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1. Introduction

Let K be the function field of a smooth projective geometrically integral curve X over a p-adic
field k. In recent years, Harari–Scheiderer–Szamuely [7] obtained an explicit description of a
cohomological obstruction to weak approximation for K -tori and also related this obstruction
to an unramified cohomology group (called the reciprocity obstruction). In the meantime,
Harari–Szamuely [8] constructed an obstruction to the Hasse principle for K -torsors under tori.
By construction of [8, pp. 16-17 and Theorem 4.1], the obstruction to the Hasse principle is
essentially coming from the global duality for K -tori, and they showed that this obstruction given
by a group determined by “local triviality” is the only one. However, the local triviality condition
increases the difficulty of computing the obstruction. This encourages us to find an obstruction
which is easier to compute.

On the other hand, the reciprocity obstruction is widely used in the investigation of the
Hasse principle and intuitively the obstruction introduced in [8] should be compatible with the
reciprocity obstruction. These known results also motivate us to build a connection between
the obstruction in [8] and the reciprocity obstruction. Moreover, another benefit of this attempt
is that the unramified cohomology group is indeed easier to handle (for example, it vanishes in
several known cases). At this stage, we would like to find out the relation between the obstruction
in [8] and the unramified cohomology group used in reciprocity obstruction [7, Theorem 4.1]).

Actually the question that whether the canonical image of a certain map is unramified was
first raised by Colliot-Thélène (see also [3, Remarque 4.3(b)]). Later [11, Appendix] obtained
a partial answer when the torsor is trivial. Therefore it is an interesting question to describe
the cohomological obstruction to the Hasse principle using unramified cohomology groups for
general torsors under tori.
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Let us make the above statements more precise. Let X (1) be the set of closed points on X . The
local ring OX ,v at v ∈ X (1) is a discrete valuation ring, so we may denote by Kv the completion of
K with respect to v ∈ X (1). Let Y be a K -torsor under a K -torus T . We put Yv := Y ×K Kv . Let Y be
a smooth integral separated X0-scheme such that Y ×X0 SpecK ≃ Y for some sufficiently small
non-empty open subset X0 ⊂ X . We define the adelic points on Y (which does not depend on the
choice of the model Y ) by

Y (AK ) := lim−−→
U⊂X0

( ∏
v ∉U

Y (Kv )× ∏
v ∈U

Y (Ov )

)
.

In [8, page 15-16], Harari and Szamuely constructed a map ρY : H 3
lc(Y ,Q/Z(2)) →Q/Zwhere

H 3
lc (Y ,Q/Z(2)) := Ker

(
H 3(Y ,Q/Z(2))

Im H 3(K ,Q/Z(2))
→ ∏

v ∈X (1)

H 3(Yv ,Q/Z(2))

Im H 3(Kv ,Q/Z(2))

)
gives the only obstruction to the Hasse principle as follows.

Theorem (Harari–Szamuely [8, Theorem 5.1]). Let Y be a K -torsor under a torus T such that
Y (AK ) ̸=∅. If ρY is identically zero, then Y (K ) ̸=∅.

Actually, during the proof of the theorem, Harari and Szamuely constructed a finer ob-
struction than that given by H 3

lc(Y ,Q/Z(2)). Indeed, the Hochschild–Serre spectral sequence
E p,q

2 := H p (K , H q (Y ,Q/Z(2))) ⇒ H p+q := H p+q (Y ,Q/Z(2)) yields H 2(K , H 1(Y ,Q/Z(2))) →
H 3(Y ,Q/Z(2))/Im H 3(K ,Q/Z(2)) (where we have used implicitly the fact that the cohomologi-
cal dimension of K is 3). Moreover, [8, Lemma 5.2] allows one to identify H 2(K , H 1(Y ,Q/Z(2)))
with H 2(K ,T ′) where T ′ is the dual torus of T (i.e. T ′ is the torus such that its module of char-
acters is the module of cocharacters of T ). Let X2(T ′) be the group of everywhere locally trivial
elements of H 2(K ,T ′). Restricting to the subgroup X2(T ′) of H 2(K ,T ′) yields a map

τ :X2(T ′) → H 3
lc (Y ,Q/Z(2)) .

