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1. Introduction.

We work over the field C of complex numbers. The main numerical invariants of an algebraic
surface X are the self-intersection of its canonical class K 2

X and its holomorphic Euler character-
istic χ(OX ). If X is minimal and of general type, the following inequalities are well known to be
satisfied (cf. [1, Chapter VII]):

χ(OX ) ≥ 1, K 2
X ≥ 1, 2χ(OX )−6 ≤ K 2

X ≤ 9χ(OX ). (1)

Minimal algebraic surfaces of general type X such that K 2
X = 2χ(OX )− 6 were already studied

by Enriques [5], [4, Section VIII.11] but they are often called Horikawa surfaces because of
Horikawa’s contribution to their deformation theory [9]. One property of Horikawa surfaces is
that their canonical system is base-point-free and induces a morphism whose image is a surface.
Moreover, this morphism has degree 2 (see Theorem 2). As a consequence, every Horikawa
surface X has aZ2-action generated by the involution that sends a general point of X to the point
with the same image via the canonical map of X . In particular, the group of automorphisms
Aut(X ) of X has a subgroup isomorphic to Z2 and one may wonder whether this subgroup is
proper or not when X is sufficiently general.

It is known that under some ampleness and generality assumptions, the group of automor-
phisms of a surface that can be realized as an abelian G-cover is precisely the group G (see [6]
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or [14]). Since Horikawa surfaces can be realized as Z2-covers via their canonical map, one
could expect the group of automorphisms of a general Horikawa surface to be Z2. Nevertheless,
Horikawa surfaces do not satisfy the hypothesis of [6, Theorem 4.6] nor [14, Corollary B] and, to
the best of the author’s knowledge, there is no reference allowing to prove this in a straightforward
way.

Given an admissible pair (K 2,χ), i.e. a pair of integers satisfying the inequalities (1), let us
denote by MK 2,χ Gieseker’s moduli space of canonical models of surfaces of general type with
fixed self-intersection of the canonical class K 2 and fixed holomorphic Euler characteristic χ.
The aim of this note is to prove the following:

Theorem 1. Let (K 2,χ) be an admissible pair such that K 2 = 2χ− 6. Then every irreducible
component of MK 2,χ contains an open subset consisting of surfaces with group of automorphisms
isomorphic to Z2.

The proof of Theorem 1 is based on the following idea. Let X be a smooth surface with an
involution τ that induces a Z2-cover X → X /〈τ〉 with building data {L,B} (see Section 3). Then
every automorphismσof X that commutes with τ induces an automorphismσof X /〈τ〉 such that
σ(B) = B . Hence, if τ were in the center of Aut(X ) and there were no non-trivial automorphism
of X /〈τ〉 leaving B invariant, it would follow that Aut(X ) = 〈τ〉 ≃ Z2. This idea is simple and
familiar to experts on the topic but there are several technical details that have to be worked
out. Furthermore, even if some of these technical details are somehow expected, as far as the
author knows they have not been written down elsewhere and they are interesting on their own.

The paper is structured as follows. Section 2 contains the results about Horikawa surfaces
that will be needed throughout the note. In Section 3 it is explained how to construct simple
cyclic covers and to obtain information about them. An elementary criterion for a surface that
can be realized as a degree n simple cyclic cover to have group of automorphisms isomorphic
to Zn is included. Section 4 contains a well known upper semicontinuity theorem for families
of stable curves. A proof of this theorem is included for lack of a reference. Section 5 consists
of a series of results about simply connected algebraic surfaces that will be needed to prove
Theorem 1. Section 6 is devoted to prove Theorem 1 making use of the tools developed in the
previous sections.

2. Horikawa surfaces on the line K 2 = 2χ−6

This section collects the results about Horikawa surfaces that will be needed throughout the note.

Theorem 2 ([9, Lemma 1.1]). Let X be a minimal algebraic surface with K 2
X = 2χ(OX )− 6 and

χ(OX ) ≥ 4. Then the canonical system |KX | has no base point. Moreover, the canonical map
ϕKX : X →Ppg (X )−1 is a morphism of degree 2 onto a surface of degree pg (X )−2 in Ppg (X )−1.

