
Comptes Rendus

Mathématique

Jason McCullough

Prime Ideals and Three-generated Ideals with Large Regularity

Volume 362 (2024), p. 251-255

Online since: 2 May 2024

https://doi.org/10.5802/crmath.544

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.544
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mathématique
2024, Vol. 362, p. 251-255

https://doi.org/10.5802/crmath.544

Research article / Article de recherche
Algebra / Algèbre

Prime Ideals and Three-generated Ideals with
Large Regularity

JasonMcCullough a

a Iowa State University, Department of Mathematics, Ames, IA, USA

E-mail: jmccullo@iastate.edu (J. McCullough)

Abstract. Ananyan and Hochster proved the existence of a function Φ(m,d) such that any graded ideal I
generated by m forms of degree at most d in a standard graded polynomial ring satisfies reg(I ) ≤ Φ(m,d).
Relatedly, Caviglia et. al. proved the existence of a functionΨ(e) such that any nondegenerate prime ideal P of
degree e in a standard graded polynomial ring over an algebraically closed field satisfies reg(P ) ≤Ψ(deg(P )).
We provide a construction showing that both Φ(3,d) andΨ(e) must be at least doubly exponential in d and
e, respectively. Previously known lower bounds were merely super-polynomial in both cases.
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1. Introduction

Let k be a field and let S =k[x1, . . . , xn] be a standard graded polynomial ring. Let I = ( f1, . . . , fm)
be a graded ideal of S. The (Castelnuovo-Mumford) regularity of I is

regS (I ) = min
{

j − i
∣∣TorS

i (I ,k) j ̸= 0
}

.

Originally defined for ideal sheaves via cohomology vanishing by Mumford, this version is due
to Eisenbud and Goto [11]. Since the maximal degree of an element in a minimal generating set
of I is at most reg(I ), finding upper bounds on the regularity of graded ideals is a very active area
of research. Moreover, Bayer and Stillman showed that in the reverse lexicographic order and
in generic coordinates, the regularity of an ideal matches that of its generic initial ideal; thus,
regularity is a proxy for computation complexity.

For arbitrary ideals, regularity can be doubly exponential in terms of the degrees of the
generators and number of variables. In contrast, regularity is well-behaved for defining ideals of
smooth projective varieties [2, Theorem 3.12], [4, Corollary 4], or those with mild singularities [8,
Theorem 0.1]. For reduced and irreducible but possibly singular varieties, defining ideals were
thought to also have well-behaved regularity, as predicted by the Eisenbud–Goto Conjecture,
which holds for curves [13], smooth surfaces [19, 26], three-folds with mild singularities [23], and
arithmetically Cohen–Macaulay varieties [11]. Further results for smooth three-folds [16, 17, 27]
supported the conjecture. Work of Noma [24] and Kwak and Park [18] shows that the regularity
of the structure sheaf of any smooth variety satisfies the bound predicted by the Eisenbud–Goto
Conjecture, and as a result, the conjecture holds for smooth and projectively normal varieties.
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However, counterexamples to the conjecture were constructed by Peeva and the author in [20,
Theorem 1.9]. More precisely, they showed that the regularity of a nondegenerate prime ideal
over an algebraically closed field was not bounded by any polynomial function of its degree (i.e.
multiplicity). Further counterexamples were constructed in [7, Theorem 3.3], [9, Theorem 1.2],
and [14, 3.3, 3.6, 3.8]. Yet, Caviglia et. al. [7, Corollary 5.3] proved the existence of a function
Ψ(e) bounding the regularity of all nondegenerate primes of degree e. It is easy to see that such
a function does not exist even for primary ideals, thus determining the asymptotic growth rate
of the optimal functionΨ(e) is an interesting open problem. In this short note, we show how to
sharpen the best known lower bound forΨ(e), proving that it grows at least doubly exponentially
in e.

Relatedly, Stillman [25, Problem 3.15] conjectured a bound Φ(m,d) on the regularity of a
graded ideal generated by m forms of degree at most d without fixing the number of variables.
The existence of such a bound was first proved by Ananyan and Hochster [1, Theorem D] and
later by Erman, Sam, and Snowden [12, Theorem 4.12]. The previous best lower bounds in the
three-generated case for Φ(3,d) were quadratic [6] or super-polynomial [9] in d . We show that
Φ(3,d) must also be at least doubly exponential in d .