Let Y be a T -torsor such that Y (AK ) ̸= ∅. Since Y (AK ) ̸= ∅ is equivalent to Y (Kv ) ̸= ∅ for all
v ∈ X (1), Y (AK ) ̸=∅ implies that the class [Y ] ∈ H 1(K ,T ) actually lies in X1(T ). Now we arrive at:

Proposition (Harari–Szamuely, [8, Proposition 5.3]). Let Y be a T -torsor such that Y (AK ) ̸=∅.
Then

ρY ◦τ(α) = 〈[Y ],α〉
holds up to sign for all α ∈X2(T ′), where 〈−,−〉 is the global duality pairing X1(T )×X2(T ′) →
Q/Z (see [8, Theorem 4.1]).

The previous theorem follows immediately from the precedent proposition together with the
fact that the global duality pairing X1(T )×X2(T ′) → Q/Z is perfect. In this way, we obtain a
cohomological obstruction to the Hasse principle given by the image ofX2(T ′) in H 3

lc(Y ,Q/Z(2)).
Thus the image of X2(T ′) is the crucial part of the obstruction to the Hasse principle.

As for weak approximation, Harari, Scheiderer and Szamuely announced that the defect to
weak approximation for tori can be described by X2

ω(T ′), where X2
ω(T ′) denotes the subgroup

of H 2(K ,T ′) consisting of elements vanishing in H 2(Kv ,T ′) for all but finitely many v ∈ X (1). To
this end, they constructed a pairing (see [7, §4, pp. 18])

(−,−)WA :
∏

v ∈X (1)
Y (Kv )×H 3

nr(K (Y ),Q/Z(2)) →Q/Z.

Here H 3
nr(K (Y ),Q/Z(2)) denotes the unramified subgroup of H 3(K (Y ),Q/Z(2)) which contains

the canonical image of H 3(K ,Q/Z(2)) in H 3(K (Y ),Q/Z(2)). See [2, §2 and §4] for general proper-
ties of unramified elements and unramified cohomology, respectively.
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Theorem (Harari–Scheiderer–Szamuely, [7, Theorem 4.2]). There is a homomorphism

u :X2
ω(T ′) → H 3

nr(K (T ),Q/Z(2))

such that each family (tv ) ∈ T (Kv ) annihilated by (−, Imu)WA lies in the closure T (K ) of T (K ) in∏
T (Kv ) with respect to the product topology.

We are therefore interested in the image of H 3
lc(Y ,Q/Z(2)) → H 3(K (Y ),Q/Z(2))/H 3(K ,Q/Z(2)).

We prove that this map has unramified image1 and hence the obstruction to the Hasse principle
will be easier to handle. The first result is the following:

Theorem (Tian [11, Appendix]). The image of X2
ω(T ′) → H 3(K (T ),Q/Z(2))/H 3(K ,Q/Z(2)) is

unramified, i.e. its image lies in the subquotient H r
nr(K (T ),Q/Z(2))/H 3(K ,Q/Z(2)).

In particular, the image of X2(T ′) → H 3
lc(T,Q/Z(2)) → H 3(K (T ),Q/Z(2))/H 3(K ,Q/Z(2)) is

unramified. This positive answer suggests us to generalize the result to K -torsors under T . Now
we arrive at the main result:

Corollary (Corollary 5). The image of X2
ω(T ′) → H 3(Y ,Q/Z(2))/Im H 3(K ,Q/Z(2)) is unramified

for any K -torsor Y under T .

The idea of the proof is simple: we show that the image of X2
ω(T ′) in H 3(Y ,Q/Z(2))/

Im H 3(K ,Q/Z(2)) comes from H 3(Y c ,Q/Z(2))/Im H 3(K ,Q/Z(2)) where Y c denotes a smooth
compactification of Y (see [10, Theorem 3.21 and Corollary 3.22] for the existence of Y c ). Thus
the image of X2

ω(T ′) in H 3(K (Y ),Q/Z(2))/H 3(K ,Q/Z(2)) is unramified by [2, Proposition 2.1.8]
and the properness of Y c . To this end, we use purity sequences to relate the cohomology of Y
with that of Y c via a commutative diagram (Lemma 4).