Theorem 3 ([9, Theorem 3.3, Theorem 4.1 and Theorem 7.1]). Let (K 2,χ) be an admissible pair
such that K 2 = 2χ−6. If K 2 ∉ 8·Z then MK 2,χ has a unique irreducible component. If K 2 ∈ 8·Z then
MK 2,χ =MI

K 2,χ
⊔MI I

K 2,χ
has two irreducible connected components. The image of the canonical

map of a surface in MI
K 2,χ

is Fe for some e ∈ {0,2, . . . , 1
4 K 2}. The image of the canonical map of

a surface in MI I
K 2,χ

is F 1
4 K 2+2 if K 2 > 8 and P2 or a cone over a rational curve of degree 4 in P4 if

K 2 = 8.

3. Simple cyclic abelian covers

Let Y be a smooth surface. Suppose there exist a line bundle L and an effective divisor B on
Y such that B ∈ |nL|. We denote by V (L) the total space of the bundle L, by π : V (L) → Y the
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bundle projection and by t ∈ H 0(V (L),π∗L) the tautological section. If s ∈ H 0(Y ,nL) is a section
vanishing exactly along B , then the zero divisor X of the section t n −π∗s ∈ H 0(V (L),π∗(nL))
defines a surface in V (L). Moreover, if we denote by µ a primitive n-root of unity, the map
τ : t 7→ µ · t induces a Zn-action on X such that f := π|X can be realized as the quotient map
X → X /Zn ≃ Y . The morphism f : X → Y is said to be a simple cyclic cover of degree n with
branch locus B (see [1, Section I.17]). The set {L,B} is known as the building data of the simple
cyclic cover.

Simple cyclic covers are a special type of abelian cover. Let G be a finite abelian group. A
G-cover of a surface Y is a finite map f : X → Y together with a faithful action of G on X such
that f exhibits Y as X /G . Abelian covers in general were first studied by Pardini [17] but simple
cyclic covers were already considered by Comessatti [3]. Other references where particular types
of covers were studied are [2, 16, 18] or [19].

In this note we are mainly interested in Z2-covers. Since every Z2-cover is simple cyclic and
some of the results needed to prove Theorem 1 can be easily generalized to simple cyclic covers,
we will also deal with this type of covers.

Remark 4. Let f : X → Y be a simple cyclic cover of degree n with branch locus B . Note that if
the Picard group of Y has no n-torsion then the line bundle L can be deduced from the divisor
B . In this note we are only going to consider covers of simply connected surfaces, for which the
Picard group has no torsion (cf. [15, Remark 3.10]).

Remark 5. Let f : X → Y be a simple cyclic cover of degree n with branch locus B . If Y is smooth,
then X is smooth if and only if B is smooth (cf. [1, Section I.17] or [17, Proposition 3.1]) and in
this case we will say that f : X → Y is a smooth simple cyclic cover.

Proposition 6 ([17, Proposition 4.2]). Let Y be a smooth surface and f : X → Y a smooth degree
n simple cyclic cover with building data {L,B}. Then:

KX ≡ f ∗(KY + (n −1)L),

K 2
X = n(KY + (n −1)L)2,

pg (X ) = pg (Y )+
n−1∑
i=1

h0(KY + i L),

χ(OX ) = nχ(OY )+ 1

2

n−1∑
i=1

i L(i L+KY ).

Remark 7. Let Y be a smooth surface and let us consider a smooth simple cyclic cover f : X → Y
of degree n with building data {L,B}. Let us assume that

h0(KY ) = h0(KY +L) = ·· · = h0(KY + (n −2)L) = 0.

Then KX = f ∗(KY +(n−1)L) and pg (X ) = h0(KY +(n−1)L) =: N by Proposition 6. If we denote by
i : Y 99K PN−1 the (possibly rational) map defined by the complete linear system |KY + (n −1)L|,
it follows that i ◦ f is the map induced by the complete linear system |KX |, i.e. it is the canonical
map of X . In particular i (Y ) is the canonical image of X .

Remark 8. Let D be an effective divisor on Y . In what follows we will denote by Aut(Y ,D) the
subset of Aut(Y ) consisting of automorphisms h of Y such that h(D) = D .

The following result is clearly inspired by [13, Lemma 5.3] and [14]. Although it is probably
well known, a proof is included for lack of a reference.
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Theorem 9. Let Y be a smooth surface and f : X → Y a degree n ≥ 2 simple cyclic cover with
building data {L,B} such that the branch locus B is a general member of the linear system |nL|.
Suppose that the map defined by the complete linear system |KY + (n −1)L| is birational and that

h0(KY ) = h0(KY +L) = ·· · = h0(KY + (n −2)L) = 0.