2. Main Results

Three-generated ideals capture almost all of the pathologies seen in arbitrary resolutions, as is
made precise by Bruns’s Theorem [5, Korollar 1]. It is known that three-generated ideals can
have exponentially large projective dimension in terms of the degrees of the generators [3, Corol-
lary 3.6]. For many years, a construction due to Caviglia [6, Example 4.2.1] of a three-generated
ideal with quadratic growth of regularity was the best known lower bound for Φ(3,d). As Eisen-
bud writes in [10, p. 62], “It would be interesting to have more and stronger examples with
high regularity.” The author conjectured that a certain three-generated ideal family exhibited
super-polynomial growth of regularity relative to the degrees of the three generators [21, Con-
jecture 13.9]. Recently, Choe [9, Theorem 1.2] constructed a different such example. Below we
construct a three-generated ideal with doubly exponential growth of its regularity in terms of the
common degree of its minimal generators.

The following is a slight generalization of [9, Proposition 5.1], which in turn generalized [7,
Proposition 7.1]. It shows how to compute invariants of three-generated analogues of arbitrary
graded ideals. We include a proof for completeness.

Proposition 1. Let I = (g0, . . . , gm) be a graded ideal of a standard graded polynomial ring
S = k[x1, . . . , xn] with di = deg(gi ) nondecreasing and d = dm . Let R = S[y, z] and pick integers
s, t ≥ m +d −d0 +1. Set

J =
(

y s , z t ,
m∑

i=0
gi yd−di+i zm−i

)
⊆ R.

Then J is a graded ideal with generators of degree s, t ,m +d. Moreover,

(1) regR (J ) ≥ regS (I )+ s + t −2,
(2) pdR (J ) ≥ pdS (I )+2,
(3) deg(J ) = tm.

Proof. Note that R/J is a finitely generated S-module and that y s−1z t−1(R/J ) ∼= (S/I )(−s − t +2)
as an S-direct summand of R/J . Thus

regR (R/J ) ≥ regS

(
(S/I )(−s − t +2)

)= regS (S/I )+ s + t −2,

or equivalently,
regR (J ) ≥ regS (I )+ s + t −2.
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Similarly, suppose pdS (S/I ) = p. Modding out by a regular sequence of linear forms (extending
the field if necessary), we may assume that depth(S/I ) = 0 so that S/I has a nonzero socle element
w . Clearly y s−1z t−1w is a nonzero socle element in R/J . The result follows by the Auslander–
Buchsbaum Theorem.

For the degree computation, simply note that since
p

J = (y, z) = p, we have deg(J ) = λ(Sp/Jp)
and Sp/Jp has Sp/pSp-basis y i z j for 0 ≤ i ≤ m −1 and 0 ≤ j ≤ t −1. □

As an immediate corollary, we see that finding an explicit answer to Stillman’s Conjecture
reduces to the three-generated case.

Corollary 2. To find an explicit functionΦ(m,d) bounding the regularity of ideals generated by m
forms of degree at most d, it suffices to find an explicit bound Φ(3,d) in the three-generated ideal
case.

We also get a larger lower bound on the possible value of Φ(3,d). Recall that a function
f :N→N isΩ(g (n)) if there is a constant c such that f (n) ≥ c · g (n) for n ≫ 0.

Theorem 3. Let k be a field and fix an integer r ≥ 2. Then there is a standard graded polynomial
ring R over k and a graded ideal J of R generated by 3 forms of degree 22r − 2 with reg(J ) ≥
22r−1 +44r −6. In particular,Φ(3,d) is 22Ω(d)

.

Proof. By [15], there is a polynomial ring S and graded ideal I generated by 22r −3 quadrics with
reg(I ) ≥ 22r−1

. Applying Proposition 1 with m = 22r − 4 and s = t = 22r − 2, we get an ideal J
generated by three forms of degree 22r −2 and reg(J ) ≥ 22r−1 +44r −6. □

We turn now to constructing prime ideals with large regularity. In [20], Peeva and the author
employed Rees-like algebras to create counterexamples of the Eisenbud–Goto Conjecture. After
homogenizing the defining ideals of such algebras, they computed the invariants of the new
standard graded prime ideals in terms of the arbitrary starting ideal. We record the essential
part of their theorem here.

