #F = n +1. To show that F is an S-generating set of (HZ)I one needs to check the
conditions of Lemma 5. By construction the sum of positive elements of F is a and the sum of its
negative elements is −a thus any partial sum of elements of F belongs to I = [−a, a]. Moreover
the partial sums of positive elements of F cover the interval [0, a] by (i ), and using the element
−a one covers I = [−a, a].
For n ≤ 4 one has a ≤ 15 and one can list generating sets of cardinality n +1 as follows

{−1,1}, {−3,1,2}, {−6,1,2,3}, {−7,1,2,4}, {−10,1,2,3,4}, {−11,1,2,3,5}

{−12,1,2,3,6}, {−13,1,2,3,7}, {−14,1,2,4,7}, {−15,1,2,4,8}

These sets are of the same type as those constructed for n > 4; for the other values one has

{−3,−1,1,3}, {−4,−1,2,3}, {−7,−1,1,2,5}, {−8,−1,1,3,5}.
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The value a = 2 requires 3 generators {−2,1,2} and it is the only one for which the set F of
generators cannot be chosen in such a way that the sum of its positive elements is a and the
sum of its negative elements is −a. One nevertheless checks that all elements are obtained as an
admissible sum. □

Theorem 7. Let D be an Arakelov divisor on SpecZ. If deg(D) ≥ 0 one has

dimSH 0(D) =
⌈

deg2 D
⌉
+1. (7)

Proof. One may assume that D = δ{∞} where δ = deg(D)≧0. One has H 0(D) = (HZ)I where
I = [−eδ,eδ], using the classical relation between the degree of the divisor and the associated
compact subset in adeles4. Let n ∈ N, n ≥ 1, such that 2n−1 ≤ eδ < 2n . The integer part
a of eδ fulfills 2n−1 ≤ a < 2n and one has H 0(D) = (HZ)[−a,a]. Thus, by Lemma 6 one gets
dimSH 0(D) = n + 1. By definition deg2 D := degD/log2. The conditions 2n−1 ≤ eδ < 2n mean
that n−1 ≤ deg2 D < n and show that the least integer > deg2 D is equal to n which proves (7). □

4. Dimension of H 1 overS

We define the following sequence of integers:

j (n) := 1

3
(−2)n − 1

2
(−1)n + 1

6
n ∈N. (8)

The first values of j (n) are then: 0,1,−2,5,−10,21,−42,85,−170,341,−682,1365,−2730, . . .

Lemma 8. Let G(n) = {(−2) j | 0 ≤ j < n}. The map σ from the set of subsets of G(n) to Z defined
by σ(Z ) := ∑

Z j is a bijection with the interval ∆(n) := [ j (k), j (k) + 2n − 1] where k = k(n) :=
2E(n/2)+1, (E(x) = integral part of x).

Proof. The map σ is injective and covers an interval [a,b]. The lower bound a is the sum of
powers a =∑

0≤ℓ< n−1
2

(−2)2ℓ+1 and the upper bound is the sum of powers b =∑
0≤ℓ< n

2
(−2)2ℓ. We

list the first intervals as follows

∆(1) = [0,1], ∆(2) = [−2,1], ∆(3) = [−2,5], ∆(4) = [−10,5], ∆(4) = [−10,21], . . . □

We refer to [2, Appendix A, B], for the interpretation of H 1(D) in terms of the tolerantS-module
(U (1),d)λ, λ = edegD . At level 1 the tolerance relation on the abelian group R/Z is given by the
condition d(x, y) ≤λ.

Proposition 9. Let U (1) be the abelian group R/Z endowed with the canonical metric d of length
1. Let λ ∈R>0, U (1)λ the tolerant S-module (U (1),d)λ. Then

dimSU (1)λ =
{

m if 2−m−1 ≤λ< 2−m ,

0 if λ≥ 1
2 .

(9)

Proof. For λ ≥ 1
2 , any element of U (1)λ = (R/Z,d)λ is at distance ≤ λ from 0, thus one can take

F = ; as generating set since, by convention,
∑

; = 0. Thus dimSU (1)λ = 0. Next, we assume
λ < 1

2 . Let F ⊂ U (1) be a generating set and let k = #F . One easily sees that there are at most
2k elements of the form

∑
F α j j , α j ∈ {0,1}. The subsets {x ∈U (1) | d(x,

∑
F α j j ) ≤ λ} cover U (1),

and since each of them has measure 2λ one gets the inequality 2λ ·2k ≥ 1. Thus k ≥ − logλ−log2
log2 .

When − logλ−log2
log2 = m is an integer, one has λ = 2−m−1. Let F (m) = {(−2)− j | 1 ≤ j ≤ m}. The

minimal distance between two elements of F (m) is the distance between 2−m+1 and −2−m which

4Note that edegD = 2deg2(D)
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Figure 1. Graph of dimSH 0(D)−dimSH 1(D)−1 as a function of deg2 D .

is 3 ·2−m = 6λ. Let us show that F (m) is a generating set. By Lemma 8 any integer q in the interval
∆(m) can be written as q =∑m−1

i=0 αi (−2)i , with αi ∈ {0,1}. One then gets

q · (−2)−m =
m−1∑
i=0

αi (−2)i−m =
m∑

j=1
αm− j (−2)− j .

Let y ∈R/Z, lift y to an element x of the interval (−2)−m[ j (k(m)), j (k(m))+2m) which is connected
of length 1 and is a fundamental domain for the action of Z by translation. Then there exists
an integer q ∈ ∆(m) such that |(−2)m x − q| ≤ 1

2 . Hence d(x, q · (−2)−m) ≤ 2−m−1 = λ. This
proves that F (m) is a generating set (see Definition 4) and one derives dimSU (1)λ = m. Assume
now that − logλ−log2

log2 ∈ (m,m + 1), where m is an integer, i.e. that λ ∈ (2−m−2,2−m−1). For any

generating set F of cardinality k one has k ≥ − logλ−log2
log2 > m so that k ≥ m + 1. The subset

F (m + 1) = {(−2)− j | 1 ≤ j ≤ m + 1} fulfills the first condition of Definition 4 since the minimal
distance between two elements of F (m +1) is 3 ·2−m−1 which is larger than λ< 2−m−1. As shown
above, the subset F (m + 1) is generating for λ = 2−m−2 and a fortiori for λ > 2−m−2. Thus one
obtains dimSU (1)λ = m +1 and (9) is proven. □

5. Riemann–Roch formula

We can now formulate the main result of our paper

Theorem 10. Let D be an Arakelov divisor on SpecZ. Then

dimSH 0(D)−dimSH 1(D) =
⌈

deg2 D
⌉′
+1 (10)

where ⌈x⌉′ is the right continuous function which agrees with ceiling(x) for x > 0 non-integer and
with -ceiling(−x) for x < 0 non-integer (see Figure 1).

Proof. For deg2 D ≥ 0 one has λ = edegD ≥ 1 and hence by (9) one gets dimSH 1(D) = 0, so (10)
follows from Theorem 7. For deg2 D < 0 one has dimSH 0(D) = 0 since the empty set is a
generating set. For deg2 D ∈ [−m −1,−m) where m ∈ N one has, by (9), dimSH 1(D) = m. Thus
the left hand side of (10) is −m while the right hand side is⌈

deg2 D
⌉′
+1 =−m

by definition of the function ⌈x⌉′ as the right continuous function which agrees with ceiling(x) for
x > 0 non-integer and with -ceiling(−x) for x < 0 non-integer. □
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