If we denote by τ an order n automorphism of X such that f can be realized as the quotient of X by
the action of 〈τ〉 ≃Zn , then:

(i) 〈τ〉 ≃Zn is a normal subgroup of Aut(X );
(ii) 〈τ〉 ≃Z2 is in the center of Aut(X ) if n = 2;

(iii) Aut(X ) = 〈τ〉 ≃Zn if Aut(Y ,B) = {1}.

Proof. First of all, it follows from Remark 7 that the canonical mapΦ of X is the composition of f
with the mapΨ induced by the complete linear system |KY +(n−1)L|. In particular,Φ has degree
deg(Φ) = n becauseΨ is birational.

Let us consider the Galois group G = {g ∈ Aut(X ) :Φ◦ g =Φ} ofΦ. On the one hand, 〈τ〉 ≃Zn is
contained in G . Given that the order of G is at most deg(Φ) = n, we infer that G = 〈τ〉 ≃Zn . On the
other hand, G coincides with {g ∈ Aut(X ) : g∗C =C for every C ∈ |KX |} and this is clearly a normal
subgroup of Aut(X ). Hence, we conclude that 〈τ〉 ≃ Zn is a normal subgroup of Aut(X ). If n = 2,
then 〈τ〉 ≃Z2 is in the center of Aut(X ) because order 2 normal subgroups are always central.

That being said, we deduce from the fact that 〈τ〉 ≃ Zn is normal in Aut(X ) that h induces
an automorphism h of X /Zn ≃ Y for every h ∈ Aut(X ). Moreover, denoting by R = ( f ∗B)red the
ramification of f , I claim that h(R) = R and therefore h(B) = B . Indeed, let T = fix(τ) be the
set of points fixed by τ. Then the set fix(hτh−1) of points fixed by hτh−1 is equal to h(T ). Now,
since G is normal, there exists an integer k coprime to n such that hτh−1 = τk and therefore
h(T ) = fix(hτh−1) = fix(τk ) = T . We conclude that h(R) = R because R is the divisorial part of
T . As a consequence, h(B) = B . If besides Aut(Y ,B) = {1}, then h is the trivial automorphism of
Y ≃ X /Zn and therefore h belongs to 〈τ〉 ≃Zn . Thus, Aut(X ) = 〈τ〉 ≃Zn in this case. □

4. Automorphisms of a family of stable curves

Let f : X → B be a fibration, i.e. a proper and surjective morphism with connected fibers from
a surface X to a smooth connected curve B . As in [6] we will denote by AutX /B the B-scheme of
automorphisms of the fibers of f . In particular, the fiber of AutX /B → B over b ∈ B is isomorphic
to the group of automorphisms of the fiber of f over b. The aim of this section is to prove the
following:

Theorem 10. Let X →∆ be a genus g ≥ 2 fibration over the unit disc ∆⊂C such that X is smooth
and Xt is a stable curve for every t ∈∆. Then AutX /∆ →∆ is proper and the map sending t ∈∆ to
the order of the group of automorphisms of Xt is an upper semicontinuous function.

This result is well known but we include a proof, that was pointed out to the author by Rita
Pardini, for lack of a reference.

Proof of Theorem 10. Denoting∆∗ =∆\{0} and X ∗ =X \X0, the properness of AutX /∆→∆will
follow if we show that every section of AutX ∗/∆∗ → ∆∗ can be extended uniquely to a section of
AutX /∆ → ∆ by the valuative criterion of properness. Let σ be a section of AutX ∗/∆∗ → ∆∗ and
denote by σ̂ : X 99KX the birational map induced by σ. Suppose that σ̂ cannot be extended to
a morphism and consider a minimal sequence of blow-ups ε : X ′ → X such that f := σ̂ ◦ ε is a
morphism. Write

KX ′ = f ∗KX +
r∑

i=1
Ei
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where each Ei , i ∈ {1, . . . , r } is an f -exceptional curve. By construction the last irreducible (−1)-
curve Γ arising from ε is not contracted by f and so Γ

∑r
i=1 Ei ≥ 0 because Γ is not a component

of
∑r

i=1 Ei . In addition, since Xt is a stable curve for every t ∈ ∆ the divisor KX is relatively nef
and Γ f ∗KX ≥ 0. We conclude that:

−1 = ΓKX ′ = Γ f ∗KX +Γ
r∑

i=1
Ei ≥ 0,

which is a contradiction. Hence we can assume σ̂ to be a morphism because it can be extended
to X . Moreover, this extension is unique because X ∗ is an open and dense subset of X .
Since AutX /∆ → ∆ has finite fibers because Xt is a stable curve for every t ∈ ∆, there exists
an integer m > 0 such that (σ̂|X ∗ )m is the trivial automorphism and therefore σ̂m is the trivial
automorphism on X . In particular, σ̂ is an automorphism and σ can be extended uniquely to a
section of AutX /∆→∆. It follows that AutX /∆→∆ is proper.