2. Main results

Let T c be a T -equivariant smooth projective compactification of T over K (see [4, Corollaire 1]).
Let T ⊂ Vi ⊂ T c be the open subset of T c consisting of T -orbits such that codim(T c \ Vi ,T c ) ≥ i .
Let Y c = Y ×T T c and let Ui = Y ×T Vi ⊂ Y c . Fix an algebraic closure K of K and let X be
the base change of a K -scheme X to K . So U0 = Y by construction and Y c is cellular by [1,
Proposition 2.5(3)]. For i ≥ 1, Zi :=Ui \Ui−1 is smooth of codimension i in Ui .

We begin with the computation of some cohomology groups via purity and then deduce a
commutative diagram which tells us X2

ω(T ′) is unramified. Throughout we shall simply write
Q(i ) :=Q/Z(i ) for i ∈Z.

Lemma 1. Suppose either (a) 0 ≤ r ≤ 4 and i ≥ 2, or (b) 0 ≤ r ≤ 2 and i ≥ 1. There are isomorphisms

H r (Ui ,Q(2)) ≃ H r (
Y c ,Q(2)

)
and H r

(
U i ,Q(2)

)
≃ H r

(
Y c ,Q(2)

)
.

Proof. The purity of Ui−1 ⊂Ui ⊃ Zi for i ≥ 1 yields exact sequences (and similar sequences over
K )

H r−2i (Zi ,Q(2− i )) → H r (Ui ,Q(2)) → H r (Ui−1,Q(2)) → H r+1−2i (Zi ,Q(2− i )) (1)

by [5, Corollary 8.5.6]. Thus for r ≤ 4 and i ≥ 3, there are isomorphisms

H r (Ui ,Q(2)) → H r (Ui−1,Q(2)) (2)

by the exact sequence (1). In particular, applying (2) inductively yields isomorphisms
H r (U2,Q(2)) ≃ H r (Y c ,Q(2)) and H r (U 2,Q(2)) ≃ H r (Y c ,Q(2)) for r ≤ 4. For case (b),
since codim(Z2,U2) = 2, the exact sequence (1) for 0 ≤ r ≤ 2 and U1 ⊂ U2 ⊃ Z2 im-
plies H r (U2,Q(2)) ≃ H r (U1,Q(2)) and H r (U 2,Q(2)) ≃ H r (U 1,Q(2)). Therefore we conclude
H r (U1,Q(2)) ≃ H r (U2,Q(2)) ≃ H r (Y c ,Q(2)) and similarly over K . □

1Throughout, the unramified part of H3(K (Y ),Q/Z(2))/H3(K ,Q/Z(2)) means H3
nr(K (Y ),Q/Z(2))/H3(K ,Q/Z(2)).
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Remark 2. Since Y c is a projective cellular variety, H i (Y c ,Q(2)) = 0 for i = 2n −1 with n ≥ 1 an
integer (see [6, Example 19.1.11] or [1, Théorème 2.6]). Moreover, thanks to Br(Y c ) = 0 (since Y c

is smooth projective rational) and the Kummer sequence

0 → H 1
(
Y c ,Gm

)
/n → H 2

(
Y c ,µn

)
→ n H 2

(
Y c ,Gm

)
→ 0,

we obtain an isomorphism of Galois modules H 2(Y c ,Q(1)) ≃ Pic(Y c )⊗ZQ/Z after taking direct
limit over all n. Over the algebraically closed field K , we can (non-canonically) identify Q(1) with
Q(2), so there is an isomorphism H 2(Y c ,Q(2)) ≃ Pic(Y c )⊗ZQ/Z of abelian groups.

Lemma 3.

(1) We have H 1(U 1,Q(2)) = 0. The map H 2(U 1,Q(2)) → H 2(U 0,Q(2)) induced by U0 ⊂U1 is
identically zero. In particular, there is an exact sequence of Galois modules:

0 → H 1
(
U 0,Q(2)

)
→ H 0

(
Z 1,Q(1)

)
→ H 2

(
U 1,Q(2)

)
→ 0. (3)

(2) We have

Im
(
H 3 (

Y c ,Q(2)
)→ H 3 (U1,Q(2))

)= Ker
(
H 3 (U1,Q(2)) → H 3

(
U 1,Q(2)

))
.