Theorem 4 (McCullough–Peeva [20]). Let k be any field. Let I = ( f1, . . . , fm) be a graded ideal
in the standard graded polynomial ring S = k[x1, . . . , xn]. There is a nondegenerate graded prime
ideal P in the standard graded polynomial ring R = S[y1, . . . , ym ,u1, . . . , um , z, v] satisfying

(1) regR (P ) = regS (I )+2+∑m
i=1 deg( fi ),

(2) degR (R/P ) = 2
∏m

i=1(deg( fi )+1).

The trick to achieving more extreme counterexamples to the Eisenbud–Goto Conjecture is to
feed the Mayr–Meyer ideals, such as Koh’s version [15], into Proposition 1, and moreover to do it
twice, before constructing a Rees-like algebra.

Theorem 5. Over any field k and for any integer r , there exists a standard graded polynomial ring
S and nondegenerate prime ideal P ⊆ S with

deg(P ) = 396r and reg(P ) ≥ 22r−1 +66r +6.

In particular,Ψ(e) is 22Ω(e)
.

Proof. Begin with the ideal J from Theorem 3 which has three generators of degree 22r −2 and
reg(J ) ≥ 22r−1 + 44r − 6. Applying Proposition 1 again with m = 2 and s = t = 3, we get an ideal
J ′ generated by forms of degrees 3,3,22r with reg(J ′) ≥ 22r−1 +44r −2. Applying Theorem 4 to J ′

yields a standard graded prime ideal P with deg(P ) = 396r and reg(P ) ≥ 22r−1 +66r +6. □

In particular, we get counterexamples to the Eisenbud–Goto Conjecture for r ≥ 5.
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We recall that the existence of a functionΦ(m,d) bounding the regularity of an ideal generated
by m forms of degree at most d is equivalent to a function Ψ(e) bounding the regularity of
nondegenerate prime ideals of degree e. GivenΦ(m,d), it follows from [7] that

Ψ(e) ≤ max
{
e2,Φ

(
e,e2)+1

}
.

Similarly, given an explicit functionΨ(e), it follows from [20] that

Φ(m,d) ≤Ψ(
2(d +1)m)

.

There is a parallel version of Stillman’s Conjecture [25] which posits a boundΦpd(m,d) on the
projective dimension of graded ideals generated by m forms of degree at most d . Caviglia showed
that the existence ofΦ(m,d) is equivalent to that ofΦpd(m,d). In fact, he showed that

Φ(m,d) ≤ (2d)2
Φpd(m,d)−2

and

Φpd(m,d) ≤Φ(m,d) ·
Φ(m,d)∑

i=0
m2i .

See [22, Theorem 4] for details. There is yet a fourth functionΨpd(e) bounding the projective
dimension of nondegenerate prime ideals of degree e over an algebraically closed field. Given
Φpd(m,d), it follows from [7, Theorem 5.2] that

Ψpd(e) ≤ max
{
e,Φpd

(
e,e2)−1

}
.

Similarly, givenΨpd(e), it follows from [20, Theorem 1.6] that

Φpd(m,d) ≤Ψpd
(
2(d +1)m)

.

Thus finding explicit formulas for any of Ψ(e),Ψpd(e),Φ(m,d),Φpd(m,d) will yield explicit

formulas for all of the others. Currently the best lower bound estimate forΦpd(3,d) is
p

d
p

d−1
[3,

Corollary 3.6]. Using Theorem 1, we can increase this lower bound as well.

Theorem 6. For any integer r ≥ 1, there is a standard graded ideal I with three generators in
degree 4r +1 with pd(I ) ≥ r 2r . In particular,Φpd(3,d) is (d/5)Ω(d).

Proof. By [3, Corollary 3.7], there is an ideal I with 2r + 1 generators of degree 2r + 1 and
pdS (S/I ) ≥ r 2r . Applying Proposition 1 with m = 2r and s = t = 4r +1 yields an ideal J generated
by three forms of degree 4r +1 and pdR (J ) ≥ r 2r +1. □
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