Write AutX /∆ = Y ⊔ Z where Y is the union of the 1-dimensional components of AutX /∆

and Z consists of isolated points. Then the restriction Y → ∆ of AutX /∆ → ∆ to Y is flat by [8,
Proposition III.9.7]. Moreover, Y → ∆ is étale. Indeed, by [8, Exercise III.10.3] it suffices to show
that Y →∆ is unramified, but this is clear since Aut(Xt ) is reduced (because it is a complex group
scheme) and finite (because Xt is a stable curve) for every t ∈ ∆. In particular, the cardinality
#Yt of the fibers of Y → ∆ is constant for every t ∈ ∆ (cf. [7, Corollary to Proposition 3.13]). The
semicontinuity of the map sending t ∈∆ to the order |Aut(Xt )| of the group of automorphisms of
Xt follows taking into account that:

(i) |Aut(Xt )| = #Yt if Z is disjoint from the fiber of AutX /∆→∆ over t ∈∆;
(ii) |Aut(Xt )| > #Yt otherwise. □

5. Simply connected algebraic surfaces.

In this section we gather some results about simply connected algebraic surfaces that will be
needed to prove Theorem 1. They will come up as corollaries of the following:

Theorem 11. Let S be a smooth and simply connected algebraic surface andΛ a very ample linear
system on S such that the general curve in Λ has genus ≥ 3 and is non-hyperelliptic. Then there
exists a dense open subset ofΛ consisting of curves without non-trivial automorphisms.

Proof. By [10, 10.6.18] all but at most finitely many of the curves in a general 1-dimensional
linear subspace of Λ have no non-trivial automorphisms. Therefore a general element of Λ has
no non-trivial automorphism. □

As a consequence we obtain the following (see Remark 8):

Corollary 12. Let Fe be the Hirzebruch surface with negative section ∆0 of self-intersection (−e)
and fiber F . Then a general member D of the linear system |a∆0 +bF | with a > 2,b > max{ae, (a −
1)e +2} satisfies Aut(Fe ,D) = {1}.

Proof. First of all, the linear system |a∆0+bF | is very ample by [8, Corollary V.2.18]. On the other
hand, by the Adjunction Formula

KD ≡ (
KFe +D

) |D ≡ (
(a −2)∆0 + (b −2−e)F

)∣∣
D .

Since (a − 2)∆0 + (b − 2 − e)F is very ample again by [8, Corollary V.2.18], we have that KD is
very ample and therefore D is a non-hyperelliptic curve of genus greater than 2. Therefore we
can apply Theorem 11 to the smooth and simply connected surface Fe and the linear system
|a∆0 +bF | to conclude that D has no non-trivial automorphisms.
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Let us consider h ∈ Aut(Fe ,D). We are going to show that it is necessarily the trivial automor-
phism of Fe . Firstly, h|D is an automorphism of D and therefore it is trivial. Hence D belongs to
the fixed locus of h and a general fiber F of Fe has at least F D = a points fixed by h. Then F and
h(F ) are irreducible curves such that F ·h(F ) ≥ F D = a > 2 and 0 = F 2 = h(F )2. I claim that this
yields h(F ) = F . Indeed, if e ̸= 0 the only irreducible self-intersection 0 curves of Fe are the ele-
ments of |F |. If e = 0 the only irreducible self-intersection 0 curves of Fe are the elements of the
pencils |F | and |∆0|. In both cases the fact that F contains a > 2 fixed points implies h(F ) = F . It
follows that h|F is an automorphism of F ≃ P1 with at least a > 2 fixed points. We conclude that
h|F is the trivial automorphism of F . As a consequence h is trivial in an open and dense subset of
Fe and it must be the trivial automorphism. □