Therefore

Im

(
H 3 (Y c ,Q(2))

H 3(K ,Q(2))
→ H 3(U1,Q(2))

H 3(K ,Q(2))

)
= Ker

(
H 3(U1,Q(2))

H 3(K ,Q(2))
→ H 3

(
U 1,Q(2)

))
. (4)

(3) Consider the diagonal map ∆ : H 2(K , H 0(Z 1,Q(1))) →∏
v H 2(Kv , H 0(Z 1,Q(1))) and write

the image (αv ) :=∆(α) of α ∈ H 2(K , H 0(Z 1,Q(1))) under ∆ into a family of local elements.
Put

X2
ω

(
H 0

(
Z 1,Q(1)

))
:= {

α
∣∣αv = 0 for all but finitely many v ∈ X (1)} .

Then X2
ω(H 0(Z 1,Q(1))) = 0 and in particular ∆ is injective.

Proof.

(1) By Lemma 1 and Remark 2, we have H 1(U 1,Q(2)) ≃ H 1(Y c ,Q(2)) = 0. Consider the
following commutative diagram

Pic
(
T c

)
⊗Q/Z //

��

Pic
(
T

)
⊗Q/Z

��

H 2
(
T c ,Q(2)

)
// H 2

(
T ,Q(2)

)
.

Here the vertical arrows are induced by the Kummer sequence 0 → µn → Gm → Gm → 0
together with a fixed identification of Q(1) and Q(2) over K . Note that Br(T c ) = 0
and Pic(T ) = 0. Since the left vertical arrow is an isomorphism by the vanishing of
Br(T c ), we conclude that H 2(Y c ,Q(2)) → H 2(U 0,Q(2)) is identically zero because of the
isomorphisms of varieties Y c ≃ T c and U 0 = Y ≃ T . Finally, the purity sequence (1) for
U0 ⊂ U1 ⊃ Z1 together with the above vanishing results imply the desired short exact
sequence of Galois modules.

(2) The purity for U1 ⊂U2 ⊃ Z2 induces a commutative diagram with exact rows

H 3 (U2,Q(2)) //

��

H 3 (U1,Q(2)) //

��

H 0 (Z2,Q(0))

��

H 3
(
U 2,Q(2)

)
// H 3

(
U 1,Q(2)

)
// H 0

(
Z 2,Q(0)

)
.
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Note that the map H 0(Z2,Q(1)) → H 0(Z 2,Q(1)) is injective. According to Lemma 1
and Remark 2, we have

H 3
(
U 2,Q(2)

)
≃ H 3

(
Y c ,Q(2)

)
= 0.

Thus a diagram chasing yields

Im
(
H 3 (U2,Q(2)) → H 3 (U1,Q(2))

)= Ker
(
H 3 (U1,Q(2)) → H 3

(
U 1,Q(2)

))
.

Recall that H 3(U2,Q(2)) ≃ H 3(Y c ,Q(2)) by Lemma 1, we are done.
(3) Note first that H 0(Z 1,Q(1)) is isomorphic to a direct sum of copies of Q(1) as Galois

modules and hence X2
ω(H 0(Z 1,Q(1))) is a direct sum of copies of X2

ω(Q(1)). For a
field L of characteristic zero, we have a short exact sequence 0 → Q(1) → L

× → Q → 0
of Galois modules, where the quotient Q is uniquely divisible. Taking cohomology yields
an isomorphism H 2(L,Q(1)) ≃ BrL. Finally, applying H 2(L,Q(1)) ≃ BrL to L = K ,Kv and
takingX2

ω(Gm) = 0 ( [7, Lemma 3.2(a)]) into account yieldX2
ω(Q(1)) ≃X2

ω(Gm) = 0. □

In the diagram below, we denote by HU/HL, VF/VB/VL/VM/VR for the horizontal up-
per/lower, vertical front/back/left/middle/right face, respectively. To avoid confusion, in VB we
draw dashed vertical arrows. So all the other faces are uniquely determined.

In the proof of Corollary 5 we only need the commutativity of the left cube and the exactness
of the upper row of HL in Lemma 4, but we still construct and show the commutativity of the two
cubes because all the involved arrows arise naturally.

Lemma 4. There is an exact commutative diagram with surjective vertical arrows

H 3
(
K ,τ≤2R f U1∗Q(2)

)
//

xx

��

H 3
(
K ,τ≤1R f U0∗Q(2)

)
//

xx

��

H 2
(
K ,τ≤0R f Z1∗Q(1)

)
xx

��

H 3 (U1,Q(2)) //

��

H 3 (U0,Q(2)) //

��

H 2 (Z1,Q(1))

H 1
(
K , H 2

(
U 1,Q(2)

))
//

yy

H 2
(
K , H 1

(
U 0,Q(2)

))
//

yy

H 2
(
K , H 0

(
Z 1,Q(1)

))
yy

H 3(U1,Q(2))
Im H 3(K ,Q(2))

// H 3(U0,Q(2))
Im H 3(K ,Q(2))

// H 2 (Z1,Q(1)) .

Proof. Let j : U 0 → U 1 and i : Z 1 → U 1 be open and closed immersions, respectively. We
consider the exact sequence 0 → i∗i !Q(2) →Q(2) → j∗ j∗Q(2) → i∗R1i !Q(2) → 0 of étale sheaves
over U1 (for example, see the proof of [5, Corollary 8.5.6]). The isomorphism Rq j∗Q(2) ≃
i∗Rq+1i !Q(2) for q ≥ 1 yields a distinguished triangle

i∗Ri !Q(2) →Q(2) → R j∗ j∗Q(2) → i∗Ri !Q(2)[1]. (5)

According to [5, Theorem 8.5.2] (or see loc. cit. pp. 467 bottom for a more explicit version), we
have Ri !Q(2) ≃ i∗Q(1)[−2]. Let f X denotes the structural morphism over K of a K -scheme X.
Then we obtain f U1

◦ i = f Z1
and hence R f U1

i∗Ri !Q(2) = R f Z1
i∗Q(1)[−2] = R f Z1

Q(1)[−2]. Now

applying the functor R f U1∗ to (5) yields a distinguished triangle

R f Z1∗Q(1)[−2] → R f U1∗Q(2) → R f U0∗Q(2) → R f Z1∗Q(1)[−1]. (6)

• The lower row of VB is obtained by taking Galois cohomology of (3).
• We construct the upper row of VB. The left upper horizontal arrow is constructed as fol-

lows. Let F be an étale sheaf over X for some K -scheme X. Then we have H 2(R f X∗F ) =
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R2 f X∗F ≃ H 2(X,F ). Consider the commutative diagram of short exact sequences in the
derived category of étale sheaves

0 // τ̃≤1R f U1∗Q(2) //

��

τ≤2R f U1∗Q(2) //

��uu

H 2
(
U 1,Q(2)

)
[−2] //

��

0

0 // τ̃≤1R f U0∗Q(2) // τ≤2R f U0∗Q(2) // H 2
(
U 0,Q(2)

)
[−2] // 0

(7)

where the vertical arrows are induced by the middle arrow of (6), and the rows come from
respective short exact sequences in the category of complexes of étale sheaves. Since
the right vertical map is zero by Lemma 3(1), the arrow τ≤2R f U1∗Q(2) → τ≤2R f U0∗Q(2)

factors uniquely through τ̃≤1R f U0∗Q(2) by the universal property of kernels. But the

quasi-isomorphism τ≤1R f U0∗Q(2) → τ̃≤1R f U0∗Q(2) becomes an isomorphism in the

derived category, so we obtain a map τ≤2R f U1∗Q(2) → τ≤1R f U0∗Q(2).

The right upper horizontal arrow is obtained by R f U0∗Q(2) → R f Z1∗Q(1)[−1]
from (6). Indeed, we have a map

τ≤1R f U0∗Q(2) → τ≤1

(
R f Z1∗Q(1)[−1]

)
=

(
τ≤0R f Z1∗Q(1)

)
[−1].

• The vertical arrows of VB are induced by the distinguished triangle (see [9, pp. 303,
(12.3.2) and (12.3.3)])

τ≤ j−1Rπ∗Q(2) → τ≤ j Rπ∗Q(2) → H j
(
X,Q(2)

)
[− j ] → τ≤ j−1Rπ∗Q(2)[1]

with π :X→ K the structural morphism. The map

H 3
(
K ,τ≤2R f U1∗Q(2)

)
→ H 1

(
K , H 2

(
U 1,Q(2)

))
is surjective since H 4(K ,Q/Z(2)) = 0. Similarly, the other vertical arrows are also surjec-
tive.