Corollary 13. Let F2k+2 be the Hirzebruch surface with negative section ∆0 of self-intersection
−(2k+2) and fiber F . If k ≥ 1 then a general member D of the linear system |OF2k+2 (5∆0+10(k+1)F )|
satisfies Aut(F2k+2,D) = {1}. In particular Aut(F2k+2,∆0 +D) = {1}

Proof. Let us denote by |Aut(C )| the order of the group of automorphisms of a member C of
the linear system |5∆0 + 10(k + 1)F |. By [6, Corollary 4.5] the map C 7→ |Aut(C )| is an upper
semicontinuous function on the subset of |5∆0 + 10(k + 1)F | consisting of smooth divisors.
Hence, there will be an open and dense subset of curves in |5∆0 +10(k +1)F | without non-trivial
automorphisms as long as the set of smooth curves with this property is not empty. Moreover,
arguing like we did in the proof of Corollary 12 we can show that a divisor C ∈ |5∆0 +10(k +1)F |
without non-trivial automorphisms satisfies Aut(F2k+2,C ) = {1}. Therefore the result will follow if
we find a smooth divisor C ∈ |5∆0 +10(k +1)F | without non-trivial automorphisms.

Now, by Theorem 11 a general curve B ′ ∈ |4∆0+10(k+1)F | has no non-trivial automorphisms.
We can assume B ′ to be smooth and irreducible and to intersect ∆0 transversally in 2(k + 1)
different points. Then it is clear that B = ∆0 + B ′ ∈ |5∆0 + 10(k + 1)F | has trivial group of
automorphisms. Denote by ∆ ⊂ C the unit disc. We can consider a family p : X → ∆ of curves
of |5∆0+10(k+1)F | such that B is the central fiber, the rest of fibers are smooth and X is smooth.
By Theorem 10 the cardinality of the fiber of AutX /∆ → ∆ is an upper semicontinuous function.
Hence, the general fiber of p has trivial group of automorphisms because B does. □

Corollary 14. A general member D of the linear system |OP2 (d)| with d ≥ 4 satisfies Aut(P2,D)
= {1}.

Proof. The proof of this result is analogous to the proof of Corollary 12. □

Corollary 15. Let (S,D) be one of the following pairs:

(i) S is the Hirzebruch surface Fe with e ≥ 0 and D is a general member of the linear system
|a∆0 +bF | with even a ≥ 6 and even b > max{ae, (a −1)e +2,(a −2)e +4}.

(ii) S is the Hirzebruch surface F2k+2 with k ≥ 2 and D is a general member of the linear system
|OF2k+2 (6∆0 +10(k +1)F )|.

(iii) S =P2 and D is a general member of the linear system |OP2 (d)| with even d ≥ 8.

Then Aut(X ) ≃Z2 where X → S is a Z2-cover of S branched along D.

Proof. We know that Aut(S,D) = {1} by Corollary 12, Corollary 13 or Corollary 14 depending on
whether we are in case (i), (ii) or (iii) respectively. The result follows now from Theorem 9(iii)
taking into account that h0(KS ) = 0 and KS + 1

2 D is very ample. □

6. Group of automorphisms of Horikawa surfaces.

The aim of this section is to prove Theorem 1. We will need the following:
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Lemma 16. Let (K 2,χ) be an admissible pair such that K 2 = 2χ−6. Suppose there exists a smooth
surface X ∈ MK 2,χ whose group of automorphisms is isomorphic to Z2 and denote by M the
irreducible component of MK 2,χ containing X . Then the group of automorphisms of a general
surface in M is isomorphic to Z2.

Proof. Let us denote by |Aut(Y )| the order of the group of automorphisms of a surface Y ∈MK 2,χ.
By [6, Corollary 4.5] the map Y 7→ |Aut(Y )| is an upper semicontinuous function on the subset
of M consisting of smooth surfaces. The result follows taking into account that the group of
automorphisms of every Horikawa surface has a subgroup isomorphic to Z2 (see Section 1). □

We are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 16 finding a smooth surface with group of automorphisms
isomorphic to Z2 in each irreducible component of MK 2,χ suffices to prove Theorem 1. The rest
of the proof is devoted to construct such surfaces distinguishing the case χ even from the case χ
odd. Notice that if χ is even then K 2 ∉ 8 ·Z and MK 2,χ has a unique irreducible component by
Theorem 3. If χ is odd it may happen that K 2 ∈ 8 ·Z and MK 2,χ has two irreducible components
by Theorem 3.

Let us begin by assuming that χ is odd. We denote by ∆0 and F the two classes of fibers of
P1 ×P1 and we consider a Z2-cover f : X → P1 ×P1 whose branch locus B is a general member
of the linear system |6∆0 + (χ+ 1)F |. The formulas for simple cyclic covers (see Proposition 6)
yield K 2

X = K 2 and χ(OX ) =χ. Moreover, KX is ample because it is the pullback via f of the ample

divisor ∆0 + χ−3
2 F . Hence, X ∈MK 2,χ and Aut(X ) = Z2 by Corollary 15. Furthermore, if K 2 = 8k

for some integer k ≥ 1 the surface X belongs to MI
8k,4k+3 (see Theorem 3) because its canonical

image is P1 ×P1. Indeed, since ∆0 + χ−3
2 F is not only ample but very ample and h0(KP1×P1 ) = 0

the canonical image of X is P1 ×P1 by Remark 7.
In order to construct a surface with group of automorphisms isomorphic to Z2 in MI I

8k,4k+3
when k ≥ 2 it suffices to consider a Z2-cover f : X → F2k+2 of the Hirzebruch surface F2k+2 with
negative section ∆0 of self-intersection −(2k +2) and fiber F . The branch locus B consists of ∆0

plus a general element of the linear system |5∆0 + 10(k + 1)F |. The formulas for simple cyclic
covers (see Proposition 6) yield K 2

X = 8k and χ(OX ) = 4k +3. Moreover, KX is ample because it
is the pullback via f of the ample divisor ∆0 + (3k +1)F . Hence, X ∈M8k,4k+3 and Aut(X ) = Z2
by Corollary 15. The surface X belongs to MI I

8k,4k+3 (see Theorem 3) because its canonical image
is F2k+2. Indeed, since ∆0 + (3k + 1)F is not only ample but very ample and h0(KF2k+2 ) = 0 the
canonical image of X is F2k+2 by Remark 7.

If k = 1 in the previous example, the canonical divisor of X is not ample. Therefore we need to
construct another surface for this case. Let us consider aZ2-cover f : X →P2 whose branch locus
B is a general member of the linear system |OP2 (10)|. The formulas for simple cyclic covers (see
Proposition 6) yield K 2

X = 8 and χ(OX ) = 7. Moreover, KX is ample because it is the pullback via f
of the ample line bundle OP2 (2). Hence, X ∈M8,7 and Aut(X ) = Z2 by Corollary 15. The surface
X belongs to MI I

8,7 (see Theorem 3) because its canonical image is P2. Indeed, since OP2 (2) is not
only ample but very ample and h0(KP2 ) = 0 the canonical image of X is P2 by Remark 7.

Let us assume now that χ > 4 is even. We consider a Z2-cover f : X → F1 of the Hirzebruch
surface F1 with negative section ∆0 of self-intersection (−1) and fiber F . The branch locus B is a
general element of the linear system |6∆0 + (χ+4)F |. The formulas for simple cyclic covers (see
Proposition 6) yield K 2

X = K 2 and χ(OX ) = χ. Moreover, KX is ample because it is the pullback via

f of the ample divisor ∆0 + χ−2
2 F . Hence, X ∈MK 2,χ and Aut(X ) =Z2 by Corollary 15.

If χ = 4 in the previous example, the canonical divisor of X is not ample. Therefore we need
to construct another surface for this case. Let us consider a Z2-cover f : X → P2 whose branch
locus B is a general element of the linear system |OP2 (8)|. The formulas for simple cyclic covers
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(see Proposition 6) yield K 2
X = 2 and χ(OX ) = 4. Moreover, KX is ample because it is the pullback

via f of the ample line bundle OP2 (1). Hence, X ∈M2,4 and Aut(X ) =Z2 by Corollary 15. □

Remark 17. There are many examples of Horikawa surfaces whose group of automorphisms is
not isomorphic to Z2. Indeed, let (K 2,χ) be an admissible pair such that K 2 = 2χ−6. Then:

- Every irreducible component ofMK 2,χ contains surfaces whose group of automorphisms
has a subgroup isomorphic to Z2

2 by [11, Theorem 1].
- Every irreducible component ofMK 2,χ contains surfaces whose group of automorphisms

has a subgroup isomorphic to Z3 by [12, Theorem 1.1].
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