• Taking Galois cohomology of the triangle (6) yields an exact sequence

H 3 (
K ,R fU1∗Q(2)

)→ H 3 (
K ,R fU0∗Q(2)

)→ H 2 (
K ,R fZ1∗Q(1)

)
,

i.e. H 3(U1,Q(2)) → H 3(U0,Q(2)) → H 2(Z1,Q(1)) is exact. The horizontal rows of VF are
constructed.

• All the vertical arrows of VF are canonical projections.
• Vertical arrows of HU (those arrows of the form H i (K ,τ≤ j R f X∗F ) → H i (X,F )) are

induced by the canonical map τ≤ i A∗ → A∗ of complexes, and that of HL are obtained
by the Hochschild–Serre spectral sequence H p (K , H q (X,Q(i ))) ⇒ H p+q (X,Q(i )), where
X is a variety defined over K .

Now we check the commutativity of the diagram.

• VL, VM and VR commute by construction of the Hochschild–Serre spectral sequence
(see [8, pp. 17]).

• VF commutes by construction. For VB, we have a diagram in the derived category of étale
sheaves

τ≤2R f U1∗Q(2) //

��

τ≤1R f U0∗Q(2) //

��

τ≤0R f Z1∗Q(1)[−1]

��

H 2
(
U 1,Q(2)

)
[−2] // H 1

(
U 0,Q(2)

)
[−1] // H 0

(
Z 1,Q(1)

)
[−1]

where the vertical arrows come from truncations. This diagram commutes because the
rows are both obtained from the triangle (6). Hence applying the function H 3(K ,−) yields
the commutativity of VB.



Yisheng Tian 263

• HU commutes by construction of truncation and by functoriality of Galois cohomology.

Thus the horizontal lower face HL commutes by diagram chasing. □

Corollary 5. The image of X2
ω(T ′) in H 3(Y ,Q(2))/Im H 3(K ,Q(2)) is unramified.

Proof. By Lemma 4 and functoriality, the following diagram commutes:

X2
ω(T ′) //

ιT ��

X2
ω

(
H 0

(
Z 1,Q(1)

))
ιZ ��

H 1
(
K , H 2

(
U 1,Q(2)

))
Φ //

HS1 ��

H 2
(
K , H 1

(
U 0,Q(2)

))
//

HS0 ��

H 2
(
K , H 0

(
Z 1,Q(1)

))
��H 3 (U1,Q(2))

Im H 3 (K ,Q(2)) Ψ
//

H 3 (Y ,Q(2))

Im H 3 (K ,Q(2))
// H 2 (Z1,Q(1)) .

Here ιT and ιZ are respective inclusions. According to Lemma 3, the second row is exact and
we have X2

ω(H 0(Z 1,Q(1))) = 0. Subsequently a diagram chasing shows that Im(ιT ) ⊂ ImΦ. By
commutativity of the left lower square, Im(HS0 ◦ ιT ) ⊂ Im(HS0 ◦Φ) = Im(Ψ◦HS1). The composite
map

H 1
(
K , H 2

(
U 1,Q(2)

))
→ H 3(U1,Q(2))

Im H 3(K ,Q(2))
→ H 3

(
U 1,Q(2)

)
factors through H 1(K , H 2(U 1,Q(2))) = 0 by the functoriality of the Hochschild–Serre spectral
sequence. Thus we obtain from Lemma 3(2) that

ImHS1 ⊂ Ker

(
H 3(U1,Q(2))

Im H 3(K ,Q(2))
→ H 3

(
U 1,Q(2)

))
= Im

(
H 3(Y c ,Q(2))
H 3(K ,Q(2))

→ H 3(U1,Q(2))
H 3(K ,Q(2))

)
.

Thus the image of X2
ω(T ′) in H 3(Y ,Q(2))/Im H 3(K ,Q(2)) comes from H 3(Y c ,Q(2)), i.e.

X2
ω(T ′) is unramified. In particular, the image of X2(T ′) in H 3

lc(Y ,Q(2)) is unramified. □

If we restrict to the subgroup X2(T ′) of X2
ω(T ′), then its image lies in the sub-

group H 3
lc(Y ,Q/Z(2)) of H 3(Y ,Q/Z(2))/Im H 3(K ,Q/Z(2)). Now the image of X2(T ′) in

H 3(K (Y ),Q/Z(2))/H 3(K ,Q/Z(2)) is unramified by Corollary 5.
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